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effort to develop a national electronic system.  Sentinel Collaborators include Data and Academic 
Partners that provide access to healthcare data and ongoing scientific, technical, methodological, and 
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Department of Health and Human Services (HHS) Contract number HHSF223201400030I. This project 
was funded by the Office of the Assistant Secretary for Planning and Evaluation (ASPE) and the Food and 
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I. EXECUTIVE SUMMARY  

To obtain sufficient sample sizes and valid effect estimates, many studies require pooling of individual-
level data from multiple data sources. Concerns about disclosure of sensitive individual-level and 
institution-level information have limited this collaboration. However, data organized in distributed data 
networks (DDNs) combined with use of privacy-protecting analytic methods such as distributed 
regression analysis (DRA) may alleviate these concerns. Researchers have previously demonstrated the 
feasibility of using DRA to perform multivariable-adjusted regression analysis and produce results 
statistically equivalent to results from pooled individual-level data analysis without sharing of individual-
level information in controlled or simulated DDNs. However, the implementation of DRA in practice is 
challenging as convergence of some regression models requires iterative information exchanges 
between Data Partners and an analysis center. These iterative exchanges are resource-intensive and 
require extensive coordination. There is a critical need for developing an automatable information 
exchange process that accounts for the heterogeneity of technological configurations and software 
requirements among Data Partners in DDNs to facilitate routine use of DRA.  

In this project, we assessed the feasibility of developing a pilot, automatable DRA query workflow in 
PopMedNet, an open-source query distribution software application that currently supports numerous 
DDNs, including the Sentinel System. Through an iterative process, we analyzed the existing 
functionalities in PopMedNet and mapped out software designs and query workflows that would allow 
automatable DRA in horizontally partitioned DDNs, a data environment in which different databases 
include information about different individuals. We developed DRA algorithms for three regression 
models (linear, logistic, and Cox proportional hazards) in Base SAS and SAS/STAT and tested the 
algorithms and query workflow using simulated datasets, two publicly available datasets, and data from 
three Sentinel Data Partners. We also explored the feasibility of performing linear DRA within vertically 
partitioned DDNs, a data environment in which different databases include information about the same 
individuals, using a publicly available dataset. For the proof-of-concept vertical DRA, we assumed that a 
“primary key” existed to virtually link the records of the same individual between the databases.   

We found that it is possible to perform automatable, routine DRA in horizontally partitioned DDNs that 
employ PopMedNet as their distributed data-sharing platform. A three-step process framework is 
required to perform DRA in these DDNs: 1) assemble a de-identified individual-level analytic dataset at 
each Data Partner site, which can be done using a distributed program developed by the analysis center, 
2) distribute a DRA package to each Data Partner for local iterative regression analysis through 
PopMedNet, and 3) iteratively transfer intermediate statistics files between Data Partners and the 
analysis center through PopMedNet until the model converges or a pre-specified maximum number of 
iterations is reached. We successfully implemented a pilot DRA query workflow in the Sentinel System. 
Our internal and external tests consistently produced statistically equivalent regression parameter and 
standard error estimates to those from the pooled individual-level data analysis. External tests with the 
three select Sentinel Data Partners showed that DRA could be completed in under 20 minutes, excluding 
the time required to assemble the analytic dataset at each Data Partner. Factors that determined the 
execution time included the regression model type, time required to complete one iteration, and 
number of iterations required to reach model convergence. We also found the PopMedNet DRA query 
workflow can be used to conduct DRA within vertically partitioned data environments. However, 
additional enhancements are required to integrate vertical DRA algorithms with the workflow.   

Overall, we were able to develop and pilot a PopMedNet-based DRA query workflow in the Sentinel 
System. The DRA query workflow poses minimal disruptions to the current workflows and require 
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minimal modifications to existing hardware configurations and software requirements of Data Partners. 
Importantly, the workflow 1) is agnostic to regression model types, 2) allows users to specify different 
levels of workflow automation (completely manual, semi-automated, and fully automated) to 
accommodate diverse perspectives towards automation, and 3) and is agnostic to statistical software.  

II. INTRODUCTION 

Many studies require pooling of patient-level information from multiple data sources to obtain sufficient 
sample sizes and more generalizable findings. Concerns about data security, patient privacy, 
unapproved uses of data, and disclosures of proprietary information have limited multi-database 
collaborations [1-3]. Data organized in a distributed data network (DDN), which allows Data Partners to 
retain physical control of their data while making analysis more secure and feasible, serves as an 
alternative to mitigate these concerns [1-3]. Several DDNs already exist and have been used to 
investigate a wide range of clinical and scientific inquires, including the Centers for Disease Control and 
Prevention’s Vaccine Safety Datalink [4], the National Institutes of Health (NIH)’s Health Care Systems 
Research Collaboratory [5], the U.S. Food and Drug Administration (FDA)’s Sentinel System [6], and the 
Patient-Centered Outcomes Research Institute’s National Patient-Centered Clinical Research Network 
(PCORnet) [7].  

Although simple descriptive and inferential analysis can be done with summary-level information (e.g., 
2x2 tables of exposed and unexposed person-times and outcome events) in these networks, more 
complex statistical analysis has traditionally required sharing of patient-level information. In recent 
years, researchers have developed and applied several new analytic methods, including meta-analysis of 
site-specific effect estimates and methods that leverage confounder summary scores (e.g., propensity 
scores), to perform complex statistical analysis using only summary-level information [8-14]. Although 
these more privacy-protecting methods allow one to conduct more sophisticated analyses while 
preserving patient privacy and data security, they are not without limitations [9]. Specifically, none of 
these methods allows multivariable-adjusted outcome regression analyses that are more familiar to 
some stakeholders using only summary-level data pooled across databases.    

Distributed regression is a suite of methods that can perform multivariable-adjusted regression analysis 
in a multi-database setting without sharing of patient-level information while still producing statistically 
equivalent results as if the databases were pooled [13 15]. A distributed regression analysis (DRA) 
involves participating Data Partners computing intermediate statistics (e.g. design and information 
matrices) required for a regression analysis that utilizes data from all participating sites and returning 
only these intermediate statistics to an analysis center (Figure 1). The analysis center then aggregates 
the intermediate statistics from all participating sites and generates updated regression parameters 
from the aggregated intermediate statistics. If the updated regression parameter estimates fulfill the 
convergence criterion, they are retained as final regression parameter estimates of the model. If they do 
not fulfill the convergence criterion, the updated regression parameter estimates are distributed to the 
Data Partners to re-calculate the intermediate statistics. This iterative process of computing 
intermediate statistics of the distributed data, returning intermediate statistics to the analysis center for 
aggregation, computing regression parameter estimates, and evaluating for model convergence 
continues until the convergence criterion is met or a pre-specified maximum number of iterations is 
reached. This process is mathematically equivalent to performing regression analysis on pooled patient-
level data and produces statistically equivalent results [11-17]. See Wolfson 2010 for examples about 
the intermediate statistics and regression parameter estimates produced and shared at each iteration 
[12].  
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Figure 1. Iterative process in distributed regression analysis 
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Additionally, DRA can be used to analyze both horizontally partitioned data (partition of multiple patient 
groups with the same data attributes, e.g., two administrative claims databases) and vertically 
partitioned data (partition of data attributes of one patient group, e.g., one administrative claims 
database and one electronic health record database), while most of the other methods are only useful 
for the former data environment. The ability to analyze vertically partitioned data is likely the greatest 
utility of DRA as the U.S. healthcare system is highly fragmented and different data sources can provide 
different information about the patients. For example, administrative claims databases contain 
longitudinal patient healthcare encounter information across different delivery systems, while electronic 
health record databases contain more in depth clinical data in specific delivery systems. The ability to 
combine these two data sources can address the limitations of each source. 

These advantages make DRA a highly desirable analytic method within DDNs. However, the 
implementation of DRA in practice is challenging as convergence of some regression models common to 
biomedical assessment (e.g., logistic and Cox regression) is an iterative process that requires frequent 
information exchanges among Data Partners. These iterations are resource intensive and require 
extensive coordination among Data Partners. Routine use of DRA will require some automation of this 
iterative process.  

To our knowledge, DRA has not been implemented and routinely used in any large, active DDNs. 
Previous work has largely involved simulated or controlled distributed environments [12 14 16 18 19]. 
This project was funded by the Office of the Assistant Secretary for Planning and Evaluation and the U.S. 
Food and Drug Administration to develop a prototype workflow that supports automatable DRA in 
PopMedNetTM, an open-source query distribution software application that currently supports the FDA-
funded Sentinel System and other large DDNs, including PCORnet and NIH Collaboratory.[20] The 
specific objectives of the project were to: 

1) Develop an overall analytic/process framework for DRA in DDNs 
2) Develop and test SAS DRA algorithms that are agnostic to file transfer software, and to perform 

distributed linear, logistic, and Cox proportional hazards regression analysis using simulated 
horizontally partitioned data 

3) Develop a prototype workflow in PopMedNet that is automatable and can iteratively transfer 
DRA files between Data Partners and the analysis center in DDNs 

4) Integrate the SAS algorithms and PopMedNet workflow and beta-test the integration with select 
Sentinel Data Partners and perform distributed linear, logistic, and Cox proportional hazards 
regression analysis using real-world data 

5) Place the source code and documentation of the SAS algorithms and PopMedNet query 
workflow in public domain 

6) Explore the feasibility of performing DRA with vertically partitioned data in DDNs by developing 
and testing SAS algorithms to perform distributed linear regression analysis with simulated 
vertically partitioned data 

This report summarizes findings from activities designed to accomplish these objectives.  
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III. METHODS 

A. STUDY SETTING – THE FDA SENTINEL SYSTEM 

The Sentinel System served as our pilot horizontally partitioned DDN. The Sentinel System is a national 
surveillance system designed to monitor the safety of approved medical products using routinely 
collected electronic health data [6 21]. It is one of the first DDNs that employed PopMedNet as their 
query distribution software. Sentinel has developed a suite of re-usable analytic tools and workflows to 
allow rapid identification of patient cohorts and conduct of comparative safety analyses in a DDN of 17 
Data Partners. The Sentinel network architecture and analytic tools have been adapted to other DDNs 
[22]. Thus, findings from this pilot could provide important information for the implementation of DRA 
beyond Sentinel. 

All Sentinel Data Partners transformed their data into a common data model [23]. The Sentinel 
Operations Center (SOC) checks the transformed data for completeness and consistency prior to use. 
Sentinel has established a standard query fulfillment workflow for routine medical product safety 
analysis. The process begins with the FDA submitting a safety question to the SOC. A team comprised of 
FDA and Sentinel personnel defines query parameters such as exposures, outcomes, confounders, and 
inclusion and exclusion criteria based on established coding systems (e.g., ICD-9-CM, ICD-10-CM, and 
National Drug Codes). Using the specifications, the SOC (which also serves as the analysis center) 
assembles and tests a query package written in SAS (SAS Institute, Cary, North Carolina). It then securely 
distributes the final package to each Data Partner through PopMedNet for local execution on the 
transformed data (Figure 2). Data Partners produce and securely transfer the requested information, 
usually in aggregated form, back to the SOC for final analysis through PopMedNet. Detailed patient-level 
data remains behind the Data Partners’ firewalls, protecting patient privacy and data security. Detailed 
description of the Sentinel query process is available elsewhere [23].  
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Figure 2. Sentinel's query fulfillment process 

 

1. Sentinel Operations Center (i.e., analysis center) creates and distributes query via the secure network portal 

(PopMedNet) 

2. Data Partners receive notification of the query and retrieve it from the secure network portal 

3. Data Partners review and execute query on their local, transformed data 

4. Data partners review output 

5. Data partners return output, often in aggregated form, to the secure network portal  

6. Sentinel Operations Center retrieves results from the secure network portal and performs final analysis 

**modified from [23] 
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Sentinel’s analytic capabilities largely revolve around its ability to rapidly identify cohorts of interest with 
its pre-tested, customizable Cohort Identification and Descriptive Analysis (CIDA) tool [24]. This tool 
includes a set of SAS programs that contain editable macro parameters and input files to define query 
parameters. It offers considerable query customization and analytic flexibility. The tool also has the 
ability to create a de-identified patient-level analytic dataset to be stored locally at each Data Partner 
site. The dataset can then serve as an input file for other re-usable Sentinel tools (e.g., propensity score 
matching and stratification tool) for inferential analysis.  

A typical query involves four folders (sasprogram, inputfiles, dplocal, and msoc), collectively known as 
the common folder structure. The sasprogram and inputfiles folders contain the necessary files required 
for local execution of the analysis on the Data Partner’s transformed data. More specifically, the 
sasprogram folder contains the SAS programs and macros while the inputfiles folder includes lookup 
tables, codes, or files used to define the covariates or other parameters of the analysis. The dplocal 
folder houses the de-identified patient-level dataset generated upon successful execution of the CIDA 
package; this dataset remains behind the Data Partner’s firewall. The msoc folder stores the output files 
or dataset (typically summary-level) requested by the query; they are the only files that are transferred 
to the SOC.  

B. POPMEDNET  

PopMedNet (http://www.popmednet.org) has been serving as the Sentinel data-sharing platform since 
2011 [25]. Two interfaces interlink the network topology of PopMedNet: a web-based network portal 
and the DataMart Client (DMC). The web-based portal is typically used by the analysis center (e.g., the 
SOC) to create, distribute, and manage queries. The DMC is a locally installed Windows® application that 
acts as an inbox for Data Partners to receive query packages and transfer results to the analysis center. 
All file transfers (query requests and responses) between the Data Partners and the analysis center are 
achieved through HTTPS/SSL/TLS connections. There are no open ports, Virtual Private Networks, or any 
external access to Data Partner data, abating concerns about data security and ensuring only approved 
queries are submitted to and responses returned by participating Data Partners [25-27]. The SOC is a 
Federal Information Security Management Act (FISMA) compliant data center [28]. 

C. DATA PARTNER TECHNOLOGICAL CONFIGURATIONS 

There are currently three general configurations of the components (DMC, SAS, and the common folder 
structure) required to fulfill a query (Figure 3). As part of the development process, we surveyed all 
Sentinel Data Partners to catalogue their hardware and software configurations to help guide our DRA 
query workflow design. Sixteen of the then 18 Data Partners responded to the survey. In five Data 
Partners, these components were available on the same Windows® desktop computer or server (Figure 
3. Configuration 1). Three Data Partners housed all components on different Windows® machines 
(Figure 3. Configuration 2) and eight had the components installed on different machines with different 
operating systems (i.e., the DMC on a Windows® desktop computer, while SAS and the common folder 
structure on a Linux server) (Figure 3. Configuration 3). These configurations dictate Data Partners’ DMC 
access to the contents of the common folder structure (e.g., CIDA output). Four Data Partners’ DMC had 
direct access to these contents, while 11 implemented a manual process of transferring the common 
folders structure to the DMC computer or an accessible drive. Although we could not obtain information 
from some of the Data Partners, we expect them to fall under one of the three configurations identified.  

  

http://www.popmednet.org/
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Figure 3. General configurations of required components (DataMart Client, SAS, and common folder 
structure) for query fulfillment in Sentinel 
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D. QUERY WORKFLOW DESIGN AND FRAMEWORK FOR DISTRIBUTED REGRESSION ANALYSIS  

An interdisciplinary team of Sentinel investigators that included epidemiologists, computer scientists, 
programmers, biostatisticians, and informaticians led the project. Through an iterative process, the 
team analyzed PopMedNet’s existing functionalities and mapped out software designs and workflows 
that would allow automatable DRA process with PopMedNet in Sentinel. The workgroup presented the 
designs and desired functionalities to the PopMedNet software developers for consultation on 
feasibility, technical solutions, and timeline.  

E. GUIDING PRINCIPLES FOR QUERY WORKFLOW DESIGN FOR DISTRIBUTED REGRESSION 
ANALYSIS 

To maximize the applicability of the final DRA query workflow to other DDNs, we required our design to 
have minimal disruptions to the current query workflow within PopMedNet and modifications to 
existing hardware configurations and software requirements of data sources that employ PopMedNet. 
Our overall goal was to develop an automatable file transfer process that (1) accommodates commonly 
used regression models (e.g., linear, logistic, and Cox proportional hazards), (2) allows users to specify 
different levels of workflow automation (completely manual, semi-automated, and fully automated) to 
accommodate diverse perspectives towards automation, (3) is agnostic to statistical software, and (4) is 
easily implemented within current workflows.  

F. EVALUATION OF THE PERFORMANCE OF THE DISTRIBUTED REGRESSION ANALYSIS QUERY 
WORKFLOW 

We progressively developed and evaluated the DRA query workflow and algorithms in three phases 
(Table 1).  

