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I. INTRODUCTION 

TreeScan™ (http://www.treescan.org) is a statistical data mining tool that is compatible with multiple 
study designs and addresses many methodological challenges1 with making secondary use of healthcare 
databases for detection of potential signals related to marketed medical products. It uses a hierarchical 
outcome tree to group related codes together and applies tree-based scan statistics to adjust for 
multiple testing when screening across thousands of potential adverse events.2  

TreeScan has previously been used to screen for adverse events when conducting signal detection in 
vaccine safety studies that used a self-controlled design.3-5 Studies of childhood vaccine safety are well 
suited for self-controlled designs because these are often administered on an age-based schedule6 
rather than in response to a change in clinical condition. In contrast, the clinical context behind decisions 
of whether, when and for how long to treat patients with specific drugs can make issues of confounding 
related to timing of exposure more complex than typically found in vaccine studies.7 While self-
controlled designs cannot be confounded by time-invariant characteristics due to the within-person 
comparisons, they are susceptible to bias from time-varying characteristics (e.g. healthy user bias8,9, 
trends in exposure probability in the population10 or within individual11,12, decline in overall health 
status, protopathic bias13). Recent work evaluating TreeScan for adverse event screening using drug 
examples with a self-controlled risk interval design resulted in many alerts for outcomes that were 
related to underlying changes in health condition that prompted the initiation of therapy (Maro et al, 
draft in progress). For example, when screening for adverse events after antibiotics, there were 
numerous alerts for conditions related to the underlying infection that prompted the need for antibiotic.  

For drug safety evaluations, a cohort study of new initiators is a powerful design that can better address 
unmeasured time-varying characteristics associated with initiation of treatment that are also related to 
outcomes of interest (e.g. confounders) through judicious selection of an appropriate active comparator 
group.14,15  While selection of an appropriate comparator in the design phase is crucial, cohort studies 
often require additional adjustment of measurable confounders and/or their proxies. A common 
method for adjusting for confounding is via a propensity score (PS). The PS is the predicted probability of 
exposure (versus comparator) conditional on covariates and is typically estimated via a logistic 
regression model.16 When the PS is used to conduct matched, weighted or stratified analyses, the results 
are adjusted for confounders that are included in the PS model as well as closely related proxies. The 
covariates selected for inclusion in the PS can be predefined by the investigator or empirically defined 
via machine learning algorithms.17-21 

A recent analysis involved simulation to evaluate the performance of tree-based scan statistics with PS 
matched analysis of new initiator cohorts. These analyses showed promise for TreeScan with PS 
matching as a method for screening and prioritization of potential adverse events (Wang et al, in press, 
Epidemiology). In the simulations, the true confounding structure was known to the investigators and 
the scenarios were limited to under 30 potential confounders for selected outcomes. However, when 
applying TreeScan for a real drug safety screening using a PS matched active-comparator cohort design, 
special consideration will be necessary to address confounding. Risk factors, and therefore confounders, 
will vary by outcome and TreeScan scans across thousands of possible outcomes. Therefore, it would 
not be feasible to identify potential confounders for every possible adverse event that is screened.  

FDA is interested in development of a “global” PS that could be applied generically across different 
active-comparator cohort studies in varied populations to adjust for many of the major confounders 

http://www.treescan.org/
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associated with the different outcomes being scanned. A global PS would include a set of pre-defined 
variables that are risk factors for a variety of outcomes and/or empirically selected variables related to 
exposure selection. After scanning for potential adverse events using a global PS, outcomes that alert 
can be further explored and refined in analyses where confounders are carefully selected and tailored to 
the specific adverse events of interest.  

II. SPECIFIC AIMS 

This methods project aims to develop and evaluate candidate global propensity scores for application 
with the propensity score cohort matched design and tree-based scan statistics. The examples used in 
this project are not part of a regulatory evaluation. 

Aim #1: Develop and compare the relative performance of candidate global propensity scores which 
could be applied generally in cohort studies involving tree-based scan statistics by evaluating 4 case 
studies for drug safety signal detection, where the selected drugs have well characterized safety profiles. 

We will evaluate tree-based scan statistics with crude, age-sex matched and 1:1 global propensity score 
matched cohorts. The workgroup will identify a set of candidate global propensity scores, then conduct 
analyses to evaluate performance of 1:1 matched cohorts for each drug safety signal detection case 
study using a proprietary database licensed by Brigham and Women’s Hospital, Truven Health 
MarketScan® Research Database. Evaluation of performance will focus on a subset of selected outcomes 
in the hierarchical tree for each example and will include assessment of balance on known risk factors as 
well as impact of including additional adjustment for known risk factors on alerting (see section VIB for 
more detail). 

Aim #2: Using the a priori specified primary global propensity score to adjust for confounding, we will 
conduct clinical and epidemiologic review of TreeScan alerts. 

The workgroup will review alerts from one or more case studies after running TreeScan on a cohort 1:1 
matched on the pre-specified primary global propensity score to adjust for confounding. We will review 
alerts identified at a pre-specified threshold of p ≤ 0.01 from both clinical and epidemiological 
perspectives. The interpretation of alerts will include (but not necessarily be limited to) consideration of 
biologic pathways, confounding by indication, and reverse causality. If there are known signals, the WG 
will review and interpret the pattern of alerting for these known adverse events. Because the outcome 
nodes in the hierarchical tree may not reflect the most sensitive or specific algorithms for any particular 
outcome, this may influence alerting. For example, consider the situation where a drug increases the 
risk of Type II diabetic ketoacidosis (a very rare outcome), and incident outcomes are defined at level 3 
of the Multilevel Clinical Classifications Software (MLCCS) tree hierarchy. At level 3 of the tree, diagnosis 
codes for diabetic ketoacidosis are part of a node that includes more prevalent general diabetes codes. 
Thus, when scanning, the effect of the drug on diabetic ketoacidosis may be diluted due to the lack of 
specificity of the outcome definition. The WG will learn from observing patterns of alerts for known 
adverse events. After the workgroup considers clinical context and methodological issues to assess 
whether there may be clear, non-causal explanations for unanticipated alerts, at the FDA’s discretion, a 
separately scoped project may be initiated to distribute relevant Cohort Identification and Descriptive 
Analyses (CIDA) + Propensity Score Analysis Tool and TreeExtraction software packages to the Sentinel 
Distributed Database (SDD). 22,23 If similar unknown or unexplained alerts are observed, the workgroup 
may follow up with clinical review of Patient Episode Profile Retrieval (PEPR)24, and design of a protocol 
based safety assessment with confounding control targeted to the outcome of interest. 
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III. EXPERT ENGAGEMENT 

