Expansion of the US FDA Sentinel System to inpatient blood transfusion data from Hospital Corporation of America: new surveillance options

Fuller CC,1 Baker MA,1 Spencer-Smith C,2 Anderson SA,3 Balsbaugh C,1 Burgess H,2 Chazin H,3 Clark P,3 Curtis LH,4 Forshee R,3 Hickok J,2 Menis M,3 Miller KM,2 Niu M,3 Obidi J,3 Paul W,3 Poland R,1,2 Popovic J,5 Rosofsky R,6 Zinderman C,3 Shoaibi A3

1 Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
2 Hospital Corporation of America, Nashville, TN
3 Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
4 Duke Clinical Research Institute, Durham, NC
5 RTI International, Waltham, MA
6 Health Information Systems Consulting, Milton, MA
Disclosure

- This work was supported by the FDA through the Department of Health and Human Services (HHS) Contract number HHSF223200910006I
- The views expressed in this paper are those of the authors and are not intended to convey official U.S. Food and Drug Administration (FDA) policy or guidance
Background

- Sentinel System is the US Food and Drug Administration (FDA)’s active safety surveillance system to monitor medical products
- US FDA’s Center for Biologics Evaluation and Research (CBER) responsible for ensuring safety of blood & blood products/components
- Blood Safety Surveillance Continuous Active Network (BloodSCAN)
 - A subcomponent of the Sentinel System sponsored by CBER to monitor recipient safety of FDA-regulated blood components and blood-derived products
Background

- Hospital Corporation of America (HCA) became a full Sentinel data partner in 2016
 - Many blood transfusions occur in inpatient settings
 - Claims data often do not contain important transfusion details
 - Full-text electronic health records
 - Facilitate chart review and health outcomes of interest validation
 - Provides new safety surveillance potential for BloodSCAN
Hospital Corporation of America

~5% of all inpatient care delivered in USA

Objective

- To describe Sentinel’s HCA transfusion data expansion and characterize data elements with potential for conducting surveillance for adverse events after exposure to blood components and blood-derived products.
Methods

- Sentinel and HCA created an inpatient transfusion table and added it to the Sentinel Common Data Model (SCDM)
- As HCA worked to populate the SCDM with quality checked data from more than 165 facilities
 - A test database was provided for blood component characterization
- Using analytic programs we:
 - Described data elements relevant to BloodSCAN.
 - Mapped Codabar and ISBT-128 product codes in the HCA Sentinel database to blood components
Sentinel Common Data Model: HCA

Existing SCDM Tables

- **Demographic**
 - Person ID
 - Birth date
 - Sex
 - ZIP code
 - Etc.

- **Encounter**
 - Person ID
 - Service date(s)
 - Encounter ID
 - Encounter type & provider
 - Facility
 - Etc.

- **Diagnosis**
 - Person ID
 - Service date(s)
 - Encounter ID
 - Encounter type & provider
 - Diagnosis code & type
 - Principal discharge diagnosis
 - Etc.

- **Procedure**
 - Person ID
 - Service date(s)
 - Encounter ID
 - Encounter type & provider
 - Procedure code & type
 - Etc.

- **Vital Signs**
 - Person ID
 - Measurement date and time
 - Height and weight
 - Diastolic & systolic BP
 - Procedure code & type
 - Tobacco use & type

New SCDM Tables

- **Inpatient Pharmacy Dispensing**
 - Person ID
 - Encounter ID
 - NDC
 - Rx Administration date
 - Rx Administration time
 - Actual/administered route
 - Actual/administered dose
 - Etc.