1. A Three-Phase Development and Testing Process 

a) Initial Development and Testing  

The first phase focused on developing the statistical algorithms (SAS programs) required to conduct DRA 
in horizontally partitioned data for the three regression model types (linear, logistic, and Cox 
proportional hazards). We developed the algorithms using Base SAS and SAS/STAT, because SAS is the 
approved statistical software among all Sentinel Data Partners. We developed distributed linear and 
logistic regression algorithms using an iteratively reweighted least squares (IRLS) algorithm [12] and 
distributed Cox proportional hazards algorithms using a Newton-Raphson algorithm [16]. Full details of 
these algorithms are available in the appendix.  
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Table 1. A three-phase development and testing process for automatable distributed regression 
analysis 

Test Phase Dataset Model Type Outcome Variable Covariates 
Sample 
Sizes 

Initial 
development 
and testing 

Boston 
Housing 
data* [11 
29] 

Linear 
Regression 

Housing price 

Crime per capita, 
industrialization, and 
distance to employment 
centers 

n1 = 172 
n2 = 182 
n3 = 152 

Logistic 
Regression 

Housing price 
(binary low/high) 

Crime per capita, 
industrialization, and 
distance to employment 
centers 

Maryland 
State 
Prison 
data [30] 

Cox 
Proportional 
Hazards 

Time to re-
incarceration 

Financial aid, age, and 
number of prior 
convictions 

n1 = 134 
n2 = 149 
n3 = 149 

Data Partner 
testing with 
simulated 
data 

Simulated 
bariatric 
surgery 
data† 

Linear 
Change in body 
mass index one 
year post-surgery 

Bariatric surgery 
exposure, age, pre-index 
body mass index (BMI), 
combined comorbidity 
score, number of 
ambulatory, emergency 
department, inpatient, 
and other ambulatory 
visits, number of days 
between last weight or 
BMI measurement and 
index procedure, race, 
sex, year of surgery, and 
Data Partner site 

n1 = 1,922 
n2 = 1,922 
n3 = 1,922 

Logistic 
Weight loss ≥ 20% 
(within one year 
post-surgery) 

Cox 
Proportional 
Hazards 

Time to weight 
loss ≥ 20% (within 
one year post-
surgery) 

Data Partner 
testing with 
real data 

CIDA-
based 
actual 
bariatric 
surgery 
data 

Linear 
Change in body 
mass index one 
year post-surgery 

Bariatric surgery 
exposure, age, pre-index 
BMI, combined 
comorbidity score, 
number of ambulatory, 
emergency department, 
inpatient, and other 
ambulatory visits, 
number of days between 
last weight or BMI 
measurement and index 
procedure, race, sex, year 
of surgery, and Data 
Partner site 

n1 = 2,728 
n2 = 1,018 
n3 = 1,706 

Logistic 
Weight loss ≥ 20% 
(within one year 
post-surgery) 

Cox 
Proportional 
Hazards 

Time to weight 
loss ≥ 20% (within 
one year post-
surgery) 

CIDA = Cohort Identification and Descriptive Analysis Tool 
* Also used in exploration of vertical linear distributed regression analysis 
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These two algorithms utilize a semi-trusted third-party as the analysis center to facilitate the required 
distributed computations. We define a semi-trusted third-party as a party that Data Partners trust with 
their summary-level data but not with their individual-level data. This analysis center does not share any 
data from one Data Partner with another without consent. We selected the distributed IRLS and 
Newton-Raphson algorithms because they both share a similar analytic framework and follow a 
workflow similar to currently accepted privacy-protecting analytic methods in Sentinel.   

We used two different datasets in the development and initial testing of the algorithms. We selected 
these two datasets because they are available publicly and could be downloaded by others to test our 
algorithms. Importantly, the first dataset, “Boston Housing data,” was originally used by Karr and 
colleagues to illustrate the theoretical capability of conducting distributed linear regression in a 
horizontally partitioned data environment [11]. This dataset included 506 observations of Boston 
medium housing prices and 14 housing or neighborhood characteristics [29]. To stay consistent with 
these authors, we also partitioned the dataset into three Data Partners of sizes n1 = 172, n2 = 182, and n3 
= 152; each dataset included the following continuous variables: housing price, crime per capita, 
industrialization, and distance to employment centers. Housing price served as the dependent variable 
while crime per capita, industrialization, and distance to employment centers were the independent 
covariates for the distributed linear regression model. We also dichotomized housing price into low or 
high (above or below the median) and used the derived binary variable as the dependent variable for 
distributed logistic regression analysis. We used a second dataset, “Maryland State Prison data”, that 
included 432 Maryland convicts followed for one year post release for the development and evaluation 
of the distributed Cox proportional hazards algorithm [30]. We randomly partitioned the dataset into 
sizes of n1 = 134, n2 = 149, and n3 = 149. Time to re-incarceration (in weeks) was the time-to-event 
outcome and financial aid (a binary variable), age (a continuous variable), and number of prior 
convictions (a continuous variable) were the independent covariates.  

We created a simulated horizontally partitioned DDN of three Data Partners for internal development 
and testing by storing the partitioned datasets in three different directories on a Window® network 
drive (Configurations 1 and 2). All directories were accessible to computers typically used to perform 
routine Sentinel tasks. These machines operated on Windows® 7 Professional platform, with a dual-core 
Intel 2.7 GHz processor and 8 GB of RAM. We completed all initial development and testing in this phase 
with the DMC version 5.7, connected to a test version of the PopMedNet Web Portal version 6.0.  

b) Data Partner Testing with Simulated Data  

In the second phase, we focused on enhancing the algorithm to accommodate datasets generated from 
the Sentinel Common Data Model and analytic tools. We simulated a patient-level dataset typical of a 
CIDA output for a synthetic cohort of adults who received a primary bariatric procedure [31]. We chose 
the bariatric example because it provided continuous, binary, and time-to-event outcomes for linear, 
logistic, and Cox regression, respectively. The simulated patient-level dataset was developed to mimic 
the type of covariates commonly observed in Sentinel queries (e.g., a binary variable indicating whether 
patients have a certain condition); the values of these covariates and thus the derived parameter 
estimates did not have any meaningful scientific interpretation. The simulated dataset included 
variables indicating bariatric surgery exposure, age, pre-surgery body mass index (BMI), combined 
comorbidity score, number of ambulatory, emergency department, inpatient, and other ambulatory 
visits, number of days between the last weight or BMI measurement and the index procedure, race, sex, 
year of surgery, and Data Partner site. We computed a continuous outcome (change in BMI in one-year 
post-surgery), a binary outcome (weight loss ≥ 20% within one-year post-surgery), and a time-to-event 
outcome (time to weight loss ≥ 20% within one-year post-surgery) from the simulated data as 
dependent variables for the three regression model types. We randomly partitioned this simulated 
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patient-level dataset (n = 5,766) into three smaller datasets of 1,922 patients to simulate a DDN of three 
Data Partners. We repeated the same internal testing process described in phase one using the 
partitioned, synthetic datasets.  

We also sent the three partitioned datasets to three Sentinel Data Partners (which coincidently 
represented all three configurations described above) in this phase for external end-to-end testing. We 
began Data Partner testing with synthetic data to get them familiarized with the automatable DRA 
workflow without the concerns about sharing their own data. Data Partners stored the partitioned 
datasets on a Windows® local or network drive accessible to their DMC. Data Partner computers used 
for testing were those routinely used to perform Sentinel tasks. All Data Partner testing with simulated 
data were completed with the DMC version 6.5, connected to a test version of the PopMedNet Web 
Portal version 6.6.  

c) Data Partner Testing with Real Data 

In the last phase, we focused on integrating the DRA query workflow and algorithms into the Sentinel 
query fulfillment process and addressing issues that may arise during production. We distributed an 
actual CIDA request to the same three Data Partners in phase two to generate a bariatric cohort using 
their real data. The request created three patient-level analytic datasets (n1 = 2,728, n2 = 1,018, and n3 = 
1,706) that were stored behind each Data Partner’s firewall on a Windows® local or network drive 
accessible to the DMC. For final testing, the Data Partner with Configuration 3 reconfigured their 
hardware configuration to Configuration 1. This decision was made to simplify our external development 
and test environment as Configuration 3 contain additional layers of heterogeneity (sub-configurations) 
across the network. This workaround has previously been used with other Sentinel tools (e.g. summary 
tables). We conducted external end-to-end test using the actual datasets for all regression model types 
with the three Data Partners. All Data Partner testing in this phase was completed with the DMC version 
6.5, connected to a test version of the PopMedNet Web Portal version 6.6.  

2. Evaluation of Statistical and Operational Performance 

We assessed the statistical performance of the DRA query workflow in all three phases of development 
and testing. To perform the reference analysis, we requested all Data Partners to securely transfer their 
CIDA output and de-identified patient-level analytic dataset to the SOC for pooling. We compared the 
DRA results with the results from the pooled patient-level data regression analyses. The DRA algorithms 
were considered successful if they produced results that were statistically equivalent to the pooled 
patient-level data analysis.  

We documented failed end-to-end workflow tests during internal and external testing. We investigated 
the root causes for the failed tests and addressed them with the software developers, programmers, 
and statisticians. We repeated the iterative process of testing, investigating, troubleshooting, and 
updating the software until a successful end-to-end external test was completed. We evaluated the 
operational performance of the DRA query workflow for each regression model type during successful 
end-to-end Data Partner testing with real data in phase three. Specifically, we extracted time stamps of 
request and routing status changes (e.g. file download and upload, trigger file created, and SAS 
execution) in the PopMedNet DRA query workflow. From these time stamps, we calculated the average 
time to complete one DRA iteration for each model type. We also computed and averaged the time 
elapses to download and upload files, transfer files to the reciprocal party, and execute SAS for each 
regression model type. 
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G. EXPLORATION OF DISTRIBUTED REGRESSION ANALYSIS WITH VERTICALLY PARTITIONED 
DATA 

We also explored the feasibility of conducting DRA with vertically partitioned data, a setting in which 
information from the same individual is recorded in multiple data sources [32 33]. We reviewed 
different secure multiparty computation protocols for linear regression analysis with vertically 
partitioned data that may be integrated with PopMedNet. We chose distributed linear regression 
because it was computationally less complicated than other regression models. Similar to the initial 
development and testing phases of horizontally partitioned data, we assessed the statistical 
performance of the computation protocol with the Boston Housing data and the simulated bariatric 
surgery datasets in our simulated DDN. Both datasets were partitioned into two Data Partners, where 
one Data Partner held the outcome variable (housing price or change in BMI) and the other Data Partner 
held the covariates. For each example, a unique patient identifier existed in both Data Partners to allow 
virtual linkage of the partitioned datasets. The vertical DRA was a proof-of-concept analysis, its 
integration into the workflow developed for DRA in horizontally partitioned data was beyond the scope 
of the project.  

IV. RESULTS 

A. A THREE-STEP FRAMEWORK TO ALLOW AUTOMATABLE DISTRIBUTED REGRESSION 
ANALYSIS IN POPMEDNET 

It is possible to perform automatable, routine DRA in Sentinel and in other horizontally partitioned DDNs 
that employ PopMedNet. A three-step framework is required to perform DRA in these DDNs: 1) 
assemble a de-identified patient-level analytic dataset at each Data Partner site, which can be done 
using a distributed program developed by the analysis center, 2) distribute a DRA package to each Data 
Partner for local iterative regression analysis through PopMedNet, and 3) iteratively transfer 
intermediate files between Data Partners and the analysis center through PopMedNet until the model 
converges or a pre-specified maximum number of iterations is reached (Figure 4). Our evaluation 
determined that the existing Sentinel query fulfillment process and PopMedNet query workflow allowed 
steps 1 and 2 with minimal modifications. We accomplished step 3 by enhancing the PopMedNet query 
workflow.   
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Figure 4. A 3-step framework to conduct automatable distributed regression analysis within 
PopMedNetTM 
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1. Step 1: Assembling an Analytic Dataset at Each Data Partner Site  

In the first step, the analysis center distributes a CIDA package via PopMedNet to assemble a de-
identified patient-level analytic dataset at each Data Partner site (Figure 4. Step 1). The analytic dataset 
includes eligible patients and covariates of interest, as specified by the requester. Consistent with the 
existing Sentinel query fulfillment process, this dataset is stored in the dplocal folder and not transferred 
to the analysis center. This step can also accommodate additional ad hoc SAS code to modify or add 
covariates that are not part of standard CIDA output.  

2. Step 2: Distributing a Distributed Regression Analysis Query Package to Data Partners for 
Local Iterative Execution 

In the second step, the analysis center distributes a DRA package to all participating Data Partners via 
PopMedNet (Figure 4. Step 2). This package utilizes the common folder structure to organize the 
required analytic components for DRA. The sasprogram folder includes a DRA SAS program, while the 
inputfiles folder contains initial and subsequent iterative “guesses” of the regression parameter 
estimates and the required DRA macros. Upon receiving the package, Data Partners unzip the package 
and execute the SAS program on the analytic patient-level dataset created in Step 1. This SAS program 
runs continuously.  

3. Step 3: Iteratively Transfer Files Between Data Partners and the Analysis Center 

Successful execution of the SAS program outputs a file that contains intermediate statistics to the msoc 
folder (Figure 4. Step 3). Data Partners then upload and transfer the file to the analysis center via 
PopMedNet. A corresponding SAS program at the analysis center, also running continuously, accepts 
and aggregates the intermediate statistics from all participating Data Partners. Updated regression 
parameter estimates are computed and model convergence is evaluated in this step. If the model 
convergence criteria are not met, updated parameter estimates are re-distributed to the Data Partners 
via PopMedNet and used as new regression parameter “guesses” in the next iteration. This process of 
local execution and transferring files between the Data Partners and analysis center continues iteratively 
until the model converges or a pre-specified maximum number of iterations has been reached.  

B. ENHANCEMENTS TO POPMEDNET TO ALLOW AUTOMATABLE DISTRIBUTED REGRESSION 
ANALYSIS 

From the PopMedNet query workflow perspective, we can view DRA as a single query request that 
contains multiple sub-query requests and responses (iterations) looking for the “converging” 
intermediate statistics. The existing Sentinel query workflow manually supports one sub-query request 
and response (Figure 4). Manual transfer of files over multiple iterations would be too resource-
intensive and restrict the practicability of DRA in DDNs. Therefore, we enhanced the query workflow to 
allow automatable, iterative transfer of files between Data Partners and the analysis center (Figure 5).  
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Figure 5. Existing PopMedNetTM query workflow 

 

API: Application programming interface 
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Figure 6. Enhanced PopMedNetTM query workflow to support automatable distributed regression 
analysis 

 

API: Application programming interface 
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To achieve this, we built a new back-end component referred to as an “adapter for DRA” in PopMedNet. 
This adapter allows the Data Partners and analysis center to have the option to automatically upload 
files from and download files to pre-defined folders in the common folder structure, when a specific 
trigger text file appears. To trigger these automatable processes, we built a DMC functionality that 
monitors pre-defined folders in the common folder structure for the appearance of trigger files into the 
adapter. In addition, DRA requires iterative distribution of updated regression parameters from the 
analysis center to the Data Partners. The existing workflow only allows one set of input files per query 
request. We enhanced this functionality to associate files to each sub-query request, allowing multiple 
sets of input files to be associated to one DRA query request.  

We then integrated the new automatable iterative file transfer process – made possible by the new 
adapter – with the SAS-driven DRA analytic process. The integration leveraged the existing Sentinel 
common folder structure and used trigger text files and the newly developed DMC folder monitoring 
functionality to iteratively and sequentially initiate one DRA process after the other (Figure 7). At the 
beginning of each iteration, the analysis center distributes a SAS parameter dataset, which specifies all 
necessary parameters for distributed analysis (regression type, the names of the independent and 
dependent variable, iteration number, convergence status, etc.) and contains initial or new “guesses” of 
parameter estimates, to each Data Partners’ inputfiles folder via PopMedNet (Figure 7. Steps a and b). 
PopMedNet then creates a trigger text file (files_done.ok) to signal to the continuously running DRA SAS 
program at each Data Partner site to incorporate the SAS parameter file and the new guesses into their 
local execution of the program on the de-identified patient-level dataset. Successful execution of the 
Data Partners’ DRA SAS program outputs intermediate statistics to the msoc folder along with a trigger 
text file (files_done.ok) (Figure 7. Step c). This trigger file signals to PopMedNet that intermediate 
statistics are computed and ready to be uploaded and transferred to the analysis center. Upon 
completion of the upload to the DMC, PopMedNet deletes the trigger file from the msoc folder. This 
step ensures that the appearance of a new trigger file in the next iteration will automatically initiate a 
new file transfer process.   
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Figure 7. Trigger file and actions that allow automatable distributed regression analysis 
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PopMedNet then transfers the output files from each Data Partner to their designated folder at the 
analysis center (e.g., msoc1, msoc2…) (Figure 7. Step d). Upon completion of the transfer, PopMedNet 
creates and deposits a trigger text file into the designated folder. The appearance of the trigger text files 
prompts the SAS program at the analysis center to: 1) perform model convergence computation using 
the intermediate statistics, 2) output updated parameter estimates or “guesses” to the inputfiles folder, 
and 3) delete the trigger text files (files_done.ok) that initiated the analysis center computation process. 
Again, this latter step ensures the appearance of new trigger files will automatically initiate a new 
analysis center computation process in the next iteration. If required, the new regression parameter 
“guesses” can be re-distributed to the Data Partners to fine tune the intermediate statistics using the 
described file transfer process. 

This process of transferring files and computing statistics at the Data Partners and analysis center 
continues iteratively until the regression model converges or a pre-specified maximum number of 
iterations has been reached. When either of these two conditions is met, the SAS program at the SOC 
outputs a termination trigger text file (job_done.ok) to the inputfiles folder, PopMedNet then transfers 
this file to the Data Partners to invoke the SAS programs to compute diagnostic statistics (e.g., residuals, 
goodness-of-fit, and area under the receiver operating characteristics curves). Again, these statistics are 
returned to the analysis center in the same matter as described above. The termination trigger file also 
terminates all SAS programs and the DMC folder monitoring functionality. 