To increase opportunities for input around signal detection and TreeScan methods, the workgroup will 
invite members of the Methods Core to review and provide input on the project protocols.  The 
workgroup will engage the Methods Core for feedback at three points during the project: Project 
initiation/protocol review; presentation of interim findings and presentation of project results. 

IV. PROPENSITY SCORE MATCHED COHORT DESIGN 

The propensity score matched cohort design is currently being used by the FDA Sentinel Program in 
active surveillance activities.25-31 In this context, a cohort is generally defined by incident exposure to a 
new drug and an appropriate comparator drug. The initiators of each drug are then matched based on a 
propensity score, which is a summary measure capturing the probability of being an initiator of the new 
drug of interest rather than the comparator drug based on multiple baseline characteristics.  

There are many variants on how a cohort may be extracted from longitudinal healthcare claims data 
(e.g. defining cohort entry, washout period for incidence), choices regarding what goes into the 
propensity score (e.g. which covariates, defined over what period) as well as variants on how to match 
patients (e.g. matching caliper, 1:1 versus variable ratio). These design and implementation decisions 
are captured as options that investigators may alter when using the Sentinel Program’s CIDA + 
Propensity Score analysis tool.32  

 CANDIDATE GLOBAL PROPENSITY SCORES 

For Aim 1, candidate global PS will include a combination of demographics, comorbidity score, frailty, 
screening measures, healthcare utilization measures, exposure based high dimensional propensity score 
(hdPS)18 and investigator selected risk factors that may influence choice of therapy (Table 1). 

Table 1. Evaluation of TreeScan with variants of a global propensity score to adjust for confounding 

 Predefined global¹ Empirically selected² Predefined tailored³ 

1 Yes No No 

2 No Yes No 

3 Yes Yes Yes 

4 Yes Yes No 

5 Yes No Yes 

¹ Demographics, comorbidity score components, frailty score components, screening, healthcare utilization 
² Exposure-based high dimensional propensity score selection 
³ Investigator selected confounders tailored to each example 

  



  
 

 
 

Sentinel Methods Report - 4 - Global Propensity Scores with TreeScan 

Predefined global covariates can be applied “out of the box” without tailoring for different drug 
evaluations. While the global predefined covariates may be the same in each application, the 
coefficients to derive the estimated PS will depend on the covariate relationships with the exposure and 
comparator. Including covariates selected empirically via the exposure based hdPS algorithm increases 
computational complexity, while including tailored potential confounders increases staff time and effort. 
Staff time and effort may be the most difficult to scale up if there are numerous screening activities 
being launched for active surveillance. The candidate PS models in Table 1 were chosen to allow 
comparison of models that: 

1. use only predefined global covariates to those that use only empirical covariates (model 1 vs 2) 
2. models that include predefined global covariates with or without inclusion of covariates tailored 

to the exposure-comparator under investigation (models 1 vs 5) 
3. models that include predefined global covariates and empirically selected covariates with or 

without inclusion of covariates tailored to the exposure-comparator under investigation (model 
3 vs 4) 

Algorithms to define independent variables in the global propensity score will be based on previously 
published papers that evaluated performance of the algorithm whenever available. For example, prior 
papers have evaluated a claims based combined comorbidity score33 as well as a claims based frailty 
index.34  When published and/or evaluated algorithms are not available, the workgroup will create 
algorithms based on content validity from selected code descriptions and knowledge of coding for billing 
purposes. Algorithms for pre-specified covariates included in the candidate global propensity scores 
(other than exposure based hdPS empirically identified covariates) are provided in Appendix B.  

We chose to use hdPS rather than other machine learning to select variables such as LASSO19 or Elastic 
Net35 or hybrid approaches36,37 that combine the two to further reduce the dimensionality of variables 
included. In the context of variable selection based on potential for bias when evaluating a single 
outcome, these empirical variable selection approaches have performed similarly in prior evaluations.  
However, we will be scanning across thousands of potential outcomes. It would not be feasible to apply 
a machine learning or hybrid approach which selects variables based on association with outcome. 
Furthermore, it may be helpful in our scanning context to include a slightly broader base of variables to 
provide proxy adjustment for confounders on a wider range of outcomes. 

The hdPS software program creates and selects baseline covariates using diagnosis and procedure codes 
occurring within a user defined covariate assessment window.18 The user can provide the data as 
dimensions representing different aspects of care (e.g. inpatient diagnoses, outpatient diagnoses, 
procedure codes, drug codes). The algorithm will identify the top n (default 200) most prevalent codes 
from each dimension and create binary variables for each, as well as a variable measuring frequency of 
occurrence (once, sporadically, frequently).38 The exposure based selection option will select k 
covariates for inclusion (default = 500) based on strength of the association with exposure.  