- **Inpatient Transfusion**
 - Person ID
 - Encounter ID
 - Unique transfusion identifier
 - Product code and codetype
 - Blood type
 - Transfusion date/time start
 - Transfusion date/time end
 - Etc.
<table>
<thead>
<tr>
<th>Broad Categorization</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma</td>
<td></td>
</tr>
<tr>
<td>APHPLASMA</td>
<td>Apheresis plasma</td>
</tr>
<tr>
<td>WBDPLASMA</td>
<td>Whole blood derived plasma</td>
</tr>
<tr>
<td>Platelets</td>
<td></td>
</tr>
<tr>
<td>APHPLAT</td>
<td>Apheresis platelets</td>
</tr>
<tr>
<td>IRAPHPLAT</td>
<td>Irradiated apheresis platelets</td>
</tr>
<tr>
<td>IRRAPHPLAT</td>
<td>Irradiated leukocyte reduced apheresis platelets</td>
</tr>
<tr>
<td>IRLRWBDPABLAT</td>
<td>Irradiated leukocyte reduced whole blood derived platelets</td>
</tr>
<tr>
<td>IRWBDBPLAT</td>
<td>Irradiated whole blood derived platelets</td>
</tr>
<tr>
<td>LRSHPBLAT</td>
<td>Leukocyte reduced apheresis platelets</td>
</tr>
<tr>
<td>LRWBDBPLAT</td>
<td>Leukocyte reduced whole blood derived platelets</td>
</tr>
<tr>
<td>WDBPLAT</td>
<td>Whole blood derived platelets</td>
</tr>
<tr>
<td>Red Blood Cells</td>
<td></td>
</tr>
<tr>
<td>APHRBC</td>
<td>Apheresis red blood cells</td>
</tr>
<tr>
<td>IRAPHRBC</td>
<td>Irradiated apheresis red blood cells</td>
</tr>
<tr>
<td>IRLRAHRBC</td>
<td>Irradiated leukocyte reduced apheresis red blood cells</td>
</tr>
<tr>
<td>IRLRWBDBRBC</td>
<td>Irradiated leukocyte reduced whole blood derived RBC</td>
</tr>
<tr>
<td>IRWBDBRBC</td>
<td>Irradiated whole blood derived red blood cells</td>
</tr>
<tr>
<td>LRAPHRBC</td>
<td>Leukocyte reduced apheresis red blood cells</td>
</tr>
<tr>
<td>LRWBDBRBC</td>
<td>Leukocyte reduced whole blood derived red blood cells</td>
</tr>
<tr>
<td>WBDBRBC</td>
<td>Whole blood derived red blood cells</td>
</tr>
<tr>
<td>Whole Blood</td>
<td>WB - Whole blood</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
<tr>
<td>CRYO</td>
<td>Cryoprecipitate</td>
</tr>
<tr>
<td>GRAN</td>
<td>Granulocytes</td>
</tr>
<tr>
<td>LEUK</td>
<td>Leukocytes</td>
</tr>
<tr>
<td>LYMPH</td>
<td>Lymphocytes</td>
</tr>
<tr>
<td>MNC</td>
<td>Mononuclear cells</td>
</tr>
<tr>
<td>SERUM</td>
<td>Serum</td>
</tr>
</tbody>
</table>
Results

- HCA’s inpatient transfusion table captures administered transfusions including start and end times, product blood type, Rh factor
 - Number of units can also be derived

- ISBT-128 or Codabar codes assigned to each unit allow for identification of blood component and blood processing (eg, leukocyte reduction) methods
Results: HCA’s Sentinel database: Inpatient transfusions

- Provides information often not available in claims data
- Actual administered start/end transfusion dates AND times
- Blood type [A, B, O, AB, RH factor (+, -)]
- Information about transfused unit (can be used to identify blood component)
- # units, potentially large volume transfusion
Results: HCA’s Sentinel database:
Inpatient transfusions

- Captures transfused units, each labeled with code
- Two transfusion coding systems in use
 - >4,500 ISBT-128 codes
 - >1,500 Codabar codes
- Granular codes = new potential
 - Identification of blood components
 - Potential for identification of processing method (e.g., leukocyte-reduced, irradiated)
Results: HCA’s Sentinel database: Inpatient transfusions

- Although both Codabar and ISBT-128 systems are still in use at HCA, there has been an increased uptake in use of ISBT codes and a decrease in use of Codabar codes over time
 - By mid-2015 less than 1% of HCA transfusions were coded with a Codabar code
ISBT-128 product code, 5 digits in Sentinel Common Data Model