C. STATISTICAL PERFORMANCE  

We performed over 300 internal and external DRA tests. Table 2a-Table 4c summarize the statistical 
performance of our DRA query workflow and algorithms. In all development and testing phases the DRA 
algorithms produced statistically equivalent regression parameter and standard error estimates to those 
from the pooled patient-level analysis. 
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1. Phase 1: Initial Development and Testing 

Table 2a. Distributed Linear Regression vs. Pooled Patient-Level Linear Regression for Horizontally Partitioned Data (Boston Housing Data) 

Covariates 
DRA Pooled Patient-Level Differences in 

Regression Parameter 
Estimates 

Differences in 
Standard 

Errors Estimates 
Standard 

Errors 
Estimates 

Standard 
Errors 

Intercept 35.50548 1.57690 35.50548 1.57690 -8.38E-13 2.26E-14 

Crime -0.27283 0.04401 -0.27283 0.04401 4.44E-16 9.92E-16 

Distance -1.01582 0.23259 -1.01582 0.23259 1.09E-13 3.22E-15 

Industrialization  -0.73017 0.07229 -0.73017 0.07229 3.54E-14 1.32E-15 

Outcome: Housing price; Data Partner sample sizes: n1 = 172, n2 = 182, n3 = 152 

Table 2b. Distributed Logistic Regression vs. Pooled Patient-Level Logistic Regression for Horizontally Partitioned Data (Boston Housing Data) 

Covariates 
DRA Pooled Patient-Level Differences in 

Regression Parameter 
Estimates 

Differences in 
Standard 

Errors 
Estimates 

Standard 
Errors 

Estimates 
Standard 

Errors 

Intercept 2.49660 0.49057 2.49660 0.49060 1.33E-15 9.99E-16 

Crime -0.14465 0.03686 -0.14460 0.03690 2.04E-13 -2.97E-14 

Distance -0.14105 0.06976 -0.14100 0.06980 1.38E-14 -2.22E-16 

Industrialization -0.13889 0.02376 -0.13890 0.02380 -2.42E-14 -2.19E-16 

Outcome: Housing price (low/high); Data Partner sample sizes: n1 = 172, n2 = 182, n3 = 152 

Table 2c. Distributed Cox Proportional Hazards Regression vs. Pooled Patient-Level Cox Proportional Hazards Regression for Horizontally 
Partitioned Data (Maryland State Prison Data) 

Covariates 
DRA Pooled Patient-Level Differences in 

Regression Parameter 
Estimates 

Differences in 
Standard 

Errors 
Estimates 

Standard 
Errors 

Estimates 
Standard 

Errors 

Age -0.06692 0.02084 -0.06692 0.02084 -1.39E-16 2.78E-17 

Financial Aid -0.34644 0.19024 -0.34644 0.19024 2.22E-16 -2.78E-17 

Prior Arrest 0.09653 0.02724 0.09653 0.02724 -1.80E-16 1.73E-17 

Outcome: Time to re-incarceration; Data Partner sample sizes: n1 = 134, n2 = 149, n3 = 149 
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2. Phase 2: Data Partner Testing with Simulated Data 

Table 3a. Distributed Linear Regression vs. Pooled Patient-Level Linear Regression for Horizontally Partitioned Data (Simulated Bariatric 
Surgery Data) Table Table2 

Covariates 

DRA Pooled Patient-Level 
Difference in Regression 

Parameter Estimates 
Differences in 

Standard Errors Estimates 
Standard 

Errors 
Estimates 

Standard 
Errors 

Intercept -32.02957 0.12094 -32.02957 0.12094 -1.35E-13 -5.07E-14 

Exposure -4.97100 0.02627 -4.97100 0.02627 -9.68E-14 -1.26E-14 

Age 0.20075 0.00134 0.20075 0.00134 6.00E-15 -6.44E-16 

Pre-index BMI -0.00110 0.00145 -0.00110 0.00145 2.67E-14 -5.71E-16 

Combined Comorbidity Score 0.29462 0.00707 0.29462 0.00707 1.88E-14 -3.40E-15 

No. Ambulatory Visits 0.99778 0.00198 0.99778 0.00198 -2.59E-14 -9.55E-16 

No. Emergency Department Visits 5.01483 0.01299 5.01483 0.01299 -8.79E-14 -6.26E-15 

No. Inpatient Visits 3.02073 0.01315 3.02073 0.01315 -1.10E-13 -6.33E-15 

No. Non-Acute Institutional Stay 3.99424 0.01267 3.99424 0.01267 4.31E-14 -6.10E-15 

No. Other Ambulatory Visits 1.99394 0.00714 1.99394 0.00714 -8.35E-14 -3.44E-15 

Days Between BMI Measurement and Index Procedure 0.20004 0.00025 0.20004 0.00025 1.33E-15 -1.22E-16 

Race (Unknown) 1.01827 0.04977 1.01827 0.04977 -3.07E-13 -2.40E-14 

Race (American Indian or Alaska Native) 2.03444 0.05008 2.03444 0.05008 -2.75E-14 -2.41E-14 

Race (Asian) 2.99764 0.05350 2.99764 0.05350 -1.93E-13 -2.58E-14 

Race (Black or African American) 4.08558 0.05331 4.08558 0.05331 -2.18E-13 -2.57E-14 

Race (Native Hawaiian or Other Pacific Islander) 5.08583 0.05339 5.08583 0.05339 -1.87E-13 -2.57E-14 

Female 2.03663 0.03750 2.03663 0.03750 -3.04E-13 -1.80E-14 

Surgery Year (2011) -0.05015 0.04489 -0.05015 0.04489 -3.11E-13 -2.16E-14 

Surgery Year (2012) -0.05955 0.04455 -0.05955 0.04455 -2.24E-13 -2.14E-14 

Surgery Year (2013) -0.01499 0.04470 -0.01499 0.04470 -2.81E-13 -2.15E-14 

Surgery Year (2014) -0.02904 0.04374 -0.02904 0.04374 -2.61E-13 -2.11E-14 

Surgery Year (2015) -0.00116 0.04798 -0.00116 0.04798 -3.89E-13 -2.31E-14 

Data Partner Site (2) 0.03099 0.03219 0.03099 0.03219 -1.46E-13 -1.55E-14 

Data Partner Site (3) -0.01559 0.03221 -0.01559 0.03221 -7.58E-14 -1.55E-14 

Reference Groups: Race (White), Surgery Year (2010), and Data Partner Site (1) 
Outcome: Change in body mass index one-year post-surgery; Data Partner sample sizes: n1 = 1,922, n2 = 1,922, n3 = 1,922 
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Table 3b. Distributed Logistic Regression vs. Pooled Patient-Level Logistic Regression for Horizontally Partitioned Data (Simulated Bariatric 
Surgery Data) 

Covariates 
DRA Pooled Patient-Level 

Differences in Regression 
Parameter Estimates 

Differences in 
Standard Errors Estimates 

Standard 
Errors 

Estimates 
Standard 

Errors 

Intercept -5.53801 0.32834 -5.53800 0.32830 -1.83E-10 3.71E-12 

Exposure -0.10418 0.06480 -0.10420 0.06480 -3.14E-12 4.40E-13 

Age 0.00095 0.00330 0.00095 0.00330 -5.28E-14 2.23E-14 

BMI (Pre-Index) 0.13680 0.00505 0.13680 0.00505 4.55E-12 1.01E-13 

Comorbidity Score 0.00777 0.01743 0.00777 0.01740 -1.90E-13 1.17E-13 

No. Ambulatory Visits -0.00632 0.00487 -0.00632 0.00487 -1.30E-13 3.24E-14 

No. Emergency Department Visits 0.01418 0.03182 0.01420 0.03180 1.64E-13 2.09E-13 

No. Inpatient Visits -0.01667 0.03247 -0.01670 0.03250 -4.91E-13 2.19E-13 

No. Non-Acute Institutional Stay -0.00752 0.03120 -0.00752 0.03120 -9.00E-13 2.07E-13 

No. Other Ambulatory Visits 0.01480 0.01749 0.01480 0.01750 -3.41E-13 1.13E-13 

Days Prior (Pre-Surgery Vitals Measurement) 0.00009 0.00062 0.00009 0.00062 9.02E-16 4.04E-15 

Race (Unknown) 0.24711 0.12055 0.24710 0.12060 3.68E-12 7.86E-13 

Race (American Indian or Alaska Native) 0.15906 0.12061 0.15910 0.12060 1.99E-12 7.81E-13 

Race (Asian) 0.24098 0.13017 0.24100 0.13020 2.54E-12 8.56E-13 

Race (Black or African American) 0.38481 0.13162 0.38480 0.13160 7.65E-12 9.04E-13 

Race (Native Hawaiian or Other Pacific Islander) 0.26005 0.12914 0.26000 0.12910 3.70E-12 8.25E-13 

Female -0.03201 0.09265 -0.03200 0.09260 -4.63E-13 6.24E-13 

Surgery Year (2011) 0.15400 0.11179 0.15400 0.11180 5.23E-12 7.70E-13 

Surgery Year (2012) 0.12471 0.11058 0.12470 0.11060 3.36E-12 7.49E-13 

Surgery Year (2013) 0.04451 0.10998 0.04450 0.11000 2.73E-12 7.37E-13 

Surgery Year (2014) -0.13413 0.10636 -0.13410 0.10640 -1.32E-12 6.85E-13 

Surgery Year (2015) -0.19318 0.11596 -0.19320 0.11600 -1.64E-12 7.41E-13 

Data Partner Site (2) -0.05598 0.07970 -0.05600 0.07970 -1.16E-12 5.46E-13 

Data Partner Site (3) -0.04758 0.07923 -0.04760 0.07920 -1.28E-12 5.25E-13 

Reference Groups: Race (White), Surgery Year (2010), and Data Partner Site (1) 
Outcome: Weight loss ≥ 20% (within one-year post-surgery); Data Partner sample sizes: n1 = 1,922, n2 = 1,922, n3 = 1,922 
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Table 3c. Distributed Cox Proportional Hazards Regression vs. Pooled Patient-Level Cox Proportional Hazards Regression for Horizontally 
Partitioned Data (Simulated Bariatric Surgery Data) 

Covariates 

DRA Pooled Patient-Level 
Differences in Regression 

Parameter Estimates  
Differences in 

Standard Errors Estimates 
Standard 

Errors 
Estimates 

Standard 
Errors 

Exposure -0.04440 0.03128 -0.04440 0.03128 -3.40E-16 -2.08E-17 

Age 0.00237 0.00157 0.00237 0.00157 -9.19E-17 -1.52E-18 

Pre-index BMI 0.05887 0.00162 0.05887 0.00162 -3.47E-17 2.06E-17 

Combined Comorbidity Score -0.00470 0.00835 -0.00470 0.00835 -1.02E-16 -6.94E-18 

No. Ambulatory Visits 0.00003 0.00237 0.00003 0.00237 -1.06E-17 4.34E-19 

No. Emergency Department Visits 0.02120 0.01533 0.02120 0.01533 -6.11E-16 2.43E-17 

No. Inpatient Visits 0.00101 0.01544 0.00101 0.01544 2.22E-16 -1.39E-17 

No. Non-Acute Institutional Stay 0.01487 0.01513 0.01487 0.01513 3.38E-16 1.73E-17 

No. Other Ambulatory Visits -0.00140 0.00854 -0.00140 0.00854 -1.68E-16 0.00E+00 

Days Between BMI Measurement and Index Procedure -0.00004 0.00030 -0.00004 0.00030 -5.90E-18 3.79E-19 

Race (Unknown) 0.12243 0.06012 0.12243 0.06012 -1.39E-17 -9.71E-17 

Race (American Indian or Alaska Native) 0.06439 0.06076 0.06439 0.06076 2.64E-16 -2.78E-17 

Race (Asian) 0.13966 0.06455 0.13966 0.06455 -8.33E-17 -9.71E-17 

Race (Black or African American) 0.21981 0.06380 0.21981 0.06380 1.39E-16 -1.25E-16 

Race (Native Hawaiian or Other Pacific Islander) 0.14498 0.06440 0.14498 0.06440 1.67E-16 -2.78E-17 

Female -0.01256 0.04451 -0.01256 0.04451 -7.34E-16 7.63E-17 

Surgery Year (2011) 0.04461 0.05290 0.04461 0.05290 -3.05E-16 -1.04E-16 

Surgery Year (2012) 0.02460 0.05255 0.02460 0.05255 -2.84E-16 -1.11E-16 

Surgery Year (2013) 0.02640 0.05303 0.02640 0.05303 -1.04E-17 -1.25E-16 

Surgery Year (2014) -0.09727 0.05246 -0.09727 0.05246 -3.61E-16 -4.86E-17 

Surgery Year (2015) -0.06395 0.05813 -0.06395 0.05813 -6.94E-17 -1.39E-17 

Data Partner Site (2) 0.00145 0.03823 0.00145 0.03823 3.72E-16 6.94E-17 

Data Partner Site (3) -0.01885 0.03841 -0.01885 0.03841 5.97E-16 4.16E-17 

Reference Groups: Race (White), Surgery Year (2010), and Data Partner Site (1) 
Outcome: Time to weight loss ≥ 20% (within one-year post-surgery); Data Partner sample sizes: n1 = 1,922, n2 = 1,922, n3 = 1,922 



 

Final Report - 25 -  Distributed Regression Analysis  

3. Phase 3: Data Partner Testing with Real Data 

Table 4a. Distributed Linear Regression vs. Pooled Patient-Level Linear Regression for Horizontally Partitioned Data (CIDA-based Actual 
Bariatric Surgery Data) Table Table3 

Covariates 

DRA Pooled Patient-Level 
Differences in Regression 

Parameter Estimates  
Differences in 

Standard Errors Estimates 
Standard 

Errors 
Estimates 

Standard 
Errors 

Intercept 34.03935 0.61075 34.03935 0.61075 3.66E-12 -9.14E-13 

Exposure 2.04714 0.28723 2.04714 0.28723 -4.15E-13 -4.30E-13 

Age -0.03334 0.00837 -0.03334 0.00837 -3.68E-14 -1.25E-14 

Pre-Index BMI -0.99983 0.00050 -0.99983 0.00050 -6.00E-15 -7.44E-16 

Combine Comorbidity Score 0.04388 0.06949 0.04388 0.06949 3.59E-15 -1.04E-13 

No. Ambulatory Visits -0.03068 0.01008 -0.03068 0.01008 -6.59E-17 -1.51E-14 

No. Emergency Department Visits 0.10329 0.08749 0.10329 0.08749 -2.79E-14 -1.31E-13 

No. Inpatient Visits 0.88725 0.25976 0.88725 0.25976 -6.51E-13 -3.89E-13 

No. Non-Acute Institutional Stay 1.32338 1.79056 1.32338 1.79056 4.21E-13 -2.68E-12 

No. Other Ambulatory Visits 0.02159 0.00873 0.02159 0.00873 1.22E-14 -1.31E-14 

Days Between BMI Measurement and Index Procedure 0.01207 0.00567 0.01207 0.00567 3.92E-15 -8.48E-15 

Race (Unknown) 0.94212 0.26841 0.94212 0.26841 -4.16E-13 -4.02E-13 

Race (American Indian or Alaska Native) -0.30948 0.69817 -0.30948 0.69817 -2.39E-13 -1.04E-12 

Race (Asian) -0.16853 0.63001 -0.16853 0.63001 -4.52E-13 -9.42E-13 

Race (Black or African American) 1.51961 0.29206 1.51961 0.29206 -9.95E-14 -4.37E-13 

Race (Native Hawaiian or Other Pacific Islander) -1.22315 1.04973 -1.22315 1.04973 -4.11E-13 -1.57E-12 

Female -1.22366 0.23205 -1.22366 0.23205 -5.33E-13 -3.47E-13 

Surgery Year (2011) 0.15150 0.30361 0.15150 0.30361 -5.94E-13 -4.54E-13 

Surgery Year (2012) -0.24904 0.30372 -0.24904 0.30372 -6.47E-13 -4.54E-13 

Surgery Year (2013) -0.02308 0.30223 -0.02308 0.30223 -6.08E-13 -4.52E-13 

Surgery Year (2014) 0.32767 0.30609 0.32767 0.30609 -5.93E-13 -4.58E-13 

Surgery Year (2015) -0.25767 0.33352 -0.25767 0.33352 -6.18E-13 -4.99E-13 

Data Partner Site (2) -1.10559 0.31373 -1.10559 0.31373 2.89E-15 -4.69E-13 

Data Partner Site (3) -0.10990 0.30341 -0.10990 0.30341 -2.07E-13 -4.54E-13 

Reference Groups: Race (White), Surgery Year (2010), and Data Partner Site (1) 
Outcome: Change in body mass index one-year post-surgery; Data Partner sample sizes: n1 = 2,728, n2 = 1,018, n3 = 1,706 
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Table 4b. Distributed Logistic Regression vs. Pooled Patient-Level Logistic Regression for Horizontally Partitioned Data (CIDA-based Actual 
Bariatric Surgery Data) 

Covariates 

DRA Pooled Patient-Level 
Differences in Regression 

Parameter Estimates 

Differences in 
Standard Errors 

Estimates Estimates 
Standard 

Errors 
Estimate 

Standard 
Errors 

Intercept 2.11573 0.22833 2.11570 0.22830 -2.27E-13 -4.55E-14 

Exposure -1.06711 0.09895 -1.06710 0.09890 4.03E-13 -1.59E-14 

Age -0.01606 0.00316 -0.01610 0.00316 4.84E-15 -6.85E-16 

BMI (Pre-Index) 0.00003 0.00020 0.00003 0.00020 -8.23E-18 -9.49E-19 

Comorbidity Score -0.02623 0.02561 -0.02620 0.02560 1.33E-14 -5.20E-15 

No. Ambulatory Visits 0.01155 0.00447 0.01150 0.00447 -4.08E-14 -2.80E-15 

No. Emergency Department Visits -0.06230 0.03132 -0.06230 0.03130 6.99E-14 -6.82E-15 