Exposure-based selection is not the default hdPS option.39 The default selection criterion is based on 
potential to bias an exposure-outcome relationship, as defined by the Bross formula.40 The bias based 
selection option is not appropriate for this signal detection context, because the Bross formula is based 
on relationships between exposure and covariates with a single outcome. Because we will be screening 
across thousands of potential outcomes simultaneously rather than focusing on one outcome of 
interest, we focus on empirically identifying covariates using selection based on relationships with 
exposure. This may result in inclusion of covariates that are strongly predictive of exposure but not 
necessarily risk factors for all evaluated outcomes. However, on the whole we expect that there will be 
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little harm to including covariates that are not strong risk factors for a particular outcome relative to the 
anticipated reduction in confounding for other outcomes.38,41 

There are many tuning parameters for hdPS. We will implement default settings for hdPS currently 
available with the Sentinel CIDA routine query tool as well as implement hdPS with additional data 
dimensions from which empirical covariates can be selected. These data dimensions will include 
hierarchically grouped diagnosis and procedure codes developed by the Agency for Research and 
Quality’s Multi-Level Clinical Classifications Software (MLCCS) (https://www.hcup-
us.ahrq.gov/toolssoftware/ccs/CCSUsersGuide.pdf).42   

For Aim 2, the pre-specified primary candidate global propensity score to adjust for confounding will 
include demographic, comorbidity score, frailty, screening and exposure based hdPS selected variables 
(#3 from Table 1). This PS was selected as primary because it includes all covariates that do not require 
additional investigator input, making it easier to scale up screening activities. Further investigation of 
potential alerts could then use PS tailored to refine understanding for specific outcomes of interest. 

V. TREESCAN  

 HIERARCHICAL TREE (MULTI-LEVEL CLINICAL CLASSIFICATION SOFTWARE) 

The tree structure that we will use for TreeScan will be based on the MLCCS International Classification 
of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) diagnosis tree, which is grouped into 4 
hierarchical levels representing increasingly specific clinical concepts. At the top level, there are 18 
categories representing different body systems.  

The increasing specificity of the hierarchical levels is depicted in Figure 1, where at the top level the 
category specifies only that the person has a disease of the circulatory system. Moving to level 2, one 
might see that the patient has hypertension. At level 3, essential versus secondary hypertension or 
hypertension with complications can be differentiated. At level 4, the type of secondary or hypertensive 
complications are specified. Finally, each node in level 4 of the hierarchy is based on specific ICD-9-CM 
codes. 
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Figure 1. Example from Multi-Level Clinical Classification

 

Decimal points in ICD-9-CM codes at the leaf level have been removed.  

The MLCCS based tree that we will use is a curated tree based on the 2015 version of ICD-9-CM codes. 
The tree has been independently curated by 2 members of FDA (Appendix A). Disagreements were 
adjudicated after discussion between the curators. Curation of the tree involved removal of conditions 
that were 1) congenital/hereditary, 2) unlikely to be caused by drugs (e.g. pregnancy, flu, well-visits) as 
well as 3) conditions with long induction times such as cancer (details on curation in the appendix). The 
diagnostic codes and their classification into different levels are not based on validated algorithms and 
could misclassify outcomes. Nevertheless, MLCCS classification of ICD-9-CM codes into clinical concepts 
can be useful as part of a screening tool for potential adverse events, followed by more rigorous and 
targeted protocol-based investigations. While an ICD-10-CM version of the MLCCS tree is available, our 
case studies will be conducted using data prior to widespread use of ICD-10-CM codes in the United 
States. We may elect to use trees that have been further curated for specific examples. 

 DEFINING INCIDENT OUTCOMES  

We will define incident outcomes based on level 3 nodes across the MLCCS tree hierarchy. Incident 
outcomes will be defined by the first diagnosis from the node that occurs in the emergency department 
(ED) or inpatient (IP) setting; without any diagnoses in the same MLCCS level 3 node in the prior 183 
days in any care settings. Multiple incident outcomes may be contributed by each patient as long as they 
meet the incidence criteria at MLCCS level 3 nodes.  

Each patient will be allowed to enter the cohort only one time, after the first qualifying incident use of 
either the exposure or comparator of interest. Patients will be censored at death, disenrollment, or 
maximum days follow up for the example. If one member of a 1:1 propensity score matched set is 
censored, the other member will also be censored at the same time. Incident outcomes occurring during 
the patient’s follow up after treatment initiation will be included in outcome counts for TreeScan. 
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 UNCONDITIONAL BINOMIAL TREE SCAN STATISTIC 

We will use the unconditional Bernoulli version of the tree-based scan statistic. This statistic conditions 
on the number of cases in the node but does not fix the total number of cases across the tree for each 
exposure group to be the same in the observed and randomly permuted data. The threshold for alerting 
in both Aims 1 and 2 will be p ≤ 0.01 (1-sided).  

The distribution of the test statistic T below is unknown. However, a Monte Carlo based p-value can be 
obtained by generating random datasets under the null hypothesis that every outcome occurs, 
independently of other outcomes, with the same probability among in the treatment group versus the 
comparator group.4  

The log likelihood ratio (LLR) based test statistic T can be calculated as: 

𝐿𝐿𝑅(𝐺) = 𝑙𝑛 (
(

𝑐𝐺
𝑐𝐺 + 𝑛𝐺

)
𝑐𝐺

(
𝑛𝐺

𝑐𝐺 + 𝑛𝐺
)

𝑛𝐺

(𝑝)𝑐𝐺(1 − 𝑝)𝑛𝐺
) 𝐼 (

𝑐𝐺

𝑐𝐺 + 𝑛𝐺
> 𝑝) 

𝑇 =      𝐺
max 𝐿𝐿𝑅(𝐺) 

Where: T = unconditional Bernoulli tree scan statistic  

  cG = cases in the treatment group for a given node G 
nG = cases in the reference group for a given node G 
p = probability of being in the treatment group (for 1:1 matched this is 0.5)  
G = node of interest 

Random datasets can be generated under the null hypothesis by creating replicates of the original data 
where each node contains the same number of events as observed in the original data, however the 
events within each node are assigned to exposure based on a binomial draw with the expected 
proportion based on the null hypothesis. In our 1:1 matched setting, this proportion is 0.5. For these 
Monte Carlo generated data sets, the outcomes in each node are assigned randomly. If 9,999 random 
replicates are generated, and ranked according to T, then the Monte Carlo based p-value = Rank of the 
observed data/(9999+1). When the type 1 error alpha for alerting is set to a threshold of 0.01, then only 
nodes with rank within the top 1% of the real and random replicates will constitute a statistical alert. If 
the null hypothesis is true, the probability that all p-values are larger than 0.01 is 99%. 