Source: ISBT-128 website, https://www.iccbba.org/
Results: Sample Transfusion Codes at HCA

CODABAR

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>18831</td>
<td>PLASMA IRRADIATED (from 250ml Whole Blood)(Storage -18 C or colder)</td>
</tr>
<tr>
<td>18901</td>
<td>LIQUID PLASMA IRRADIATED</td>
</tr>
<tr>
<td>31458</td>
<td>CPD WHOLE BLOOD LEUKOCYTES REDUCED^1 DIVIDED (Part H or 8)</td>
</tr>
<tr>
<td>31461</td>
<td>CPDA-1 WHOLE BLOOD LEUKOCYTES REDUCED^1 DIVIDED (Part A or 1)</td>
</tr>
<tr>
<td>35772</td>
<td>AS-3 Red Blood Cells leukocytes reduced^1 DIVIDED IRRADIATED (ACDA anticoagulant)(by pheresis)</td>
</tr>
<tr>
<td>35773</td>
<td>AS-3 Red Blood Cells leukocytes reduced^1 DIVIDED IRRADIATED (ACDA anticoagulant)(by pheresis)</td>
</tr>
</tbody>
</table>

ISBT

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E0135</td>
<td>WHOLE BLOOD</td>
</tr>
<tr>
<td>E0154</td>
<td>RED BLOOD CELLS</td>
</tr>
<tr>
<td>E1146</td>
<td>Apheresis FRESH FROZEN PLASMA</td>
</tr>
<tr>
<td>E1149</td>
<td>Thawed Apheresis FRESH FROZEN PLASMA</td>
</tr>
<tr>
<td>E5326</td>
<td>Apheresis PLATELETS</td>
</tr>
<tr>
<td>E5329</td>
<td>PLASMA</td>
</tr>
<tr>
<td>Broad Categorization</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| **Plasma** | APHPLASMA - Apheresis plasma
 | WBDPLASMA - Whole blood derived plasma |
| **Platelets** | APHPLAT - Apheresis platelets
 | IRAPPHPLAT - Irradiated apheresis platelets
 | IRRAPPHPLAT - Irradiated leukocyte reduced apheresis platelets
 | IRLRWBDBPLAT - Irradiated leukocyte reduced whole blood derived platelets
 | IRWBDPLAT - Irradiated whole blood derived platelets
 | LRSHPPLAT - Leukocyte reduced apheresis platelets
 | LRWBDPLAT - Leukocyte reduced whole blood derived platelets
 | WBDPLAT - Whole blood derived platelets |
| **Red Blood Cells** | APHRBC - Apheresis red blood cells
 | IRAPHRBC - Irradiated apheresis red blood cells
 | IRLRAPHRC - Irradiated leukocyte reduced apheresis red blood cells
 | IRLRWBDBRBC - Irradiated leukocyte reduced whole blood derived RBC
 | IRWBDRBC - Irradiated whole blood derived red blood cells
 | LRAPHRBC - Leukocyte reduced apheresis red blood cells
 | LRWBDRBC - Leukocyte reduced whole blood derived red blood cells
 | WBDRB - Whole blood derived red blood cells |
| **Whole Blood** | WB - Whole blood |
| **Other** | CRYO – Cryoprecipitate
 | GRAN – Granulocytes
 | LEUK – Leukocytes
 | LYMPH – Lymphocytes
 | MNC - Mononuclear cells
 | SERUM - Serum |
Results: Sample Transfusion Codes: With Prod_CDC