No. Inpatient Visits -0.12098 0.08940 -0.12100 0.08940 1.39E-13 -1.16E-14 

No. Non-Acute Institutional Stay 0.42510 0.78809 0.42510 0.78810 -3.52E-12 -1.18E-12 

No. Other Ambulatory Visits 0.00381 0.00340 0.00381 0.00340 -6.49E-16 -1.28E-15 

Days Prior (Pre-Surgery Vitals Measurement) -0.00266 0.00201 -0.00266 0.00201 6.93E-15 -6.26E-16 

Race (Unknown) -0.39685 0.09485 -0.39690 0.09480 4.32E-14 -8.81E-15 

Race (American Indian or Alaska Native) -0.13938 0.26230 -0.13940 0.26230 -3.44E-14 -5.51E-14 

Race (Asian) -0.37257 0.22341 -0.37260 0.22340 1.12E-13 -2.03E-14 

Race (Black or African American) -0.29617 0.10507 -0.29620 0.10510 8.03E-14 -1.20E-14 

Race (Native Hawaiian or Other Pacific Islander) -0.02910 0.40543 -0.02910 0.40540 2.07E-13 -5.88E-14 

Female 0.19993 0.08422 0.19990 0.08420 1.58E-14 -1.49E-14 

Surgery Year (2011) -0.10269 0.11683 -0.10270 0.11680 -4.35E-14 -2.02E-14 

Surgery Year (2012) 0.05547 0.11897 0.05550 0.11900 -5.02E-14 -2.21E-14 

Surgery Year (2013) -0.11956 0.11382 -0.11960 0.11380 5.00E-14 -1.77E-14 

Surgery Year (2014) -0.10956 0.11617 -0.10960 0.11620 1.33E-13 -2.05E-14 

Surgery Year (2015) 0.03701 0.12798 0.03700 0.12800 3.25E-13 -2.02E-14 

Data Partner Site (2) -0.10433 0.11751 -0.10430 0.11750 2.99E-13 -2.19E-14 

Data Partner Site (3) 0.75506 0.12577 0.75510 0.12580 -2.82E-12 -8.75E-14 

Reference Groups: Race (White), Surgery Year (2010), and Data Partner Site (1) 
Outcome: Weight loss ≥ 20% (within one-year post-surgery); Data Partner sample sizes: n1 = 2,728, n2 = 1,018, n3 = 1,706 
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Table 4c. Distributed Cox Proportional Hazards Regression vs. Pooled Patient-Level Cox Proportional Hazards Regression for Horizontally 
Partitioned Data (CIDA-based Actual Bariatric Surgery Data) 

Covariates 

DRA Pooled Patient-Level 
Differences in Regression 

Parameter Estimates  
Differences in 

Standard Errors Estimates 
Standard 

Errors 
Estimate 

Standard 
Errors 

Exposure -0.58160 0.05275 -0.58160 0.05275 6.66E-16 -8.33E-17 

Age -0.01107 0.00146 -0.01107 0.00146 1.39E-17 -9.11E-18 

BMI (Pre-Index) -0.00006 0.00009 -0.00006 0.00009 2.85E-19 -1.49E-19 

Comorbidity Score -0.00787 0.01205 -0.00787 0.01205 -3.64E-17 -1.04E-17 

No. Ambulatory Visits 0.00584 0.00158 0.00584 0.00158 -2.95E-17 1.08E-18 

No. Emergency Department Visits -0.01873 0.01679 -0.01873 0.00158 1.56E-16 -2.43E-17 

No. Inpatient Visits -0.08587 0.04580 -0.08587 0.04580 -9.58E-16 -1.25E-16 

No. Non-Acute Institutional Stay 0.06626 0.29266 0.06626 0.29266 3.75E-16 -3.33E-16 

No. Other Ambulatory Visits 0.00279 0.00134 0.00279 0.00134 4.03E-17 -1.52E-18 

Days Prior (Pre-Surgery Vitals Measurement) -0.00221 0.00096 -0.00221 0.00096 2.39E-17 -2.17E-18 

Race (Unknown) -0.18898 0.04765 -0.18898 0.04765 5.27E-16 0.00E+00 

Race (American Indian or Alaska Native) -0.07476 0.12019 -0.07476 0.12019 1.25E-16 2.78E-17 

Race (Asian) -0.22309 0.10933 -0.22309 0.10933 -2.78E-17 6.94E-17 

Race (Black or African American) -0.18457 0.05116 -0.18457 0.05116 1.94E-16 -1.39E-17 

Race (Native Hawaiian or Other Pacific Islander) -0.19748 0.17333 -0.19748 0.17333 1.42E-15 2.78E-17 

Female -0.00887 0.04052 -0.00887 0.04052 -1.24E-15 -3.47E-17 

Surgery Year (2011) -0.08021 0.05176 -0.08021 0.05176 8.60E-16 1.11E-16 

Surgery Year (2012) -0.02547 0.05136 -0.02547 0.05136 4.61E-16 7.63E-17 

Surgery Year (2013) -0.09519 0.05195 -0.09519 0.05195 1.17E-15 4.86E-17 

Surgery Year (2014) -0.16866 0.05235 -0.16866 0.05235 8.60E-16 1.18E-16 

Surgery Year (2015) 0.24763 0.05640 0.24763 0.05640 3.89E-16 1.04E-16 

Data Partner Site (2) -0.15270 0.05188 -0.15270 0.05188 2.11E-15 -6.94E-18 

Data Partner Site (3) 0.33440 0.05161 0.33440 0.05161 8.33E-16 2.08E-17 

Reference Groups: Race (White), Surgery Year (2010), and Data Partner Site (1) 
Outcome: Time to weight loss ≥ 20% (within one-year post-surgery); Data Partner sample sizes: n1 = 2,728, n2 = 1,018, n3 = 1,706 
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D. OPERATIONAL PERFORMANCE  

For each regression model type, we required at least one successful external, phase three, end-to-end 
test with the three select Data Partners to classify the DRA query workflow and algorithm as functional. 
As expected, distributed linear regression analysis required two iterations, while the distributed logistic 
and Cox proportional hazards regression analyses each required six iterations for model convergence 
during phase three testing. In total, we extracted 111, 271, and 271 time stamps from successful 
distributed linear, logistic, and Cox end-to-end tests, respectively (Table 4).  

Table 4. Summary of Phase Three Tests with Data Partners 

 Linear regression 
Logistic 

regression 
Cox proportional 

hazards regression 

Total number of Data Partners 3 3 3 

Required number of iterations for model 
convergence 

2 6 6 

Total time stamps extracted 111 271 271 

Table 5 summarizes the operational performance of the PopMedNet DRA query workflow. It took an 
average of 102.4 seconds to complete one DRA iteration across all three regression model types. The file 
transfer processes (file upload, download, and transfer to the reciprocal party) accounted for 89% of the 
iteration time. Specifically, downloading and uploading DRA files at the analysis center required an 
average of 28.6 and 9.8 seconds, respectively. File transfer from the analysis center to the Data Partners 
took on average 9.4 seconds. Downloading and uploading DRA files at the Data Partners required an 
average of 10.1 and 15.5 seconds, respectively. File transfer from the Data Partners to the analysis 
center took on average 22.1 seconds. SAS execution required an average of 8.0 seconds to compute 
intermediate statistics at the Data Partners and 3.8 seconds to compute regression parameter estimates 
at the analysis center.  

The distributed Cox regression required the greatest amount of iteration time (113.5 seconds), followed 
by logistic regression (95.0 seconds), and then linear regression (91.5 seconds). Overall, distributed 
linear regression analysis with our bariatric surgery test case required 440.7 seconds to complete, while 
logistic and Cox proportional hazards regression analysis required 925.5 and 1,016 seconds, respectively.  

Table 5. Operational Performance of the PopMedNet Distributed Regression Analysis query workflow 
(for Horizontally Partitioned Data, CIDA-based Actual Bariatric Surgery Data) 

  Linear Logistic Cox Overall  

 Mean Time Elapses in seconds (Standard Error)  

Average Iteration Time 91.5 (10.5) 95 (3.1) 113.5 (5.2) 102.4 (3.8) 

Analysis Center       

Download Time 20.5 (5.4) 20.6 (1.3) 39.4 (4) 28.6 (3.2) 

SAS Execution Time 4.3 (2.6) 3 (1.1) 4.4 (0.4) 3.8 (0.6) 

Upload Time 8.4 (1.1) 10.2 (0.7) 9.9 (0.6) 9.8 (0.4) 

File Transfer Time (to Data Partners) 10.5 (0.4) 9.1 (0.5) 9.4 (0.5) 9.4 (0.3) 

Data Partners       

Download Time 8.6 (1.2) 10.3 (0.6) 10.3 (0.8) 10.1 (0.4) 

SAS Execution Time 8.2 (0.8) 7.9 (0.4) 8 (0.3) 8 (0.2) 

Upload Time 15.6 (1.2) 15.9 (0.6) 15.1 (0.3) 15.5 (0.3) 

File Transfer Time (to Analysis Center) 20 (0.8) 21.8 (1.9) 23.1 (1.2) 22.1 (1.0) 

Total End to End Run Time  440.7 925.5 1016   
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E. DISTRIBUTED REGRESSION ANALYSIS WITH VERTICALLY PARTITIONED DATA 

Our exploratory assessment concluded that it would also be feasible to perform DRA with vertically 
partitioned data in DDNs that utilizes PopMedNet as its data-sharing platform. Several secure multiparty 
computation protocols have been discussed in the literature for vertically partitioned data. We found 
the Beaver et al’s secure matrix multiplication protocol to be best suited for potential integration into 
the PopMedNet DRA query workflow [34 35]. We explored this protocol with distributed linear 
regression analysis using a modified Commodity Server Approach [36]. Full details of this protocol and 
the mathematical derivation are available in the Appendix: Linear Regression on Vertically Partitioned 
Data.  

Table 6 and Table 7 show the results from our proof-of-concept analysis. The algorithm produced 
statistically equivalent regression parameter and standard error estimates to the pooled individual-level 
data analysis. Additional work is needed to integrate this algorithm into the PopMedNet DRA query 
workflow and additional internal and external testing is required to assess operational performance.  

Table 6. Distributed Linear Regression vs. Pooled Patient-Level Linear Regression for Vertically 
Partitioned Data (Boston Housing Data) 

Covariates 

DRA Pooled Patient-Level Differences in 
Regression 
Parameter 
Estimates 

Differences 
in 

Standard 
Errors 

Estimates 
Standard 

Errors 
Estimates 

Standard 
Errors 

Intercept 35.50548 1.57690 35.50548 1.57690 -7.82E-13 1.22E-14 

Crime -0.27283 0.04401 -0.27283 0.04401 4.66E-15 9.02E-16 

Distance -1.01582 0.23259 -1.01582 0.23259 1.05E-13 2.08E-15 

Industrialization -0.73017 0.07229 -0.73017 0.07229 2.91E-14 9.30E-16 
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Table 7. Distributed Linear Regression vs. Pooled Patient-Level Linear Regression for Vertically Partitioned Data (Simulated Bariatric Surgery 
Data) 

Covariates 

DRA Pooled Patient-Level 
Differences in 

Regression Parameter 
Estimates 

Differences in 
Standard 

Error 
Estimates 

Estimates 
Standard 

Errors 
Estimates 

Standard 
Errors 

Intercept -32.02612 0.11958 -32.02612 0.11958 -1.32E-11 -8.56E-13 

Exposure -4.97118 0.02627 -4.97118 0.02627 1.58E-12 -1.90E-13 

Age 0.20074 0.00134 0.20074 0.00134 -2.78E-17 -9.67E-15 

BMI (Pre-Index) -0.00106 0.00145 -0.00106 0.00145 -2.97E-15 -1.04E-14 

Comorbidity Score 0.29456 0.00707 0.29456 0.00707 7.48E-14 -5.11E-14 

No. Ambulatory Visits 0.99774 0.00198 0.99774 0.00198 -2.51E-14 -1.43E-14 

No. Emergency Department Visits 5.01466 0.01298 5.01466 0.01298 4.74E-13 -9.38E-14 

No. Inpatient Visits 3.02110 0.01315 3.02110 0.01315 -2.13E-14 -9.50E-14 

No. Non-Acute Institutional Stay 3.99434 0.01267 3.99434 0.01267 7.11E-14 -9.15E-14 

No. Other Ambulatory Visits 1.99393 0.00714 1.99393 0.00714 -5.73E-14 -5.15E-14 

Days Prior (Pre-Surgery Vitals Measurement) 0.20004 0.00025 0.20004 0.00025 2.00E-15 -1.83E-15 

Race (Unknown) 1.01773 0.04977 1.01773 0.04977 1.18E-11 -3.59E-13 

Race (American Indian or Alaska Native) 2.03351 0.05008 2.03351 0.05008 6.70E-12 -3.62E-13 

Race (Asian) 2.99682 0.05349 2.99682 0.05349 1.73E-11 -3.86E-13 

Race (Black or African American) 4.08526 0.05329 4.08526 0.05329 9.69E-12 -3.85E-13 

Race (Native Hawaiian or Other Pacific Islander) 5.08544 0.05339 5.08544 0.05339 1.37E-11 -3.86E-13 

Female 2.03652 0.03750 2.03652 0.03750 4.76E-12 -2.71E-13 

Surgery Year (2011) -0.05022 0.04489 -0.05022 0.04489 -3.96E-12 -3.24E-13 

Surgery Year (2012) -0.05880 0.04453 -0.05880 0.04453 3.52E-12 -3.22E-13 

Surgery Year (2013) -0.01432 0.04470 -0.01432 0.04470 -3.92E-12 -3.23E-13 

Surgery Year (2014) -0.02875 0.04373 -0.02875 0.04373 -4.21E-13 -3.16E-13 

Surgery Year (2015) -0.00121 0.04797 -0.00121 0.04797 1.75E-12 -3.47E-13 

Reference Groups: Race (White), Surgery Year (2010) 
Outcome: Change in body mass index one-year post-surgery 
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We also found that DRA with vertically partitioned data required a similar three-step process framework 
as with horizontally partitioned data: 1) assemble a patient-level analytic dataset at each Data Partner, 
2) distribute a DRA package to each Data Partner for local iterative analysis, which could be done 
through PopMedNet, and 3) if necessary, iteratively transfer intermediate files between Data Partners 
and the analysis center until the model converges or until a pre-specified maximum number of iterations 
is reached. Distinct to vertically partitioned data, the analytic datasets held locally by participating Data 
Partners must share a primary key (e.g., a de-identified unique patient ID), be sorted by the primary key, 
and have the same primary key and number of records with non-missing independent and dependent 
variables. Without a shared primary key, the disjointed intermediate statistics cannot be concatenated 
with the secure matrix multiplication protocol. This requirement is somewhat analogous to the need for 
harmonizing datasets in DRA with horizontally partitioned data – each dataset is required to have the 
same set of covariates.  

Although we did not do it in this project, steps 2 and 3 of the vertical DRA algorithm can in principle be 
integrated with the newly developed query workflow for horizontal DRA. We integrated the PopMedNet 
DRA query workflow (the iterative file transfer process) and the DRA SAS algorithms for horizontally 
partitioned data (analytic processes) by using a “common folder structure” and a trigger text file. Thus, 
the workflow is agnostic to DRA algorithms, secure multiparty protocols, and statistical software. The 
only requirement is that DRA algorithms monitor and output intermediate statistic files and updated 
parameter estimates to the pre-specified folders specified in the DMC settings (e.g. inputfiles and msoc 
folders).  

F. PROJECT OBJECTIVES AND DELIVERABLES 

Table 8 provides a list of statuses corresponding to each project objective. 

Table 8. List of Project Objectives and Deliverables 

Objective Status 

1) Develop an overall analytic/process 
framework for DRA in DDNs 

Completed 

In our analysis, we found three steps were required to 
perform DRA. We summarize these steps in a three-step 
process framework (pages 13 to 15). We have also published 
this framework in eGEMs.[20]  

2) Develop and test SAS DRA algorithms 
that are agnostic to file transfer 
software, to perform distributed 
linear, logistic, and Cox proportional 
hazards regression analysis using 
simulated horizontally partitioned 
data 

Completed  

We completed the development of SAS algorithms to perform 
distributed linear, logistic, and Cox proportional hazards 
regression analysis on horizontally partitioned data. All 
algorithms (SAS packages), user documentation, test data, 
and sample of reports for each regression model type are 
available on the Sentinel System website at 
https://www.sentinelinitiative.org/sentinel/methods/utilizing-
data-various-data-partners-distributed-manner.  

We also published technical documentations on the 
algorithms on arxiv.org.[37 38]  

https://www.sentinelinitiative.org/sentinel/methods/utilizing-data-various-data-partners-distributed-manner
https://www.sentinelinitiative.org/sentinel/methods/utilizing-data-various-data-partners-distributed-manner
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Objective Status 

Test results with simulated horizontally partitioned data are 
located on pages 21 to 24 of this report. 