Hypothesis tests will be performed at level 3 and all more finely specified nodes at numerically higher 
levels of the MLCCS, including level 4 and the leaf level (specific ICD-9-CM codes). A LLR will be 
computed at every node where a hypothesis test is performed. 

Some of the major strengths of tree-based scan statistics include:  
1. They were developed based on scan statistical theory 
2. They use a hierarchical diagnosis tree to simultaneously evaluate outcomes at different levels of 

granularity (including specific diagnoses and groups of related diagnoses) 
3. They use a frequentist method to formally adjust for the multiple testing inherent in evaluation 

of thousands of potential adverse events that accounts for correlation between tests of related 
hypotheses (unlike traditional frequentist methods which are too conservative) 

4. They can be useful when screening for unanticipated safety signals where there is no 
informative prior 
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Some of the major limitations of tree-based scan statistics include:  
1. Bias is adjusted by design, not inherent in the scan statistic 
2. The hierarchical classification system for outcomes used are generally not based on validated 

algorithms 
3. Adjusting for multiplicity when scanning across outcomes will decrease power compared to 

evaluating a single pre-specified hypothesis 

 SELECTED OUTCOMES AND ALERTS TO EVALUATE 

Realistically, most of the potential outcomes scanned will be unrelated to the evaluated drugs. We will 
focus on doing a deeper dive for evaluate a subset of outcomes with and without alerts in a variety of 
examples where we have prior knowledge of where true signals may or may not be present. By focusing 
on areas where there are known signals or unanticipated alerts, we target high yield areas for learning 
about the method and its performance. Our case studies are intended to be diverse with respect to 
study populations as well as types of outcomes with true signals. That said, the performance of global PS 
in these case studies will not necessarily be generalizable to all contexts.  

For Aim 1, we will focus on a subset of up to 5 outcomes with and up to 5 outcomes without alerts for 
each example. These outcomes will be chosen based on clinical knowledge of the safety profiles for the 
selected examples and may include outcomes where elevation in risk with exposure relative to the 
comparator is anticipated, where the risk is expected to be no different for exposure and comparator or 
where the effect of exposure is unknown (Figure 2). These outcomes may be the specific MLCCS nodes 
that signaled, or a validated algorithm may be used to capture an underlying clinical concept for related 
nodes. These follow on evaluations will provide insight regarding the relative performance of the 
candidate global propensity scores.  

For Aim 2, all alerts from the pre-specified primary global propensity score will be reviewed by the 
workgroup.  

Figure 2. Sampling specific outcomes to evaluate relative performance of candidate generic 
propensity scores 

 

VI. DRUG SAFETY SIGNAL DETECTION CASE STUDIES 

 DATA 

The new initiator cohorts for each example will be created from a commercial insurance claims data 
licensed and housed by the Brigham and Women’s Hospital (BWH), Truven Health MarketScan® 
Research Database. No use of the SDD is planned for this project. While MarketScan is not part of the 
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SDD, there is a small, but unknown amount of overlap between Optum (which is a part of the SDD) and 
MarketScan data.  

 PERFORMANCE METRICS 

Performance metrics will include measures of balance on known risk factors for a sample of outcomes in 
the tree (absolute and standardized differences for individual covariates, average standardized absolute 
mean difference (ASAMD) across all covariates) and evaluation of how additional adjustment for known 
risk factors of those outcomes affects alerting. If some candidate global PS tend to have greater 
imbalance on known risk factors for sampled outcomes, this would suggest that they are missing 
important dimensions that should be included in a global confounding adjustment score. We will 
describe what happens to alerts when we do or do not include specific, known risk factors for a selected 
sample of outcomes in the PS.   

In each case study, we have known signals that have previously been identified. As in a real surveillance 
activity, we may not necessarily have adequate power to find signals of interest at stringent pre-
specified alpha levels. However, we will be looking at patterns of alerting in these examples to observe 
how signal detection using the method could play out in a real scenario. Outcomes that don’t alert at 
the pre-specified threshold may still have relatively low likelihood under the null. The method can play 
an important part in screening and prioritization even if there is not sufficient power to alert at a pre-
specified threshold by painting a clinical picture of the pattern of outcomes that are unlikely to be 
observed if there was no relationship with exposure. 

 SELECTED EXAMPLES 

In consultation with the FDA, the work group chose four case studies to evaluate. We describe these 
case studies here in brief. Additional details of the specifications for these case studies can be found in 
Appendix B. We deliberately chose older examples with known safety profiles. Given the delays in data 
refreshes, we have limited years of data available after Oct 2015. Although an ICD10 based tree is 
available, if we focused only on the ICD-10 era, we would have lower power to detect known signals in 
our examples. Running hdPS in a mixed ICD9-10 era would require incorporation of forward and 
backward mapping and is beyond the scope of this project. 

We will use Sentinel’s routine query tools 22,23 supplemented with de novo coding and other software as 
necessary to extract new initiator cohorts and counts of outcomes across the hierarchical tree. After 
matching on each candidate global propensity score, the 1:1 matched cohorts will be used as inputs for 
TreeScan to run scan statistics.  