<table>
<thead>
<tr>
<th>CODABAR</th>
<th>Description</th>
<th>Prod_CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code 18831</td>
<td>PLASMA IRRADIATED (from 250ml Whole Blood)(Storage - 18 C or colder)</td>
<td>Prod_CDC WBDPLASMA - Whole blood derived plasma</td>
</tr>
<tr>
<td>Code 35772</td>
<td>AS-3 Red Blood Cells leukocyteS reduced^1 DIVIDED IRRADIATED (ACDA anticoagulant)(by pheresis)(P...</td>
<td>Prod_CDC IRLRAPHRBC - Irradiated leukocyte reduced apheresis red blood cells</td>
</tr>
<tr>
<td>Code 35773</td>
<td>AS-3 Red Blood Cells leukocyteS reduced^1 DIVIDED IRRADIATED (ACDA anticoagulant)(by pheresis)(P...</td>
<td>Prod_CDC IRLRAPHRBC - Irradiated leukocyte reduced apheresis red blood cells</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ISBT</th>
<th>Description</th>
<th>Prod_CDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code E0135</td>
<td>WHOLE BLOOD</td>
<td>Heparin/450mL/refg</td>
</tr>
<tr>
<td>Code E1149</td>
<td>Thawed Apheresis FRESH FROZEN PLASMA</td>
<td>ACD-B/XX/refg</td>
</tr>
</tbody>
</table>
Results: Proportion of units attributed to each blood component (*March 2013-January 2015)*

<table>
<thead>
<tr>
<th>Blood product/component, units administered</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Blood Cells</td>
<td>62.8%</td>
</tr>
<tr>
<td>Plasma</td>
<td>13.4%</td>
</tr>
<tr>
<td>Platelets</td>
<td>9.2%</td>
</tr>
<tr>
<td>Whole Blood</td>
<td>0.0%</td>
</tr>
<tr>
<td>Other or unknown**</td>
<td>14.7%</td>
</tr>
<tr>
<td>Grand Total</td>
<td></td>
</tr>
</tbody>
</table>

Learned:

• National Blood Collection and Utilization Survey 2011 Report: RBC, 63%, Plasma, 18%, Platelets, 15% Other or unknown***
• Underestimating plasma/platelets

*Analysis conducted on HCA Sentinel test database

**Other includes codes which could not be identified, along with other valid codes

Results

- HCA’s Sentinel database included consistently populated transfusion data starting in late 2013
Results: # Encounters in HCA Sentinel database with a recorded transfusion (June 2011-May 2015, HCA Sentinel database 1)

HCA began bringing transfusion data into Sentinel database in 2013

N= 373,743 encounters with transfusions October 2013-May 2015
Results: Variables for outcomes of interest

- Diagnosis and procedure codes could be used to define adverse events.

- Present-on-admission and principal discharge diagnosis flags
 - Provide further refinement potential

- Also available:
 - Admission and discharge dates
 - Discharge disposition (eg, expired)
 - Admitting source (eg, hospital transfer)
Results: What do we know about diagnoses?

ICD-9

ICD-10

Admission date

Principale

Discharge date

Present-on-admission

Secondary
Results: What do we know about procedures?

- 642 million observed procedures codes
 - 21 million ICD-9 procedure codes (typically describe surgical procedures)
 - Over 3 million drug administrations (injections)
Results: CBER test cases underway

- Evaluation of development of Transfusion–Related Acute Lung Injury (TRALI) after exposure to blood and blood products
 - Publically posted protocol, assessment underway, includes chart validation component
Limitations

- Current SCDM includes admission and discharge dates, no procedure or diagnosis dates or times
 - Transfusion administration dates and time are available, but temporality of exposures/outcomes may be difficult to capture
 - Data model expansion currently being evaluated
- Unit of analysis is a hospitalization
 - Limitations for tracking patients within HCA Sentinel data
- More evaluation of blood coding systems needed, including validation of blood product/component
Conclusions

- HCA’s inpatient transfusion data hold potential for BloodSCAN expansion, but need validation
 - Potential for identification of blood processing method
 - Dates/times of blood transfusions available
 - # units available
 - Full-text electronic health records, facilitate chart review/validation

- Identified red blood cell proportions were similar to those reported in national surveys, but those of plasma and platelets maybe under-identified
 - Examination of local hospital coding and additional blood component mapping systems needed
 - Test cases underway, 1 includes chart validation of transfusion exposure
Acknowledgements

- The authors also thank Adee Kennedy at SOC, as well as other contributors in CBER’s OBE for their assistance