3) Develop a prototype workflow in 
PopMedNet that is automatable and 
can iteratively transfer DRA files 
between Data Partners and the 
analysis center in DDNs 

Completed 

We completed the development of a PopMedNet-based 
workflow that supports manual, semi-automated, and 
automated DRA. We report on the precision and operational 
performance of the automated DRA workflow on pages 21 to 
28 of this report. The manual and semi-automated workflows 
are extensions of the automated workflow. Thus, the 
precision of each algorithm is the same.  

4) Integrate the SAS algorithms and 
PopMedNet workflow and beta-test 
the integration with Sentinel Data 
Partners and perform distributed 
linear, logistic, and Cox proportional 
hazards regression analysis using real 
world data 

Completed 

We integrated the SAS algorithms with the PopMedNet DRA 
query workflow and beta-tested the integration with three 
Sentinel Data Partners with real-world data. The precision and 
operational performance of the beta-tests are located on 
pages 25 and 28. 

5) Place the source code and 
documentation of the SAS algorithms 
and PopMedNet query workflow in 
public domain 

Completed 

We placed the source code and user documentation of the 
SAS algorithms on the Sentinel System website at 
https://www.sentinelinitiative.org/sentinel/methods/utilizing-
data-various-data-partners-distributed-manner. PopMedNet 
source code and user documentation can be downloaded 
from https://www.popmednet.org.  

6) Explore the feasibility of performing 
DRA with vertically partitioned data 
in DDNs by developing and testing 
SAS algorithms to perform 
distributed linear regression analysis 
with simulated vertically partitioned 
data 

Completed 

We explored the feasibility of performing linear regression 
analysis with vertical partitioned data in DDNs. We report on 
this exploration on pages 29 to 31 of this report.  

https://www.sentinelinitiative.org/sentinel/methods/utilizing-data-various-data-partners-distributed-manner
https://www.sentinelinitiative.org/sentinel/methods/utilizing-data-various-data-partners-distributed-manner
http://www.popmednet.org/
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V. DISCUSSION 

We have successfully performed automatable DRA in a large DDN with horizontally partitioned data 
using PopMedNet. The process required three steps: 1) assembling a de-identified patient-level analytic 
dataset at each Data Partner, which can be done using a distributed program developed by the analysis 
center, 2) distributing a DRA package developed by the analysis center for iterative local execution at 
each Data Partner, and 3) iteratively transferring intermediate statistics between Data Partners and the 
analysis center until the regression model converges or a pre-specified maximum number of iterations 
has been reached. In our pilot, step 1 of the framework utilized the existing Sentinel query fulfillment 
process to create an analytic dataset and step 2 used the existing PopMedNet query workflow to 
distribute the DRA package.  

Step 3 required enhancement to the current PopMedNet query workflow to support an iterative, 
automatable file transfer process between Data Partners and the analysis center in the form of sub-
query requests and responses embedded within an overall DRA query request. The introduction of 
trigger text files at different steps of the process integrated and automated the PopMedNet-driven file 
transfer process and the SAS-driven analytic process. Overall, this workflow is agnostic to statistical 
software (e.g., SAS and R), accommodates different regression models (e.g., linear, logistic, and Cox), 
and allows different levels of automation (completely manual, semi-automated, and fully automated). 
The source code and documentation for the algorithms and workflow are available for download on the 
Sentinel System website (https://www.sentinelinitiative.org/sentinel/methods/utilizing-data-various-
data-partners-distributed-manner) and PopMedNet website (www.popmednet.org), respectively.[20 39]  

We also successfully developed a preliminary version of the DRA algorithm for linear regression analysis 
in vertically partitioned data and found that vertical DRA followed a similar three-step process 
framework as with horizontally partitioned data. This similarity would allow us to use the PopMedNet 
DRA query workflow to coordinate and automate the transfer of files between the parties involved in 
vertical DRA.  

A. PERFORMANCE OF THE DISTRIBUTED REGRESSION ANALYSIS QUERY WORKFLOW AND 
ALGORITHMS 

We evaluated the operational and statistical performance of the pilot DRA query workflow and DRA 
algorithms in three different phases with four different analytic datasets. All tests produced statistically 
equivalent regression parameter and standard error estimates to those obtained from the pooled 
corresponding patient-level analyses in a simulated DDN test environment and an actual DDN with three 
Sentinel Data Partners.  

With regards to operational performance, our tests with the three Sentinel Data Partners showed that 
DRA could be completed in under 20 minutes, excluding the time required to assemble an analytic 
dataset at each Data Partner. In our test case, two iterations were required to compute the closed-form 
linear regression parameters, and standard errors, while six iterations were required for logistic and Cox 
proportional hazards regression. The file transfer processes accounted for most of the iteration time 
(89%). Our test case also found distributed Cox proportional hazards regression analysis required the 
greatest iteration time and time to perform an end-to-end DRA. This was largely attributed to the time 
needed to download a greater number of files coming from the Data Partners to the analysis center. The 
average iteration time and time for an end-to-end distributed linear and logistic regression were similar. 
This was expected as distributed logistic regression analysis can be viewed as an extension of distributed 
linear regression, with the additional computation of the iteration’s variance and weights, which is 

https://www.sentinelinitiative.org/sentinel/methods/utilizing-data-various-data-partners-distributed-manner
https://www.sentinelinitiative.org/sentinel/methods/utilizing-data-various-data-partners-distributed-manner
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negligible compared to file transfer process time. In practice, the execution time for a given query is 
expected to be dependent on several factors, including the number of Data Partners, the sample size, 
the type of regression model, and the complexity of the model. Indeed, Eman and colleagues reported 
DRA computational time increased with more covariates and Data Partners, and larger analytic datasets 
[40]. Although the actual execution time of future queries will likely be different than what we 
presented here, we expect the relative execution time – most time would be spent on file transfers – 
would be similar in those queries.  

Overall, the performance of the DRA query workflow and algorithms demonstrates the feasibility of 
performing DRA in a large DDN such as Sentinel using PopMedNet. It is technically possible to further 
shorten the time to complete an end-to-end DRA request. However, the time required to execute the 
iterative process, a key component of automatable DRA, is marginal compared to the time needed to 
assemble an analytic dataset and a DRA package. In other words, the total response time for an end-to-
end DRA request is likely comparable to the response time for a typical data request (e.g., a CIDA 
request) in Sentinel and possibly other DDNs if Data Partners grant permission to automate the iterative 
process.  

Importantly, the DRA regression parameters and standard errors computed in our test cases were 
statistically equivalent to those that one would obtain with a pooled patient-level data analysis. Thus, 
the pilot DRA workflow and algorithms allow Data Partners to “share” their information for multi-center 
analysis with much less concern about data security, patient privacy, unapproved uses of data, and 
disclosures of proprietary information.  

B. EXTENSION TO OTHER DISTRIBUTED DATA NETWORKS  

Although we chose to develop this new PopMedNet capability within the Sentinel System, the workflow 
can be generalized to other PopMedNet-based DDNs, such as PCORnet and NIH Collaboratory. Most 
PopMedNet-based DDNs require the same components as Sentinel to fulfill a query: a DMC at each Data 
Partner to receive and respond to query requests, a common folder structure to manage and organize 
query results, and SAS to perform statistical analysis. Most of the Data Partners in other DDNs will likely 
have one of the three major configurations identified among the Sentinel Data Partners. Thus, we 
anticipate that the new DRA capability can be extended to other PopMedNet-based DDNs. Importantly, 
the three Data Partners that participated in this project are also members of other DDNs, such as 
PCORnet, thus the successful pilot of the DRA query workflow within these Data Partners will facilitate 
adoption of DRA in other DDNs. 

Additionally, the workflow has the capability to conduct DRA in three different levels of automation: 
completely manual, semi-automated, and fully automated. However, the degree of automation will 
depend on user acceptability. In our development work survey, we found mixed perspectives towards 
automating part or all of the query workflow, such as automatic file uploads and downloads. Six Data 
Partners would be willing to automate these steps, one would require approval from their technical 
governing board, and eight would not be willing to automate any of these steps. Most Data Partners 
require or prefer the option to review all files prior to upload or download.  

A manual workflow will likely impede routine use of DRA, and Data Partner participation due to its 
tediousness and susceptibility to human error. However, a manual DRA workflow is likely required in 
DDNs wishing to add DRA to their analytic capabilities, or at least available as part of the initial roll-out 
phase to facilitate trust and acceptability. Having an opportunity to review and confirm that the iterative 
process only transfers highly summarized, non-identifiable intermediate statistics may improve Data 
Partners’ willingness to automate DRA.  
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Our three-step framework is also likely generalizable to other DDNs. Previous work on a pilot DRA web-
service, Web Grid Binary LOgistic REgression (WebGLORE), identified four modules (steps) required for 
DRA 1) user registration, 2) initiator task creation, 3) user participation, and 4) collaborative model 
construction [18 19]. Step 1 is generally not required in established DDNs as all Data Partners are 
already registered. Steps 2 and 3 are embedded in step 2 of our framework, and step 4 is synonymous 
with step 3 of our framework.  

To our knowledge, there are no reports of routine DRA in any large DDNs. Previous work has only 
involved simulated or controlled distributed environments [12 14 16 18 19]. Thus, it is difficult to 
compare our DRA workflow with other similar DDNs. However, our computational times are comparable 
to that of a distributed logistic regression analysis in a simulated, horizontally partitioned DDN using the 
Secure Pooled Analysis across K-sites (SPARK) protocol [40]. These authors reported computational time 
ranging from 0.024 to 1.02 minutes at each site with five to 20 covariates. Our computation time fell in 
the lower end of this range with 23 covariates. This difference may be attributed to the authors using 
homomorphic encryption to provide an additional layer of security and larger datasets (100,000 to 1 
million).  

Contrary to the paucity of reports on operational performance of DRA workflows and algorithms, there 
are more studies that have evaluated the statistical performance of DRA. Wu et al used Grid Binary 
LOgistic REgression (GLORE) to perform distributed logistic regression analysis on horizontally 
partitioned data and reported differences in the estimates between the DRA and the pooled data 
analysis as low as 10e-17 [14]. Eman et al’s SPARK protocol reported precision as low as 10e-6 for their 
distributed logistic regression analysis [40]. Lu et al’s performed a distributed Cox proportional hazards 
analysis using Web-based Distributed Cox Regress Model (WebDISCO) and reported precision as low as 
10e-15. Thus, our pilot’s statistical performances are consistent with comparable studies.  

C. LIMITATIONS  

Our pilot is not without limitations. First, we created a DRA workflow in PopMedNet, which may limit its 
use to only those DDNs that employ this data-sharing platform. However, PopMedNet is open source 
and the data-sharing platform used by several large and active DDNs (e.g., Sentinel, PCORnet, and NIH 
Collaboratory). Thus, our work has great potential to directly impact the conduct of large, multi-center 
studies with observational data. Additionally, DRA requires infrastructure and processes beyond 
technology that are more likely available in the aforementioned DDNs. For example, DRA with 
horizontally partitioned data requires harmonized datasets with the same covariates and covariate 
names [19]. Since its inception, Sentinel has continuously enhanced its common data model, routine 
analytic tools, and quality assurance processes. Thus, Sentinel Data Partners can rapidly create 
harmonized patient-level analytic datasets ready for DRA. DDNs without these structures and processes 
may not be able to perform DRA seamlessly even if our DRA workflow was adaptable to other data-
sharing platforms. 

Second, we successfully performed DRA in three Sentinel Data Partners with two different technological 
configurations. It is possible each configuration has additional layers of complexity (e.g., requiring 
authentication to access the network drive in Configuration 2) that were not present during testing. 
There may also be other configurations in Sentinel and other DDNs, making our workflow potentially 
inoperable or incompatible with these configurations. However, we were able to have two Data 
Partners re-configure their hardware configurations to Configurations 1 or 2 for initial development and 
testing. The process was relatively straightforward. Therefore, it is possible to have Data Partners with 
other configurations make relatively minor changes to their settings to facilitate implementation of DRA 
in large DDNs.  
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Lastly, our operational performances were based on a small sample of successful end-to-end tests. To 
increase the number of external tests would require resources beyond the scope of this project. These 
external tests were limited to regression models with 23 covariates, a three-Data Partner DDN, and 
analytic datasets of about 1,000 to 3,000 patients. In our tests, we found transfer time accounted for 
almost 90% of the iteration time and is dictated by the number of files transferred. Larger analytical 
datasets do not directly correlate with a greater number of files needed to transfer. Although we could 
not directly extrapolate our observed execution time to future queries, we expect much of the time to 
be spent on file transfer in those queries.    

D. FUTURE WORK  

To our knowledge, there is no published experience on addressing Data Partners’ computer system 
failures or interruptions between DRA iterations in actual DDNs. The current Sentinel query workflow 
addresses interruptions by terminating the process and re-running the query. This approach is not 
optimal for fully automated DRA, as all Data Partners would have to re-initiate the whole iterative DRA 
workflow. Future enhancements will include the development of new capabilities to automatically 
pause the workflow or restart the analysis from the previous error-free iteration when an interruption 
occurs.  

Future work is also needed to develop analytic algorithms for other more complicated statistical models, 
and more sophisticated model diagnostics that do not require the sharing of patient-level information. 
Thus, enhancements to our workflow to integrate other secure multiparty computation protocols may 
be required [15 40]. Additional work is also needed to stress test the DRA query workflow and SAS 
algorithms in broader and more extreme scenarios. Specifically, DRA requests with a greater number of 
Data Partner sites will need to be evaluated. The impact of larger analytic datasets on the operational 
performance of DRA should also be evaluated.  

Unlike other routinely used privacy preserving analytic methods, DRA with the PopMedNet DRA query 
workflow require semi-synchronous collaboration of the Data Partners. In our tests, we requested the 
three Data Partners to execute the DRA query workflow and SAS algorithms at around the same time 
window. This may be the solution, but may pose some barriers to Data Partners in different time zones 
or Data Partners with different internal workflows. Additional work is required to develop operating 
procedures and policies to address these non-technical barriers to implementing DRA in practice.  

We have developed the DRA capability within horizontally partitioned data environments, a setting in 
which information from different individuals is available in different data sources. We explored and 
tested distributed linear regression analysis in a simulated vertically partitioned data environment. 
Future work should examine other regression models and integrate vertical DRA into the PopMedNet 
DRA query workflow. As vertical DRA assumes the existence of a primary key, additional work is needed 
to facilitate the development of such a key across Data Partners who are interested in using vertical DRA 
in their collaborative studies. 

Although we have developed the DRA algorithms and PopMedNet query workflow to be consistent with 
the existing Sentinel query workflows, additional work is needed to implement DRA in routine Sentinel 
queries. The prototype will need to be tested in all Sentinel Data Partners, which may lead to additional 
enhancements or modifications. The process will also need to include robust user acceptability tests as 
routine implementation of DRA requires automation of the file transfer process, which means that Data 
Partners would forego review of some of the summary-level data files before they are transferred to the 
SOC. Finally, proper documentation about the DRA tool would need to be developed and posted.  
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E. CONCLUSION  

In summary, we have developed a functional prototype for conducting automatable DRA within 
Sentinel, a DDN that uses PopMedNet. The PopMedNet-based DRA query workflow and SAS algorithms 
have the potential to be integrated into Sentinel query fulfillment process for routine use and other 
DDNs.    
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VIII. APPENDICES 

A. DISTRIBUTED REGRESSION ALGORITHM FOR LINEAR AND LOGISTIC REGRESSION  

1. Overview 

Linear and logistic regression models, along with other popular models such as Poisson regression, are 
special cases of generalized linear models (GLMs) [41]. Maximum likelihood estimators of GLM 
regression coefficients can be obtained via an iteratively reweighted least squares (IRLS) algorithm when 
the link function for the GLM is chosen as the canonical link. In this case IRLS is equivalent to Newton-
Raphson [41].   

In this section, we give a distributed version of the IRLS algorithm for GLMs such that individual-level 
data from a given site need not be shared with other sites nor with a central analysis center. We show 
how this distributed algorithm can be implemented with standard SAS procedures.  