Example 1: New initiators of macrolides versus fluoroquinolones for community acquired 
pneumonia (a between class comparison) 

Macrolides and fluoroquinolones are two classes of antibiotic drugs that are used to treat community 
acquired pneumonia. There is no clear evidence of a strong benefit or safety risks for one class versus 
the other. A meta-analysis and review of randomized clinical trials that primarily recruited mild to 
moderate outpatient cases of community acquired pneumonia reported that macrolides had more 
gastrointestinal side effects (e.g. diarrhea, nausea, vomiting) and rate of treatment failure (as defined by 
persistent signs and symptoms of pneumonia requiring treatment modification).43  

We will identify patients who newly initiate a macrolide or fluoroquinolone after at least 183 days 
without dispensations of either class. Patients must be enrolled in the database with medical and drug 
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coverage for at least 183 days prior to the initiation date (index date for cohort entry) and have 
diagnoses for community acquired pneumonia in an outpatient setting as well as codes for chest 
radiography within 14 days prior to or on the date of initiation (see design diagram in appendix). This 
algorithm for outpatient community acquired pneumonia is adapted from one developed and validated 
using Group Health data, which had a positive predictive value of around 71%.44,45 We will exclude 
patients who initiate both a macrolide and a fluoroquinolone on the same day, are younger than 18 or 
over 65 on the date of initiation, or were hospitalized for any reason within 90 days prior to or on the 
date of initiation of macrolide or fluoroquinolone.  

When defining covariates for candidate global propensity scores (see Table 1 above), we will use 
diagnosis and procedure codes from claims occurring in the 183 days prior to and including the date of 
initiation. We will include day 0, the date of initiation from the covariate assessment window to enable 
capture of diagnoses generated on the date of new initiation for the drug exposure. We will exclude the 
index date from the follow up window because we cannot distinguish the timing of exposure and health 
outcomes on the same day . The propensity scores that use investigator specified covariates tailored to 
the example will include variables such as those listed in Table 2.  

The study period will include Jan 1, 2003 to Sep 30, 2015. The follow up window when scanning for 
potential adverse events will begin one day after initiation. The maximum follow up will be 30 days after 
initiation. Follow up will be censored at Sep 30, 2015 due to transition to ICD-10-CM coding. Patients in 
matched sets will additionally be censored at death or disenrollment of either member of the set or 
switching of exposure (defined by dispensation for a drug in the other group). Because there are not a 
priori anticipated safety signals, our evaluation will include selection of up to 5 incident outcome nodes 
that do and up to 5 nodes that do not alert at the 0.01 threshold. We will select nodes based on our 
ability to identify known risk factors for those outcomes. 

Example 2: New initiators of azithromycin versus clarithromycin for community acquired 
pneumonia (a within class comparison) 

Azithromycin versus clarithromycin are macrolide antibiotics that are used to treat community acquired 
pneumonia. Prior trials have found them to be similar in terms of both efficacy and safety.46,47 The 
specification for this cohort will be identical to that for the between class comparison of macrolides and 
fluoroquinolone, with the exceptions that initiation will be defined with respect to macrolides as a class 
and co-prescription or prior use of fluoroquinolones will be included as indication related covariates. 

Example 3: New initiators of meloxicam versus celecoxib for osteoarthritis (two nonsteroidal 
anti-inflammatory drug (NSAID) options) 

Meloxicam and celecoxib are two non-steroidal anti-inflammatory drugs that are used to treat 
osteoarthritis pain. Although potential effect sizes are small, prior research has suggested there could be 
more gastrointestinal adverse events48 and fewer vascular and renal events49,50 with meloxicam versus 
celecoxib.  

We will identify patients who newly initiate meloxicam or celecoxib after at least 183 days without 
dispensations of any non-steroidal anti-inflammatory drug (see design diagram in appendix). Patients 
must be enrolled in the database with medical and drug coverage for at least 183 days prior to the 
initiation date (index date for cohort entry) and have at least one diagnosis for osteoarthritis (ICD-9 
715*) in an inpatient or outpatient setting during this time. We will exclude patients who initiate both 
meloxicam and celecoxib on the same day or are younger than 18 on the date of initiation.  
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When defining covariates for candidate global propensity scores (Table 1), we will use diagnosis and 
procedure codes from claims occurring in the 183 days prior to and including the date of initiation. In 
addition to global demographic, comorbidity, frailty, screening and healthcare utilization covariates, we 
will consider numerous investigator specified covariates for this example such as those listed in Table 2. 

The study period will include Jan 1, 2003 to Sep 30, 2015. When scanning for potential adverse events, 
follow up will begin one day after initiation. The maximum follow up will be 183 days after initiation. 
Follow up will be censored at Sep 30, 2015 due to transition to ICD-10-CM coding. Patients in matched 
sets will additionally be censored at death or disenrollment for either member of the set, or switching of 
exposure (defined by dispensation for a drug in the other group). The outcomes that we select for 
evaluation of balance on known risk factors will include symptomatic upper GI events such as 
acid/peptic ulcer related, upper GI conditions such as perforations and bleeding, as well as myocardial 
infarction and cerebrovascular events. Candidate global PS that only includes un-tailored pre-specified 
covariates will not include the indication related risk factors listed above, but may adjust for them by 
proxy via correlation with the variables that are included. We will evaluate balance in nodes where 
alerts are anticipated. Our evaluation will also include selection of up to 5 incident outcome nodes that 
do and up to 5 nodes that do not alert at the 0.01 threshold. We will select nodes based on our ability to 
identify known risk factors for those outcomes. 

Example 4: New initiators of valproic acid and lamotrigine for epilepsy 

Valproic acid and lamotrigine have been used for decades as therapies for treatment of epilepsy.51-53 
There is not a clear consensus regarding superiority in effectiveness for any of the numerous currently 
available therapies for epilepsy, each of which has different known adverse effects and risk profiles.54 
For example, valproic acid has black box warnings for hepatotoxicity, teratogenicity, and pancreatitis55 
whereas lamotrigine can cause serious rashes (Stevens-Johnson syndrome) within 8 weeks of initiation53 
and serious immune system reactions (hemophagocytic lymphohistiocytosis (HLH))56.  

We will identify patients who newly initiate valproic acid or lamotrigine after at least 183 days without 
dispensations for either drug. Patients must be enrolled in the database with medical and drug coverage 
for at least 183 days prior to the initiation date. We will exclude patients who initiate both valproic acid 
and lamotrigine on the same day, are younger than 2 or older than 65 on the date of initiation, have 
claims indicative of liver disease, pancreatitis, Stevens-Johnsons syndrome, hemophagocytic 
lymphohistiocytosis, or pregnancy during the 183 days prior to or on the index date (see design diagram 
in appendix). We will conduct separate analyses for subgroups of patients aged 2 to 18 years and 
patients 19-65 years old at the time of initiation. 