 Let 𝐾 denote the number of sites, and 𝑛𝑘 the number of subjects at site = 1,… , 𝐾 . Further 

let(𝑌𝑖,𝑘 , 𝑿𝑖,𝑘 , 𝑤𝑖,𝑘), 𝑖 = 1,… , 𝑛𝑘, denote the observed data for subject i at site k, with 𝑌𝑖,𝑘 the outcome, 

𝑿𝑖,𝑘 a vector of p covariate values for subject i,  and 𝑤𝑖,𝑘 a subject-level weight.  Let 𝒁𝑖,𝑘 = 𝟏||𝑿𝑖,𝑘 and  

𝑁 = ∑ 𝑛𝑘
𝐾
𝑘=1  denote the sum of all observations. The input dataset at site 𝑘 has the following structure: 

𝑤1,𝑘 𝑋1,𝑘,1 … 𝑋1,𝑘,𝑝 𝑌1,𝑘
⋮ ⋮ ⋮ ⋮ ⋮

𝑤𝑁,𝑘 𝑋𝑁,𝑘,1 … 𝑋𝑁,𝑘,𝑝 𝑌𝑁,𝑘

 (1) 

A GLM assumes that  𝑌𝑖,𝑘 is distributed according to an exponential family (e.g. normal, binomial, 

Poisson) with  

𝐸[𝑌𝑖,𝑘|𝐙𝑖,𝑘] = 𝜇(𝜷
𝑻𝐙𝑖,𝑘)  

𝑣𝑎𝑟[𝑌𝑖,𝑘|𝐙𝑖,𝑘] = 𝑣(𝜷
𝑻𝐙𝑖,𝑘) 

where 𝜷  is a p+1 length vector of unknown regression coefficients. Before we consider how to estimate 
𝜷 generally via IRLS in this setting, we first consider the special case where we select the GLM as a linear 

regression model; i.e., where 𝑌𝑖,𝑘 is assumed to follow a normal distribution with 𝜇(𝜷𝑻𝐙𝑖,𝑘) = 𝜷
𝑻𝐙𝑖,𝑘 

and (𝜷𝑻𝐙𝑖,𝑘) = 𝑣 = 𝜎2. It follows from standard theory that a maximum likelihood estimate of 𝜷  in this 

special case can be obtained by solving the (possibly weighted) least squares equations: 

 ∑∑𝑤𝑖,𝑘(𝑌𝑖,𝑘 − 𝜷
𝑇𝐙𝑖,𝑘)𝐙𝑖,𝑘

𝑛𝑘

𝑖=1

𝐾

𝑘=1

= 0 (2) 

with respect to 𝜷 . In this case, an exact solution exists which is: 

 �̂� = (∑𝐙𝑘
𝑇𝐖𝑘𝐙𝑘) (∑𝐙𝑘

𝑇𝐖𝑘𝐘𝑘

𝐾

𝑘=1

) 

−1𝐾

𝑘=1

(3) 

with 𝐘𝑘a vector of length 𝑛𝑘with elements 𝑌𝑖,𝑘, 𝐙𝑘 a matrix of dimension 𝑛𝑘 ∗ (𝑝 + 1) with rows 𝐙𝑖,𝑘 
and 𝐖𝑘 a diagonal matrix of dimension 𝑛𝑘 ∗ 𝑛𝑘 with diagonal elements 𝑤𝑖,𝑘   𝑖 = 1,…𝑛𝑘. Importantly, 

the matrices  𝐙𝑘
𝑇𝐖𝑘𝐙𝑘 and 𝐙𝑘

𝑇𝐖𝑘𝐘𝑘 can be calculated separately at each site 𝑘. These matrices are 
highly summarized and can be brought to the analytic center with minimal privacy risk. For example, the 
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dimension of 𝐙𝑘
𝑇𝐖𝑘𝐙𝑘 is (p + 1) ∗ (p + 1) which is much smaller than the dimension of individual level 

matrix 𝐙𝑘   ( 𝑛𝑘 ∗ (𝑝 + 1) ). 

From a computational point of view, it is rather inefficient to calculate expressions like 𝐙𝑘
𝑇𝐖𝑘𝐙𝑘 and 

𝐙𝑘
𝑇𝐖𝑘𝐘𝑘 as written because this requires transposing a large matrix 𝐙𝑘. A more efficient way of 

calculating the above expressions is by calculating them as weighted cross products of columns. Let us 
define a function 𝑺𝑺𝑪𝑷(𝐀 ,𝐖) of matrix A with arbitrary dimensions and diagonal matrix W of 
dimension 𝑟 ∗ 𝑟 (with 𝑟 the number of rows of A) as follow: 

 (𝑺𝑺𝑪𝑷(𝐀 ,𝐖))
𝑠,𝑠′

=∑ 𝑤𝑖
𝑖
𝐴𝑖,𝑠 𝐴𝑖,𝑠′ =∑ 𝑤𝑖(𝑨

𝑇)𝑠,𝑖
𝑖

𝐴𝑖,𝑠′ = (𝐀
𝑇𝐖𝐀)𝑠,𝑠′  (4) 

Here 𝑠 and 𝑖 are indices for a column and a row of matrix 𝐀, respectively. The function 𝑺𝑺𝑪𝑷 (Sum of 
Squares and Cross Products) is similar to a covariance function except that one does not need to 
subtract the column mean before multiplying columns. In SAS, the sums of squares and cross products 
(SSCP) matrix can be easily calculated using PROC CORR with option SSCP. 

We can calculate matrices 𝐙𝑘
𝑇𝐖𝑘𝐙𝑘 and 𝐙𝑘

𝑇𝐖𝑘𝐘𝑘 by applying the 𝑺𝑺𝑪𝑷 function to a matrix that 
concatenates the columns of 𝐙𝑘 and 𝐘𝑘:   

𝑺𝑺𝑪𝑷(𝐙𝑘  ||𝒀𝑘 ,𝐖𝑘) = (

∑ 𝑤𝑖,𝑘𝒁𝒊,𝒌 
𝑻  𝐙𝑖,𝑘

𝑖
∑𝑤𝑖,𝑘𝒁𝒊,𝒌 

𝑻 𝑌𝑖,𝑘
𝑖

∑𝑤𝑖,𝑘𝐙𝑖,𝑘𝑌𝑖,𝑘
𝑖

∑𝑤𝑖,𝑘𝑌𝑖,𝑘
2  

𝑖

) (5) 

Each 𝑺𝑺𝑪𝑷(𝐙𝑘  ||𝒀𝑘 ,𝐖𝑘) in (5) can be easily computed at site k from the individual-level data at that 
site. These highly summarized data sets can then be transferred to the analytic center to compute the 
combined SSCP dataset: 

𝑺𝑺𝑪𝑷(𝐙 ||𝒀,𝐖) =∑𝑺𝑺𝑪𝑷(𝐙𝑘  ||𝒀𝑘,𝐖𝑘)

𝑘

 (6) 

The dataset in (6) is created with the property TYPE explicitly set to SSCP (the property TYPE is a part of a 
SAS dataset metadata). This dataset can then be fed directly into the REG procedure in lieu of an 
individual level dataset to obtain the solution (3). Once the combined SSCP matrix is fed into PROC REG 
at the analytic center, the procedure automatically calculates many desired statistics. These include, not 

only regression coefficient estimates  �̂�, but also the variance estimate  

�̂�2 =
1

𝑁 − 𝑝
∑[∑ 𝑤𝑖,𝑘(𝑌𝑖𝑘 − �̂�

𝑻𝒁𝑖,𝑘)
2𝑛𝑘

𝑖=1
]

𝐾

𝑘=1

 (7) 

inverse matrix (𝐙𝑇𝐖𝐙 )−1 and the estimated covariance matrix  

𝑐𝑜�̂�(�̂�) = �̂�2 (𝐙𝑇𝐖𝐙)−𝟏 (8) 

along with collinearity diagnostic and a number of goodness of fit measures. 
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The above procedure is a special case of a more general IRLS algorithm for estimating the regression 

parameter 𝜷 of a GLM. This general algorithm allows alternative choices of distribution, 𝜇(𝜷𝑇𝐙𝑖,𝑘) and  

𝑣(𝜷𝑇𝐙𝑖,𝑘). For example, logistic regression is a GLM under a binomial outcome distribution with  

𝜇(𝜷𝑇𝐙𝑖,𝑘)=
exp(𝜷𝑇𝐙𝑖,𝑘)

1+exp(𝛽𝑇𝐙𝑖,𝑘)
 ; 𝑣(𝜷𝑇𝐙𝑖,𝑘) = 𝜇(𝜷

𝑇𝐙𝑖,𝑘)[1 − 𝜇(𝜷
𝑇𝐙𝑖,𝑘)]. Poisson regression is another 

example under a Poisson outcome distribution with 𝜇(𝜷𝑇𝐙𝑖,𝑘) = exp (𝜷
𝑇𝐙𝑖,𝑘) and  

𝑣(𝜷𝑇𝐙𝑖,𝑘)= 𝜇(𝜷
𝑇𝐙𝑖,𝑘). For any canonical link 𝜈 = 𝜇′ = 𝑑𝜇(𝜷𝑇𝐙𝑖,𝑘)/𝑑(𝜷

𝑇𝐙𝑖,𝑘) 

Unlike the special case of linear regression, IRLS for fitting a general GLM does not have an exact 
solution but iterates until convergence. Specifically, at each iteration m+1 until a convergence criterion 
is met, IRLS solves: 

∑∑�̃�𝑖,𝑘(�̃�𝑖,𝑘 − 𝜷𝑚+1
𝑻 𝐙𝑖,𝑘)𝐙𝑖,𝑘

𝑛𝑘

𝑖=1

𝐾

𝑘=1

= 0 (9) 

for 𝜷𝑚+1 where 

�̃�𝑖,𝑘(𝜷𝑚
𝑻 ) ≡ 𝑤𝑖,𝑘𝜈(𝜷𝑚

𝑻 𝐙𝑖,𝑘), (10) 

�̃�𝑖,𝑘(𝜷𝑚
𝑻 ) ≡

𝑌𝑖,𝑘 − 𝜇(𝜷𝑚
𝑻 𝐙𝑖,𝑘)

𝜈(𝜷𝑚
𝑻 𝐙𝑖,𝑘)

+ 𝜷𝑚
𝑻 𝐙𝑖,𝑘  (11) 

and 𝜷𝑚the solution from the previous iteration 𝑚 (with 𝛃0specified starting values). Both the redefined 

weight and outcome in (10) and (11), respectively, change at each iteration, but the covariate vector 𝐙𝑖,𝑘
𝑇  

remains the same. For the special case of linear regression �̃�𝑖,𝑘 = 𝑌𝑖,𝑘 and �̃�𝑖,𝑘 = 𝑤𝑖,𝑘 and thus do not 
depend on 𝜷𝑚. As expected, the algorithm reduces to standard linear regression that does not require 
iterative process.  

In the more general case, the following describes a general implementation of IRLS to obtain an 
estimate of the regression coefficient 𝜷 of a GLM using SSCP matrices and PROC REG in SAS. The 
resulting estimate is an MLE under distributional assumptions. This algorithm is implemented in the 
macro %distributed_regression which we describe in the next section.  

1) For each iteration 𝑚 + 1 at each site k calculate the SSCP matrix  

𝑺𝑺𝑺𝑪𝑷(𝐙𝑘  ||�̃�𝑘𝑚(𝜷𝒎), �̃�𝑘𝑚 (𝜷𝒎) 

Bring these SSCP matrices from each site to the analytic center and calculate the combined SSCP matrix: 

𝑺𝑺𝑪𝑷(𝐙 ||�̃�𝑚(𝜷𝒎), �̃�𝑚(𝜷𝒎)) = ∑𝑺𝑺𝑺𝑪𝑷(𝐙𝑘  ||�̃�𝑘𝑚(𝜷𝒎), �̃�𝑘𝑚 (𝜷𝒎)

𝑘

 (12) 

2) Feed the combined SSCP matrix from (12) into PROC REG to solve for 𝜷𝑚+1 

3) Repeat until convergence is achieved (see below).  On the iteration 𝑚 + 1  that meets the 

convergence criterion, �̂� = 𝜷𝑚+1 

After convergence is achieved, an additional iteration of steps 1-3 will output the inverse of the matrix  

𝐙𝑇�̃� (�̂�)𝐙 . The extra iteration is necessary because at iteration  𝑚 + 1 we do not know the 

matrix 𝐙𝑇�̃� (𝜷𝒎+𝟏)𝐙. We only know the matrix 𝐙𝑻�̃� (𝜷𝒎)𝐙 . Note that for linear regression the 
weight does not depend on 𝜷  and the extra step is not necessary.  
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The covariance matrix can be calculated as: 

𝑐𝑜�̂�(�̂�) = 𝐇−𝟏(�̂�) = 𝜙 [∑∑𝑤𝑖,𝑘𝜇
′(�̂�𝑻𝐙𝑖,𝑘)𝐙𝑖,𝑘𝐙𝑖,𝑘

𝑇

𝑛𝑘

𝑖=1

𝐾

𝑘=1

]

−1

= 𝜙 (𝐙𝑇�̃�(�̂�)𝐙)
−𝟏

 (13) 

where 𝐇(𝜷) = −
𝜕2𝑙

𝜕𝜷𝜕𝜷𝑇
  is the Hessian matrix defined by  

𝐇(𝜷) = ∑∑𝑤𝑖,𝑘
𝜇′(𝜷𝑇𝐙𝑖,𝑘)

𝜙
𝐙𝑖,𝑘𝐙𝑖,𝑘

𝑇

𝑛𝑘

𝑖=1

𝐾

𝑘=1

 (14) 

and  𝜙 a constant; for linear regression 𝜙 =�̂�2;  for logistic and Poisson regression 𝜙 =1. The above 

expression for 𝑐𝑜�̂�(𝜷)̂ requires that the assumed probability distribution is correctly specified. The 
alternative sandwich variance estimator is robust to this assumption: 

 𝑐𝑜�̂�(�̂�) = 𝐇−𝟏𝑯𝟏𝐇
−𝟏 (15) 

Where 𝐇 (𝜷) is as in 14 and the matrix  𝑯𝟏(𝜷)̂can be calculated as: 

𝑯𝟏(�̂�) =
𝑁

𝑁 − 𝑝
∑∑

𝑤𝑖,𝑘
2 (𝑌𝑖,𝑘 − 𝜇(�̂�

𝑇𝐙𝑖,𝑘))
2

𝜙2

𝑛𝑘

𝑖=1

𝐙𝑖,𝑘𝐙𝑖,𝑘
𝑇

𝐾

𝑘=1

 (16) 

The factor 
𝑁

𝑁−𝑝
 corresponds to the definition HC1 for the robust estimator for linear regression in PROC 

REG. The expression can be evaluated at each site as  𝑺𝑺𝑪𝑷(𝐙𝑘 ,𝐖𝐤
𝐇) where diagonal matrix of weights 

𝐖𝐤
𝐇 has elements: 

𝑤𝑖,𝑘
𝐻 =

𝑤𝑖,𝑘
2 (𝑌𝑖,𝑘 − 𝜇(�̂�

𝑇𝐙𝑖,𝑘))
2

𝜙2
 (17) 

After matrices 𝑺𝑺𝑪𝑷(𝐙𝑘 ,𝐖𝐤
𝐇) are brought to the analytic center the matrix 𝑯𝟏 can be calculated as a 

sum of these matrices: 

 𝑯𝟏 =∑𝑺𝑺𝑪𝑷(𝐙𝑘 ,𝐖𝐤
𝐇)

𝑘

 (18) 

Once the covariance matrix 𝑐𝑜�̂�(�̂�) is calculated, the standard errors of �̂� can be calculated by taking a 
square root of corresponding diagonal elements of the matrix.  

2. Convergence criteria 

We use the relative convergence criteria which is identical to the SAS relative convergence criteria 
specified by option XCONV. Let 𝛽𝑠

𝑚 𝑚  be the estimate of the parameter 𝑠 = 1,… , 𝑝 + 1 at iteration 𝑚.  

The regression criterion is satisfied if: 

maxs|𝛿𝑠
𝑚+1| < 𝑥𝑐𝑜𝑛𝑣_𝑣𝑎𝑙𝑢𝑒 

where 
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            𝛿𝑠
𝑚+1 = {

𝛽𝑠
𝑚+1 − 𝛽𝑠

𝑚 ,   |𝛽𝑠
𝑚| < 0.01

𝛽𝑠
𝑚+1−𝛽𝑠

𝑚

𝛽𝑠
𝑚  , 𝑒𝑙𝑠𝑒

 

B. DISTRIBUTED COX PROPORTIONAL HAZARD REGRESSION ANALYSIS SPECIFICATIONS 

1. Overview 

In this appendix, we describe the underlying algorithm implemented by our DRA application, which is a 
distributed version of the Newton-Raphson algorithm implemented to solve for the parameter 
estimates of a stratified Cox model based on the Breslow approximation to the partial likelihood for tied 
event times [42]. The algorithm fits a non-stratified Cox model when the number of strata is set to 1. 
This algorithm avoids sharing individual-level data by a given Data Partner with other sites and with the 
analysis center. As described in Appendix C, our algorithm can also implement the Efron approximation 
[43].  

For   𝑘 = 1,… , 𝐾, 𝑚 = 1,… ,𝑀, and 𝑖 = 1,… ,𝑁𝑚,𝑘, let 𝐾 denote the number of sites, 𝑀 the number of 

strata, and  𝑁𝑚,𝑘 the number of subjects at site 𝑘 in strata 𝑚. Suppose, among all 𝑁𝑚 = ∑ 𝑁𝑚,𝑘
𝐾
𝑘=1  

patients in strata 𝑚, there are 𝐽𝑚 unique event times, 𝑡𝑚,1 < 𝑡𝑚,2 < ⋯ < 𝑡𝑚,𝐽𝑚. Denote 

(𝑤𝑖,𝑚,𝑘, 𝑇𝑖,𝑚,𝑘 ,Δ𝑖,𝑚,𝑘 , 𝒁𝑖,𝑚,𝑘) as the observed data for subject 𝑖 at site 𝑘 in stratum 𝑚, with 𝑇𝑖,𝑘,𝑚 

representing the observed follow-up time, Δ𝑖,𝑚,𝑘 the censoring indicator (1 if 𝑇𝑖,𝑚,𝑘 corresponds to the 
event time and 0 if the censoring time),  𝑤𝑖,𝑚,𝑘 an individual-level weight and 𝒁𝑖,𝑚,𝑘 a  𝑝 ∗ 1 vector of 

covariates. Define 𝑑𝑚,𝑗 = ∑ ∑ 𝐼(𝑇𝑖,𝑚,𝑘 = 𝑡𝑚,𝑗,Δ𝑖,𝑚,𝑘 = 1)
𝑁𝑚,𝑘
𝑖=1

𝐾
𝑘=1  as the number of events at time 𝑡𝑚,𝑗 

from all sites. Here the function 𝐼(𝑎 = 𝑏, 𝑐 = 𝑑,… ) is defined to be equal to 1 when all conditions are 
true and 0 otherwise. 