The study period will include Jan 1, 2003 to Sep 30, 2015. When scanning for potential adverse events, 
follow up will begin one day after initiation. The maximum follow up will be 183 days after initiation. 
Follow up will be censored at Sep 30, 2015 due to transition to ICD-10-CM coding. Patients in matched 
sets will additionally be censored at death or disenrollment for either member of the set, or switching of 
exposure (defined by dispensation for a drug in the other group). The investigator specified covariates 
tailored to this example may include risk factors for known adverse events such as those listed in Table 
2. In addition to evaluation of balance in nodes where alerts are anticipated, our evaluation will include 
selection of up to 5 incident outcome nodes that do and up to 5 nodes that do not alert at the 0.01 
threshold. We will select nodes based on our ability to identify known risk factors for those outcomes. 
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Table 2. Known adverse events, risk factors and investigator defined covariates for case studies 

Example Known adverse events Investigator defined measurable risk 
factors for known adverse events 

Other investigator defined covariates 

1 Macrolides and 
fluoroquinolones 
(between class 
comparison) 

• Diarrhea 

• Nausea 

• Vomiting 

• Treatment failure  

n/a • co-prescription of beta-lactam with 
macrolide or fluoroquinolone  

• prior prescription of other antibiotic classes: 
penicillins, cephalosporins, sulfonamides, 
tetracyclines, animoglycosides 

• pregnancy  at time of initiation (class B vs 
class C drug) 

2 Azithromycin and 
clarithromycin (within 
class comparison) 

n/a n/a same as above 

3 Meloxicam and 
celecoxib 

• Upper GI events (e.g. 
acid/peptic ulcer, 
perforations, bleeding) 

• Myocardial infarction 

• Cerebrovascular events 

• Renal failure, acute kidney 
injury, hyperkalemia 

• Anticoagulants 

• Obesity 

• Smoking 

• Angina 

• Coronary Revascularization 

• Statins 

• Hormone Replacement Therapy 

• Prior Nonselective Nsaid Use 

• Stroke/Tia 

• History of Peptic Ulcer Disease or Gi 
Bleeding 

• Antiplatelets 

• Potential drug interactions:  
o Antidepressants 
o Fluconazole 
o Lithium 
o blood pressure medications 
o cyclosporine 
o methotrexate 
o steroids 

• Potential contraindications:  
o pregnancy at the time of initiation 

• Potential other indications:  
o Fibromyalgia 
o rheumatoid arthritis 
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Example Known adverse events Investigator defined measurable risk 
factors for known adverse events 

Other investigator defined covariates 

4 Valproic acid and 
lamotrigine 

• hepatotoxicity 

• teratogenicity (spina bifida, 
atrial septal defect, cleft 
palate, hypospadias, 
polydactyly) 

• pancreatitis 

• serious rashes (Stevens-
Johnson syndrome)  

• serious immune reactions 
(hemophagocytic 
lymphohistiocytosis - HLH) 

• HIV infection 

• Other viral infections (mumps, flu, 
herpes, Coxsackie, Epstein-Barr, 
cytomegalovirus, parvovirus B19, 
pneumocystosis and histoplasmosis) 

• Bacterial infection 

• Organ transplant 

• Autoimmune diseases (e.g. Lupus, 
type 1 diabetes, rheumatoid 
arthritis, psoriatic arthritis, multiple 
sclerosis, inflammatory bowel 
disease, Addison’s disease, Grave’s 
disease, Hashimoto’s thyroiditis, 
myasthenia gravis, vasculitis, celiac 
disease) 

• Chemotherapy 

• Cancer 

• Acute b-lymphoblastic leukemia 

• Medicines for gout (e.g. Allopurinol) 

• Sulfa antibiotics (e.g. Bactrim, 
septra),  

• Sertraline 

• “oxicam” anti-inflammatory drugs 
(e.g. Meloxicam, piroxicam) 

• Alcohol use disorders 

• Liver disease 

• Gallstones 

• Cystic fibrosis 

• Kawasaki disease 

• Reye’s syndrome 

• Potential  other indications:  
o migraine, bipolar disorder 
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Example Known adverse events Investigator defined measurable risk 
factors for known adverse events 

Other investigator defined covariates 

• Hemolytic uremic syndrome (HUS) 

• Thrombotic thrombocytopenic 
purpura (TTP)  

• Hyperparathyroidism 

• Obstructions in the biliary system 

• Peptic ulcer 

• Azathioprine 

• 6-mercaptopurine (e.g., Imuran®) 

• Diuretics 

• Didanosine 

• Estrogens 

• Pentamidine 

• Tetracycline 
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VIII. APPENDICES 

 CURATION OF THE MLCCS TREE 

Two members of the FDA independently reviewed the MLCCS tree based on 2015 ICD-9-CM codes to 
remove codes that were unlikely to be caused by drug exposures within a short follow up window. Each 
reviewer flagged codes that were:  

1. of known etiology (e.g. pregnancy, congenital condition),  
2. unlikely to be an adverse reaction caused by drugs (e.g. gingival recession, recurrent dislocation 

of shoulder), 
3. not an incident diagnosis (e.g. alcoholism in family, social maladjustment), 
4. for conditions with long latency/induction periods (e.g. cancer, osteoporosis) 

After adjudication of disagreement, 7,078 of 15,075 (47%) ICD-9-CM diagnostic codes were excluded.  