The input dataset at site 𝑘 has the following structure for stratum 𝑚:  

𝑤1,𝑚,𝑘 𝑇1,𝑚,𝑘 𝑍1,𝑚,𝑘,1 … 𝑍1,𝑚,𝑘,𝑝 Δ1,𝑚,𝑘
⋮ ⋮ ⋮ ⋮ ⋮ ⋮

𝑤𝑁𝑚,𝑘,𝑚,𝑘 𝑇𝑁𝑚,𝑘,𝑚,𝑘 𝑍𝑁𝑚,𝑘,𝑚,𝑘,1 … 𝑍𝑁𝑚,𝑘,𝑚,𝑘,𝑝 Δ𝑁𝑚,𝑘,𝑚,𝑘

 (19) 

Under a stratified Cox model, the hazard function for subjects at site 𝑘 within stratum 𝑚 for covariate 
level 𝒁𝑖,𝑚,𝑘  is assumed to have the following form: 

ℎ𝑚(𝑡|𝒁𝑖,𝑚,𝑘) = exp(𝜷
𝑇𝒁𝑖,𝑚,𝑘) ℎ𝑚

(0)(𝑡) (20) 

where 𝜷 is an unknown 𝑝 ∗ 1 vector of regression coefficients. In the special case of 𝑀 = 1,  the model 
in Equation (2) reduces to a non-stratified Cox model. Another important special case occurs when Data 
Partner identifier is one of the stratification variables. We consider this case further below.   

We use a Newton-Raphson algorithm to calculate the partial likelihood estimator of the regression 

coefficients 𝜷. To apply this algorithm in DDNs, the log-likelihood 𝑙(𝜷), gradient 𝒈(𝜷) =
𝜕𝑙(𝜷)

𝜕𝜷
, and the 

Hessian matrix 𝑯(𝜷) =
𝜕2𝑙(𝜷)

𝜕𝜷𝜕𝜷𝑇
 must be expressed in terms of aggregated quantities from each Data 

Partner. Let’s first define the quantities that have to be calculated at each site 𝑘 in each stratum 𝑚.   

Define: 
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𝒅𝑚,𝑗,𝑘
(𝑙)

= ∑ 𝐼(𝑇𝑖,𝑚,𝑘 = 𝑡𝑚,𝑗,Δ𝑖,𝑚,𝑘 = 1)

𝑁𝑚,𝑘

𝑖=1

𝑤𝑖,𝑚,𝑘𝒁𝑖,𝑚,𝑘
𝑙  (21) 

𝑺𝑚,𝑗,𝑘
(𝑙)

(𝜷) = ∑ 𝐼(𝑇𝑖,𝑚,𝑘 ≥ 𝑡𝑚,𝑗)

𝑁𝑚,𝑘

𝑖=1

𝑤𝑖,𝑚,𝑘 exp(𝜷
𝑇𝒁𝑖,𝑚,𝑘)𝒁𝑖,𝑚,𝑘

𝑙  (22) 

Where 𝑙 = 0,1 for 𝒅𝑚,𝑗,𝑘
(𝑙)

 and 𝑙 = 0,1, 2 for 𝑺𝑚,𝑗,𝑘
(𝑙)

(𝜷),   𝒁𝑖,𝑚,𝑘
0 = 1,  𝒁𝑖,𝑚,𝑘

1 = 𝒁𝑖,𝑚,𝑘  , 𝒁𝑖,𝑚,𝑘
2 =

𝒁𝑖,𝑚,𝑘  𝒁
𝑻
𝑖,𝑚,𝑘 such that 𝒅𝑚,𝑗,𝑘

(𝑙)
 and 𝑺𝑚,𝑗,𝑘

(𝑙)
(𝜷) are scalars when 𝑙 = 0, vectors with dimension 𝑝 when 𝑙 =

1 and  𝑺𝑚,𝑗,𝑘
(2)

(𝜷)  is a matrix with dimensions 𝑝 ∗ 𝑝 when 𝑙 = 2 .   

Below we use a notation in which an absence of an index in a matrix implies summation over that index. 
For example, 

𝒅𝑚,𝑗
(𝑙)
 = ∑ 𝒅𝑚,𝑗,𝑘

(𝑙)
𝑘    𝑺𝑚,𝑗

(𝑙)
= ∑ 𝑺𝑚,𝑗,𝑘

(𝑙)
𝑘  (23) 

Note, that when the list of stratification variables (index 𝑚) includes a Data Partner identifier 
represented by index 𝑘, the summation over 𝑘 does not change the results in Equation (23) because 
there is only one possible value of 𝑘 at a given 𝑚. However, in the more general case, summation over 
site index 𝑘 is necessary.  

The log-likelihood 𝑙(𝜷), gradient 𝒈(𝜷) and the Hessian matrix 𝑯(𝜷) can be written in terms of these 
summarized quantities: 

     𝑙(𝜷) = ∑ 𝑙𝑚(𝜷)
𝑀
𝑚=1  𝒈(𝜷) = ∑ 𝒈𝑚(𝜷)

𝑀
𝑚=1     𝑯(𝜷) = ∑ 𝑯𝑚(𝜷)

𝑀
𝑚=1  (24) 

where 

𝑙𝑚(𝜷) =∑{𝜷𝑇𝒅𝑚,𝑗
(𝟏)
 − 𝑑𝑚,𝑗

(0)
log 𝑆𝑚,𝑗

(0)(𝜷) }

𝑗

 (25) 

𝒈𝑚(𝜷) =  ∑{𝒅𝑚,𝑗
(𝟏)
− 𝑑𝑚,𝑗

(0)
 
𝑺𝑚,𝑗
(1)
(𝜷)

𝑆𝑚,𝑗
(0)(𝜷)

}

𝑗

 (26) 

𝑯𝑚(𝜷) = −∑𝑑𝑚,𝑗
(0)
  {
𝑺𝑚,𝑗
(2)
(𝜷)

𝑆𝑚,𝑗
(0)(𝜷)

−
𝑺𝑚,𝑗
(1)
(𝜷) ∗ [𝑺𝑚,𝑗

(1)
(𝜷)]

𝑻

[𝑆𝑚,𝑗
(0)(𝜷)]

2 }

𝑗

 (27) 

 

In general, these representations imply that the Newton-Raphson algorithm can be executed such that 

the summarized matrices 𝒅𝑚,𝑗,𝑘
(𝑙)

 and 𝑺𝑚,𝑗,𝑘
(𝑙)

(𝜷) are computed at each Data Partner site and transferred 

to the analysis center. The size of a dataset to store these matrices for all 𝑗 depends on the number of 

event times 𝐽𝑚 for stratum 𝑚. For example, the dataset to store all matrices 𝑺𝑚,𝑗,𝑘
(2)

(𝜷) for stratum 𝑚 

has  𝑝 ∗ 𝑝 ∗ 𝐽𝑚 data elements. This can result in the need to transfer a significant amount of data when 
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the number of event times is large. There may also be a significant risk from a privacy perspective 
because the number of observations contributing to the computations for each event time can be small.  

However, the calculations can be done much more efficiently and with much smaller privacy risk when 
one stratifies on a set of variables that includes the Data Partner identifier. In multi-database studies, a 
stratified Cox model, stratified by Data Partner identifier, is more realistic than assuming a common 
baseline hazard function for all Data Partners. In this case, the summation over time event index 𝑗 in 
Equations (25) – (27) can be done at the Data Partners, resulting in the transfer of much smaller datasets 
to the analysis center. Specifically, only a dataset with matrices 𝑙𝑚(𝜷), 𝒈𝑚(𝜷), and 𝑯𝑚(𝜷), which are 
not dependent on the number of events times, need to be transferred to the analysis center. For 
example, the contribution to the Hessian matrix 𝑯𝑚(𝜷) has dimension 𝑝 ∗ 𝑝.   

The partial likelihood estimator of 𝜷 is obtained by the Newton-Raphson algorithm, which on each 
iteration 𝑛 solves:   

−𝑯(𝜷𝑛)(𝜷𝑛+1 − 𝜷𝑛) = 𝒈(𝜷𝑛) (28) 

for 𝜷𝑛+1 such that 

𝜷𝑛+1 = 𝜷𝑛 −𝑯
−𝟏(𝜷𝑛)𝒈(𝜷𝑛) (29) 

based on an initial starting value 𝜷0 and iterating until a convergence criterion is met. Our goal is to 
solve these equations using only Base SAS and SAS/STAT modules as the SAS matrix manipulation 
module SAS/IML is licensed separately. From a computational perspective, the main challenge for 
solving Equation (28) for 𝜷𝑛+1 is matrix inversion. Below we will illustrate how PROC REG (part of the 
SAS/STAT modules) can be used to solve the system of the Newton-Raphson linear Equation (28). Let us 
consider a system of linear equations  

𝐴𝒃 = 𝐜 (30) 

where 𝐀 is a symmetric, positive definite matrix with dimensions 𝑝 ∗ 𝑝, 𝑐 is a vector with dimension 𝑝 
and 𝑏, an unknown coefficient vector. PROC REG can be used to solve a system of linear equations of 
the form of Equation (30) for 𝒃 by passing in a SSCP TYPE dataset in the form of: 

𝑺𝑺𝑪𝑷 = (𝑨 𝐜𝐓

𝐜 𝑐𝑜𝑛𝑠𝑡
) (31) 

When we pass a dataset in the form of Equation (31) into PROC REG, the solution to the system of linear 

equations of the form of Equation (30), is  𝒃 = 𝐀−𝟏 𝐜 which can be obtained by specifying the output 
dataset option in the PROC REG procedure. The diagonal element 𝑐𝑜𝑛𝑠𝑡 in row 𝑝 + 1 and column 𝑝 + 1 
only affects the “regression” R-squared and has no effect on deriving 𝒃. We use a very large number for 
this diagonal element (𝑐𝑜𝑛𝑠𝑡 = 1012) to ensure that PROC REG does not produce a note in the log that 
R-squared is negative. 

In our companion paper [44], we showed how this general capability of PROC REG with input dataset 
TYPE=SSCP can be used to implement linear regression and iteratively reweighted least squares for 
generalized linear models without the need for PROC IML. Although we cannot use iteratively 
reweighted least squares for Cox regression, we can exploit the capability of PROC REG to solve a system 
of linear equations. Specifically, the gradient vector 𝒈(𝜷𝑛) has length 𝑝 and the negative of the Hessian 
matrix 𝐇 = −𝐈 is symmetric and positive definite with dimension ∗ 𝑝 , which is close to the partial 
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likelihood estimate �̂�. Thus, we can use the above described approach to solve the Newton-Raphson 
Equation (28) by setting 𝐀 = 𝐈(𝜷𝑛) = −𝑯(𝜷𝑛) and 𝐜 = 𝒈(𝜷𝑛). For a given iteration 𝑛, the solution 
produced by PROC REG is:  

𝒃𝑛 = 𝐈
−𝟏(𝜷𝑛)𝒈(𝜷𝑛)    (32) 

where 𝒃𝑛  = 𝜷𝑛+1 − 𝜷𝑛. Using this solution, the next iteration of 𝜷𝑛+1 can be computed as: 

𝜷𝑛+1 = 𝜷𝑛 + 𝒃𝑛 (33) 

In addition to coefficients 𝒃𝑛, PROC REG also outputs the inverse,  𝐈−𝟏. The value of the matrix 𝐈−𝟏(𝜷) =

−
𝜕2𝑙(𝜷)

𝜕𝜷𝜕𝜷𝑇
 evaluated at the final partial likelihood estimate 𝜷 = �̂� gives us the estimated covariance 

matrix:  

𝑐𝑜�̂�(�̂�) = 𝐈−𝟏(�̂�) 

Below we summarize our computational algorithm. The algorithm uses two different computational 
paths, which we refer to as Case (a) and Case (b). Case (a) is implemented when the user specifies a 
stratified Cox model (𝑀 >  1) and the Data Partner identifier variable dp_cd is included in the list of 
stratification variables. Case (b) is implemented when the user specifies a non-stratified Cox model 
(𝑀 = 1), or a stratified Cox model (𝑀 > 1) but the Data Partner identifier variable dp_cd is not 
included in the list of stratification variables.   

4) For each iteration 𝑛 + 1 at each Data Partner site 𝑘, calculate matrices  𝒅𝑚,𝑗,𝑘
(𝑙) (𝜷𝑛) and 𝑺𝑚,𝑗,𝑘

(𝑙)
(𝜷𝑛) 

using Equations (21) and (22) based on initial starting value 𝜷0. 

For Case (a): Calculate stratum-specific contributions to the log-likelihood 𝑙𝑚(𝜷𝑛), gradient 
𝒈𝑚(𝜷𝑛), and Hessian matrix 𝑯𝑚(𝜷𝑛) using Equations (25)- (27). In this case, these 
contributions can be calculated separately at each site and transferred to the analysis center, 
because the variable dp_cd is a stratification variable.  

For Case (b): Bring matrices 𝒅𝑚,𝑗,𝑘
(𝑙) (𝜷𝑛) and 𝑺𝑚,𝑗,𝑘

(𝑙)
(𝜷𝑛) from each site 𝑘 to the analysis center. 

5)  For each iteration 𝑛 + 1 at the analysis center. 

For Case (a): Sum the stratum-specific contributions 𝑙𝑚(𝜷𝑛), 𝒈𝑚(𝜷𝑛), and  𝑯𝑚(𝜷𝑛) to obtain 
the log-likelihood 𝑙(𝜷𝑛), gradient 𝒈(𝜷𝑛), and Hessian matrix 𝑯(𝜷𝑛) using Equation (24). 

For Case (b): Sum contributions from all sites to obtain 𝒅𝑚,𝑗
(𝑙)

 and 𝑺𝑚,𝑗
(𝑙)

 using Equation (23). 

Calculate the stratum-specific contributions to the log-likelihood 𝑙𝑚(𝜷𝑛), gradient 𝒈𝑚(𝜷𝑛), and 
Hessian matrix 𝑯𝑚(𝜷𝑛) using Equations (25) - (27).  Then sum the stratum-specific 
contributions 𝑙𝑚(𝜷𝑛), 𝒈𝑚(𝜷𝑛), and  𝑯𝑚(𝜷𝑛) to obtain the log-likelihood 𝑙(𝜷𝑛), 
gradient 𝒈(𝜷𝑛), and Hessian matrix 𝑯(𝜷𝑛) using Equation (24). 

6) At the analysis center, construct the SSCP matrix as shown in Equation (31) using 𝐀 = 𝐈(𝜷𝑛) =
−𝑯(𝜷𝑛) and 𝐜 = 𝒈(𝜷𝑛) and solve the system of linear equations of the form in Equation (30) using 
PROC REG as described above. This involves a series of steps implemented in the utility macro 
%solve_linear_equations_reg (part of the package for the analysis center). The macro takes 
datasets with 𝐈(𝜷𝑛) and 𝒈(𝜷𝑛) as inputs, constructs the appropriate SSCP-type dataset, feeds it into 
PROC REG, and outputs two datasets: one with the solution to the Newton-Raphson equation for 
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𝒃𝑛 = 𝜷𝑛+1 − 𝜷𝑛 and one containing the inverse matrix 𝐈−𝟏(𝜷𝑛). The latter is only used in the final 
iteration to estimate the covariance matrix.  

7) Repeat steps 1 to 3 until convergence is achieved at the iteration 𝑛 + 1 that meets the convergence 

criterion, �̂� = 𝜷𝑛+1 

After convergence is achieved, an additional iteration of steps 1 to 4 is necessary to calculate the 

covariance matrix of parameter estimates 𝑐𝑜�̂�(�̂�) = 𝐈−𝟏(𝜷𝑛+1). The additional iteration is required 

because at iteration 𝑛 we do not know the matrix 𝐈(𝜷𝑛+1), we only know the matrix 𝐈(𝜷𝑛).  

2. Residuals and Survival Function 

Akaike Information Criterion is defined as: 

𝐴𝐼𝐶 = −2𝑙(�̂�) + 2𝑝 (34) 

Bayesian Information Criterion is defined as: 

𝐵𝐼𝐶 = −2𝑙(�̂�) + 𝑝 ln (∑ Δ𝑖,𝑚,𝑘
𝑖,𝑚,𝑘

) (35) 

Estimators for cumulative baseline hazard function (minus log of baseline survival function). 

Breslow estimator: 

ℎ𝑐𝑢𝑚
(𝑚,0)(𝑇) =  ∑ 

𝑑𝑚,𝑗

𝑆𝑚,𝑗
𝒋

 𝐼(𝑇 ≥ 𝑡𝑚,𝑗) (36) 

Fleming-Harrington Estimator for Efron approximation: 

ℎ𝑐𝑢𝑚
(𝑚,0)(𝑇) =  ∑∑  

𝑑𝑗,𝑚

𝑠=1

 
1

𝑆𝑚,𝑗,𝑠
(𝐸)

𝒋

 𝐼(𝑇 ≥ 𝑡𝑚,𝑗) (37) 

Note that both cumulative baseline hazard estimators change only at event times 𝑇 = 𝑡𝑚,𝑗 and stay 

constant in between event times. 