Source:  

https://www.sentinelinitiative.org/sentinel/surveillance-tools/software-toolkits/treeextraction-
documentation (supporting tree file) 

 

https://www.sentinelinitiative.org/sentinel/surveillance-tools/software-toolkits/treeextraction-documentation
https://www.sentinelinitiative.org/sentinel/surveillance-tools/software-toolkits/treeextraction-documentation
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 DETAILED PROTOCOL SPECIFICATIONS FOR EXAMPLES 

Example 1 
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Example 2 
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Example 3 
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Example 4 
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 RESPONSES TO PUBLIC COMMENT 

Comments on “Development and Evaluation of a Global Propensity Score for Data Mining with Tree-
Based Scan Statistics” 

1. Given the large number of available empirical approaches for model selection, it could be 
helpful to provide motivation for why hdps was chosen for this evaluation as opposed to other 
options. For instance, Karim et al. (Epidemiology 2018 Mar; 29(2): 191-198) recently showed 
that a machine learning with hdps hybrid often outperforms hdps alone.  

This paper found that machine learning based approaches such as LASSO and ElasticNet 
in combination with hdPS performed marginally better than hdPS alone in the context of 
selection based on potential for bias for a single outcome. The machine learning 
component of the hybrid empirical variable selection methods worked to further reduce 
the dimensionality of variables identified with hdPS.  

In our context, we are scanning across thousands of potential outcomes. It would not be 
feasible to apply a hybrid approach which selects variables based on association with 
outcome. Furthermore, it may be helpful in our scanning context to include a slightly 
broader base of variables to provide proxy adjustment for confounders on a wider range 
of outcomes. 

We will include this citation and a brief explanation as above in the background. 

2. Similarly, it could be useful to motivate why the TreeScan methodology was selected as opposed 
to other scan statistics (or, minimally, to provide its major advantages and limitations in this 
specific setting). 

We will list some of the major strengths and limitations of TreeScan in the protocol. A 
comparison of different signal detection methods is currently underway in another task 
order (signalx3).  

Strengths: 

i. Developed based on scan statistical theory 

ii. Use a hierarchical diagnosis tree to simultaneously evaluate outcomes at 
different levels of granularity (including specific diagnoses and groups of related 
diagnoses) 

iii. Use a frequentist method to formally adjust for the multiple testing inherent in 
evaluation of thousands of potential adverse events that accounts for 
correlation between tests of related hypotheses (unlike traditional frequentist 
methods which are too conservative) 

iv. Useful when screening for unanticipated safety signals where there is no 
informative prior 
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Weaknesses: 

v. Bias is adjusted by design, not inherent in the scan statistic 

vi. Hierarchical classification system for outcomes are not based on validated 
algorithms 

vii. Adjusting for multiplicity when scanning across outcomes will decrease power 
compared to evaluating a single pre-specified hypothesis 

3. What is the rationale for NOT focusing on data in the ICD-10 era, since future safety studies will 
this new system and your ICD-9 based results may not (?) be seamlessly generalizable. 
Minimally, it could be helpful to comment on why an ICD-9 based evaluation is proposed and 
why you don’t have major concerns that your conclusion won’t be limited by this feature. 

Although different hierarchical trees may have different properties, the method of 
TreeScan with PS-matching is not tied to a particular coding system and should be 
extensible.  

We deliberately chose older examples with known safety profiles. Given the delays in 
data refreshes, we have limited years of data available after Oct 2015. Although an 
ICD10 based tree is available, if we focused only on the ICD-10 era, we would have lower 
power to detect known signals in our examples. Doing hdPS in a mixed ICD9-10 era 
would require incorporation of mapping and is beyond the scope of this project. 

4. It could be helpful to explain why you chose to focus your Aim 1 evaluation on a subset of 
outcomes (feasibility?) and whether/how this may limit the generalizability of the evaluation of 
method performance. For instance, why would we expect performance metrics for the selected 
set of outcomes to carry-over to the other 100’s of outcomes one might evaluate? Are there any 
performance metrics that could be feasibly evaluated for ‘all’ outcomes to avoid issues of 
selection and uncertain generalizability? 

The general performance metric of balance on predefined and empirically selected 
covariates used in the PS will apply to all outcomes. However, the covariates in the PS 
will not necessarily be relevant or optimal for all outcomes in all drug comparison 
scenarios. It would be infeasible to identify the best set of covariates for each outcome 
and evaluate balance on each.  

That is why we will be focusing our deeper dive on balance for known risk factors on a 
subset of outcomes with and without alerts in a variety of examples where we have 
prior knowledge of where true signals may or may not be present. These examples are 
intended to be diverse with respect to study populations as well as types of outcomes 
with true signals. That said, the performance in these examples will not necessarily be 
generalizable to all contexts.  

Realistically, most of the potential outcomes scanned will be unrelated to the evaluated 
drugs. By focusing on areas where there are known signals or unanticipated alerts, we 
target high yield areas for learning about the method and its performance.  

We will include discussion to that effect in the protocol. 
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5. How will you ensure that you have identified example scenarios with adequate power to find 
signals of interest? 

As in a real surveillance activity, we may not necessarily have adequate power to find 
signals of interest at stringent pre-specified alpha levels. In each of our example 
scenarios, we have known signals that were previously identified. We will be looking at 
patterns of alerting in these examples to observe how signal detection using the method 
could play out in a real scenario. Outcomes that don’t alert at the pre-specified 
threshold may still have relatively low likelihood under the null. The method can play an 
important part in screening and prioritization even if there is not sufficient power to 
alert at a pre-specified threshold by painting a clinical picture of the pattern of 
outcomes that are unlikely to be observed if there was no relationship with exposure. 

6. Is there an existing ‘standard’ data mining method with which you can compare your new global 
PS-based options? This may help give some evidence about the level of improvement your 
methods may provide beyond what a more basic approach that a researcher might do typically 
in practice now. 

There does not appear to be a ‘standard’ cohort based approach. The signalx3 
workgroup will be comparing three signal detection methods that use a self-controlled 
design, which are more frequently used in pharmacovigilance activities. 

7. You might consider referencing an article from our group that motivates the importance of work 
in this research area. Although this review was more narrowly written in the context of vaccine 
safety, its conclusions apply to drug safety applications as well. 

This is very relevant. We will cite this review. 

Nelson JC, Shortreed S, Yu O, et al. on behalf of the Vaccine Safety Datalink project. 
Integrating database knowledge and epidemiological design to improve the 
implementation of data mining methods to evaluate vaccine safety in large healthcare 
databases. Stat Analysis Data Mining 2014 Oct;7(5):337-351. doi:10.1002/sam.11232 

 FOLLOW UP ANALYSES FOR EXAMPLES 1-3 

After observing the results for examples 1-3, we decided to initiate post-hoc follow up analyses that 
would allow us to 1) dig deeper and better understand how baseline pregnancy status affected the 
results observed after implementing the pre-specified protocol for examples 1 and 2, and 2) evaluate 
how explicitly balancing on nodes that were highly ranked by LLR would affect subsequent alerting 
patterns for example 3.  

Example 1: 

Pregnancy was originally included as a tailored confounder in the pre-specified protocol because we 
anticipated channeling due to different patterns of antibiotic use in pregnancy. The baseline pregnancy 
algorithm that we used in the pre-specified analyses may not be ideal. The follow up analyses are 
exploratory, digging deeper into how we measure pregnancy - how well are we capturing it with 
different algorithms and how does using different definitions of pregnancy as an exclusion criterion 
affect results. Screening for outcomes associated with drug exposure in pregnancy will be evaluated in 
another project. Follow up analyses include first re-analyzing the data after exclusion of pregnant 
women using different code algorithms and assessment windows, some of which case a broader net to 
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remove patients that were pregnant during the assessment window, second, describing the impact of 
these different definitions of pregnancy on the study population and results, and third, generating tables 
to show balance on empirically identified covariates for matched populations that may not have been 
matched on a PS that included those covariates (additional detail below).  

1. Reanalyze after removing pregnant women (ever during the assessment window) 

• Codes indicative of 

• Routine care during pregnancy 

• Live birth/delivery 

• Other end of pregnancy (stillbirth, miscarriage, termination) 

• Compare results with different assessment windows for pregnancy  

• [-183, 1] any codes +  

   [0, min(140, censor)] for miscarriage, abortion codes +  

    [0, min(270, censor)] for stillbirth or delivery codes 

2. Describe frequency of exclusion with different codes and assessment windows 

 

3. Add tables showing balance on empirically identified covariates when they are versus are not 

included in the PS 

Example 2: 

Same follow up analyses as example 1. 

  



 
  
 

 
 

Sentinel Methods Report - 28 - Global Propensity Scores with TreeScan 

Example 3: 

The follow up analyses include restriction of data to time prior to a generic version of celecoxib entering 
the market in case the availability of a generic affected prescribing patterns for patients at different risk 
of adverse outcomes. Follow up analyses also will involve reanalysis after inclusion of nodes that alerted 
at the pre-specified threshold or were highly ranked in the propensity score to allow evaluation of 
scanning results after balancing on those nodes at baseline.  

1. Restrict years of study to before May 2014 (before generic celecoxib came on the market)  

2. Re-analyze after adding prior history of top nodes from LLR ranking to PS (e.g. stroke, headache, 

cerebral infarct) and mental health related covariates (e.g. depression, anxiety, antidepressants, 

anti-anxiety). 

3. Add tables showing balance on empirically identified covariates when they are versus are not 

included in the PS 

 ADDITIONAL JUSTIFICATION FOR DESIGN DECISIONS 

Justification for allowing tailored covariate assessment window to differ from fixed predefined and 
empirical covariate assessment windows: 

Predefined covariates and empirically identified covariates can be generically applied to every exposure-
comparator evaluation without customization for different exposure-comparator evaluations.  

Tailored covariates represent thoughtful consideration of what investigators think is relevant for the 
exposure-comparator pair and at least one potential adverse event. As such, there are no limitations on 
which or how tailored covariates are defined. The tailored covariates can be highly customized – 
including not just different variables but different assessment windows, requirement multiple diagnoses 
within certain time frames or more complicated algorithms.  

Thus, the contrast between PSs that include tailored covariates versus those that do not is between a 
base case scenario of generically applied covariates using default assessment windows versus the 
addition of investigator selected covariates defined using whatever covariate definitions the 
investigators think are the most relevant to the exposure-comparator evaluation. These tailored 
covariates can and will vary in terms of which variables are included and complexity of definition across 
different evaluations. 

Justification for allowing ascertainment of pregnancy at the time of drug initiation using codes 
recorded after index date for drug initiation 

In pharmacoepidemiology studies, we generally avoid using future information to make decisions about 
whether patients are eligible for cohort entry, and for good reason.  For example, to determine whether 
patients should enter the cohort at treatment initiation, we generally would not want to require that 
they have a full year of follow-up after treatment initiation during which they remain alive.  If the 
outcome(s) of interest could sometimes be fatal or were correlated with mortality in other ways, this 
can create immortal time bias, a form of selection bias.  The bias arises when the factor we are 
conditioning on (mortality, in this example) can be affected by the exposure(s) of interest (or some 
common cause of exposure and the factor).   

In contrast, when using information during follow-up to identify patients who have birth outcomes, the 
objective is to exclude those that had to have been pregnant prior to the start of follow-up.  In this 
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situation, the pregnancies that began prior to treatment initiation could not have been affected by the 
treatment.  There are other (and perhaps rare) situations in which it would also be valid to use future 
information.  For example, imagine that we wanted to conduct an analysis among patients who were 65 
years of age or older and we did not know patients’ ages at the time of cohort entry, but we did know 
their ages one year later (or at the time of death for anyone who may have died within that year).  In 
this case, it is safe to use the future information about age to infer patients’ ages at the time of cohort 
entry because the exposure(s) could not have affected patients’ age.  This is analogous to the pregnancy 
situation.   

There are other reasons to avoiding using future information to define study variables – such as looking 
into the future to assign exposure status at the start of follow-up, which is classical immortal time 
bias.  However, these are slightly different situations than the pregnancy scenario. 
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