Cumulative hazard function (minus log of survival function): 

ℎ𝑐𝑢𝑚
𝑚 (𝑇𝑖,𝑚,𝑘 , 𝜷

𝑇𝒁𝑖,𝑚,𝑘) = exp(𝜷
𝑇𝒁𝑖,𝑚,𝑘) ℎ𝑐𝑢𝑚

(𝑚,0)
(𝑇𝑖,𝑚,𝑘) (38) 

Survival function: 

𝑆𝑠𝑢𝑟𝑣
𝑚 (𝑇𝑖,𝑚,𝑘) = exp (−ℎ𝑐𝑢𝑚

𝑚 (𝑇𝑖,𝑚,𝑘 , 𝜷
𝑇𝒁𝑖,𝑚,𝑘))  (39) 

Martingale residuals: 

𝑀𝑖,𝑚,𝑘 = Δ𝑖,𝑚,𝑘 − ℎ𝑐𝑢𝑚
𝑚 (𝑇𝑖,𝑚,𝑘, 𝜷

𝑇𝒁𝑖,𝑚,𝑘) (40) 

Deviance residuals: 
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𝐷𝑖,𝑚,𝑘 = 𝑠𝑖𝑔𝑛(𝑀𝑖,𝑚,𝑘)√2[−𝑀𝑖,𝑚,𝑘− Δ𝑖,𝑚,𝑘,𝑙𝑜𝑔(Δ𝑖,𝑚,𝑘 − 𝑀𝑖,𝑚,𝑘 )] (41) 

It is useful to plot Martingale or Deviance residuals against  𝜷𝑇𝒁𝑖,𝑚,𝑘 or some continuous independent 
variable using some smoothing algorithm (Loess, average by some interval). The random scatter plot 
around 0 with no trend indicates that linear assumption for the log of hazard as function of independent 
variables is reasonable. 

C. EFRON APPROXIMATION FOR COX DISTRIBUTED REGRESSION ANALYSIS 

The Efron approximation provides a correction to the Breslow approximation when there are a relatively 

large number of ties. For this approximation, in addition to site-specific matrices 𝒅𝑚,𝑗,𝑘
(𝑙) (𝜷𝑛) and 

𝑺𝑚,𝑗,𝑘
(𝑙)

(𝜷𝑛) defined in the context of the Breslow approximation in Appendix B, one also needs to also 

calculate the following matrices: 

𝑸𝑚,𝑗,𝑘
(𝑙)

(𝜷) = ∑  𝐼(𝑇𝑖,𝑚,𝑘 = 𝑡𝑚,𝑗,Δ𝑖,𝑚,𝑘 = 1)

𝑛𝑚,𝑘

𝑖=1

𝑤𝑖,𝑚,𝑘 exp(𝜷
𝑇𝒁𝑖,𝑚,𝑘)𝒁𝑖,𝑚,𝑘

𝑙  

(42) 

𝑸𝑚,𝑗,𝑘
(𝑙)

(𝜷) = ∑  𝐼(𝑇𝑖,𝑚,𝑘 = 𝑡𝑚,𝑗,Δ𝑖,𝑚,𝑘 = 1)

𝑛𝑚,𝑘

𝑖=1

𝑤𝑖,𝑚,𝑘 exp(𝜷
𝑇𝒁𝑖,𝑚,𝑘

𝑙 ) 

where, for 𝑙 = 0,1,2,  𝒁𝑖,𝑚,𝑘
0 = 1,  𝒁𝑖,𝑚,𝑘

1 = 𝒁𝑖,𝑚,𝑘  , 𝒁𝑖,𝑚,𝑘
2 = 𝒁𝑖,𝑚,𝑘 𝒁

𝑻
𝑖,𝑚,𝑘. such that 𝑸𝑚,𝑗,𝑘

(𝑙)
(𝜷) is a scalar 

when 𝑙 = 0, a vector with dimension 𝑝 when 𝑙 = 1 and a matrix with dimensions 𝑝 ∗ 𝑝 when 𝑙 = 2.  

In the formulas below, a variable without a subscript implies a sum over that subscript. In particular, the 
absence of the k index implies summation over all Data Partners. For example: 

𝑸𝑚,𝑗
(𝒍)
(𝜷) =∑  𝑸𝑚,𝑗,𝑘

(𝑙)

𝑘
(𝜷) (43) 

We also define the following additional matrices: 

𝑺𝑚,𝑗,𝑘,𝑠
(𝑙,𝐸) (𝜷) = 𝑺𝑚,𝑗,𝑘

(𝑙)
(𝜷) −

𝑠 − 1

𝑑𝑚,𝑗
  𝑸𝑚,𝑗,𝑘

(𝑙,𝐸)
(𝜷) (44) 

Using these matrices and  𝒅𝑚,𝑗,𝑘
(𝑙)

 from Equation (21) the partial log-likelihood 𝑙(𝐸)(𝜷), gradient vector 

𝒈(𝐸)(𝜷),  and the Hessian matrix 𝑯(𝐸)(𝜷) can be calculated under the Efron approximation as follows:  

     𝑙(𝐸)(𝜷) = ∑ 𝑙𝑚
(𝐸)
(𝜷)𝑀

𝑚=1    

 𝒈(𝐸)(𝜷) = ∑ 𝒈𝑚
(𝐸)(𝜷)𝑀

𝑚=1    

𝑯(𝐸)(𝜷) = ∑ 𝑯𝑚
(𝐸)(𝜷)

𝑀

𝑚=1

 

(45) 
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𝑙𝑚
(𝐸)
(𝜷) =∑{𝜷𝑇𝒅𝑚,𝑗

(𝟏)
 −
𝑑𝑚,𝑗
(0)

𝑑𝑚,𝑗
∑  

𝑑𝑚,𝑗

𝑠=1

log 𝑆𝑚,𝑗,𝑠
(0,𝐸)

(𝜷) }

 𝑗

 (46) 

𝒈𝑚
(𝐸)
(𝜷) =  ∑{𝒅𝑚,𝑗

(𝟏)
− 
𝑑𝑚,𝑗
(0)

𝑑𝑚,𝑗
∑  

𝑑𝑚,𝑗

𝑠=1

 
𝑺𝑚,𝑗,𝑠
(1,𝐸)

(𝜷)

𝑆𝑚,𝑗,𝑠
𝐸 (𝜷)

}

𝑗

 (47) 

𝑯𝑚
(𝐸)
(𝜷) = −∑

𝑑𝑚,𝑗
(0)

𝑑𝑚,𝑗
 ∑  

𝑑𝑚,𝑗

𝑠=1

 {
𝑺𝑚,𝑗,𝑠
(2,𝐸)

(𝜷)

𝑆𝑚,𝑗,𝑠
𝐸 (𝜷)

− 
𝑺𝑚,𝑗,𝑠
(1,𝐸)

(𝜷) ∗ [𝑺𝑚,𝑗,𝑠
(1,𝐸)

(𝜷)]
𝑻

[𝑆𝑚,𝑗,𝑠
𝐸 (𝜷)]

2 }

𝑗

 
(48) 

 

Note that the only difference between the scalar 𝑑𝑚,𝑗
(0)

 and the number of events 𝑑𝑚,𝑗 used in the above 

equations is that the former is calculated using weights (see Equation 21). When 𝑤𝑖,𝑚,𝑘 = 1 these 
quantities are the same for all subjects.  

The main steps of our DRA computational algorithm using the Efron approximation are similar to the 
ones described in the context of the Breslow approximation Appendix B. The only difference is that one 

needs to use matrices 𝑺𝑚,𝑗,𝑘,𝑠
(𝑙,𝐸)

(𝜷) instead of matrices 𝑺𝑚,𝑗.𝑘
(𝑙)

(𝜷) and perform an additional summation 

over the index 𝑠 when calculating the log-likelihood, gradient, and Hessian matrix using equations (46) – 
(48). 

D. LINEAR REGRESSION ON VERTICALLY PARTITIONED DATA 

Let assume for simplicity that the data are partitioned vertically between only two sites (Data Partners): 
DP1 and DP2 (dp_cd=1, 2). This seems to be the most likely application of the vertical regression. The 
theoretical generalization to multiple sites is straightforward. The site DP1 has analytic dataset with 𝑛 
independent variables 𝑋1,𝑖,𝛼 and the site DP2 has 𝑚 independent variables 𝑋2,𝑖,𝛼 and dependent 
variable 𝑌. Here 𝑖 = 1,… ,𝑁  denote a subject (observation),  𝛼 is a variable index: 𝛼=1,…n for DP1 and 
𝛼=(n+1)…(n+1+m) for DP2. Below we will use vector notation  𝒁1  and  𝒁2 with the matrix  𝒁1 =
(𝟏  || 𝑿𝟏) including the intercept (column of 1) and the matrix  𝒁2 = (𝑿𝟐  || 𝒀)  including the dependent 
variable (the operator || performs vertical concatenation of matrices). The first matrix has dimension 
 𝒁1  ∈ 𝑀𝑁×(𝑛+1)(R)  and the second matrix has dimension 𝒁2  ∈  𝑀𝑁×(𝑚+1)(R). In a typical application, 

the number of parameters 𝑛,𝑚 is orders of magnitude smaller than the number of observations 𝑁. In 
addition, we assume that:  a) analytic datasets share a primary key (e.g. PatID, SSN or their 
hashed/encrypted values) b) the datasets are sorted on the primary key variable and c) have the same 
number of records with non-missing independent and dependent variables. It is unlikely that raw DPs 
data satisfy all these conditions but we assume that these issues are resolved when the analytic datasets 
are prepared for regression.   

We are interested in performing linear regression analysis on the datasets that combines data from both 
Data Partners: 

𝒁 =  𝒁1 || 𝒁2 = (  

1 𝑋1,1 … 𝑋1,𝑛 𝑋1,𝑛+1 … 𝑋1,𝑛+𝑚 𝑌1
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑋𝑁,1 … 𝑋𝑁,𝑛 𝑋𝑁,𝑛+1 … 𝑋𝑁,𝑛+𝑚 𝑌𝑁

) 

The problem of linear regression analysis can be reduced to the calculation of SSCP matrix: 
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  𝑺𝑺𝑪𝑷(𝒁) = 𝒁′𝒁 =

(

 
 
 

𝑁 ∑ 𝑿𝒊
𝑖

∑𝒀𝒊
𝑖

∑𝑿𝒊
𝑖

∑𝑿𝒊
′𝑿𝒊

𝑖
∑𝑿𝒊

′𝒀𝒊
𝑖

∑𝒀𝒊
𝑖

∑𝑿𝒊
′𝒀𝒊

𝑖
∑𝒀𝒊

′𝒀𝒊
𝑖 )

 
 
 

 

The dimensions of SSCP matrix are much smaller than the dimensions of the matrix 𝒁. The dimensions of 
the former are determined only by the number of parameters  𝑺𝑺𝑪𝑷( 𝒁)  ∈ 𝑀(𝑛+𝑚+2)×(𝑛+𝑚+2)(R)   

while the dimensions of the later depend on the number of observations 𝒁 ∈ 𝑀𝑁×(𝑛+𝑚+2)(R). Thus, 

the SSCP matrix is highly summarized and it can be shared by Data Partners with little risk of revealing 
the patient level information. In addition, since the matrix is relatively small, computationally intensive 
matrix manipulations like matrix inversion can be performed easily on virtually any modern computer. 
By contrast, matrix inversion involving matrices with dimensions of order 𝑁 can quickly run into the 
computer memory (REM) limitations even for datasets of moderate size (above 10,000 obs).  

Once SSCP is known one can easily calculate virtually all standard results including regression 
coefficients, covariance matrix, standard errors, various goodness of fit measures and statistical tests. In 
SAS this is particular easy to do using PROC REG which accepts the SSCP matrix as an input dataset. 

For two DPs the SSCP matrix can be calculated as: 

 𝑺𝑺𝑪𝑷(𝒁1, ||  𝒁2) =  (𝒁1 ||  𝒁2)
′ (𝒁1 ||  𝒁2) = {

 𝒁1
′    𝒁1 𝒁1

′   𝒁,2
𝒁2
′  𝒁1 𝒁2

′    𝒁2
}  

The calculation of matrices on the diagonal of the SSCP matrix is straightforward. It can be easily done at 
each site separately using a standard procedure (e.g. SAS PROC CORR with SSCP option). The challenge is 
calculating the off-diagonal element 𝒁1

′  𝒁2. Due to privacy considerations one cannot just bring 
individual level data elements without performing some kind of transformation to obscure them. 
Several methods have been proposed to achieve secure matrix multiplication. We will discuss pros and 
cons of various approaches later in this document.  Here we choose an approach that utilizes a semi-
trusted third party which we will call the Analytic Center. The main idea of this approach was proposed 
by Beaver. In the context of linear regression, it was used by Du et al. 2004 (Commodity Server 
approach). We have modified it to simplify some of the calculations. The main difference between our 
approach and Du et al. 2004 is that we start with the expression for the SSCP matrix while Du et al. 2004 
start with the following final expression for the regression coefficient estimates: 

�̂� = (𝐙𝑇𝐙)−1𝐙𝑇𝐘 

The advantage of starting with the SSCP matrix is that it requires only one secure matrix multiplication: 

calculation of 𝒁1
′  𝒁2 . By contrast, starting with the expression for �̂� requires secure matrix 

multiplication of several matrices and also secure matrix inversion. The secure versions of matrix 
operations are significantly more complicated than regular matrix operations. They also require more 
transfers of large datasets (datasets of order 𝑁 ∗ 𝑛). In addition, knowledge of the SSCP matrix allows 
calculation of other standard regression statistics and tests beyond just the estimates of the regression 

coefficients �̂� .  

Below we describe the main steps for secure matrix multiplication using our proposed Analytic Center 
approach. The first 3 steps are the same as in Du et al 2004. Note that the Analytic Center has no access 
to any individual level data. Its main role is to help DPs to obscure their individual data before they 
exchange any data elements between themselves. The Analytic Center creates four random matrices: 
 𝑹1 ∈  𝑀𝑁×(𝑛+1)(R) ,  𝑹2 ∈  𝑀𝑁×(𝑚+1)(R),  𝒓1 ∈  𝑀(𝑛+1)×(𝑚+1)(R) ,  𝒓2 ∈  𝑀(𝑛+1)×(𝑚+1)(R). The first 
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three of these random matrices are generated independently and the fourth  𝒓2 is calculated in such a 
way that the matrices satisfy the following condition: 

 𝑹𝟏
′  𝑹2 =  𝒓1 +  𝒓2 

It is important that  𝑹1 and  𝑹2 are randomly generated. It, obviously, does not matter if the matrix  𝒓2 
is calculated and the matrix  𝒓1 is generated. 

1. The Analytic Center sends datasets  𝑹1,  𝒓1 only to the DP1 and the datasets  𝑹2,  𝒓2 only to the 
DP2. As Du et al 2004 pointed out, it is possible to minimize the amount of data transferred in this 
step. Instead of sending large datasets 𝑹1 and  𝑹2, the Analytic Center can just send two seed 
numbers which were used to generate these matrices using a pseudo random number generator. 
The only important thing here is that one seed number is only shared with DP1 and another only 
with DP2.  

2. The Data Partner DP1 creates a scrambled dataset  𝒁1̂ =  𝒁1 +  𝑹1 and sends it to the DP2 and the 

Data Partner DP2 creates a scrambled dataset  𝒁2̂ =  𝒁2 +  𝑹2 and sends to the DP1. 

3. The Data Partners DP1 and DP2 create new summarized datasets  𝒕1 ,  𝒕2 using the following 
formulas: 

 𝒕1 =  𝒓1 − 𝑹𝟏
′  𝒁2̂ 

 𝒕2 =  𝒓2 +  𝒁𝟏
,̂  𝒁2 

It is important to note here that at this stage in the process, the individual level data are eliminated. The 
resulting datasets  𝒕1 ,  𝒕2 are summarized over all observations. Their dimensions are determined by the 
number of parameters at each DP  𝒕1 ,  𝒕2 ∈  𝑀(𝑛+1)×(𝑚+1)(R) rather than the number of 

observations 𝑁. Thus, there is relatively little risk to share these data either with one another or with 
the Analytic Center. In our approach, these datasets are sent to the Analytic Center and the final 
calculations are done there. In the paper by Du et al 2004 the individual DPs exchange the summarized 

datasets until they calculate all necessary quantities to get �̂�. In our judgment, the use of the Analytic 
Center at this stage is preferable. It significantly simplifies the process and reduces the number of data 
transfers with little risk to data privacy. 

4. The Analytic Center receives the following summarized datasets from the Data Partners: 
 𝒕1 ,  𝒕2,  𝒁1

′  𝒁1and 𝒁𝟐
′   𝒁2. It is easy to verify by direct substitution that 

𝒕1 +  𝒕2 =  𝒓1 − 𝑹𝟏
′  𝒁2̂ +  𝒓2 +  𝒁𝟏

,̂  𝒁2 =  𝒁1
′  𝒁2 +  𝒓1 +  𝒓2 − 𝑹𝟏

′  𝑹2 =  𝒁1
′  𝒁2  

The last step is true because of constrain used in constriction of matrices: 𝑹1,  𝒓1,  𝑹2,  𝒓2. At this point, 
the Analytic Center has all necessary components to calculate SSCP matrix and perform complete linear 
regression analysis using standard regression procedure like SAS PROC REG with SSCP input.  

Let’s now consider the computational costs of the above secure matrix protocol. It is useful to compare 
it to the optimal possible cost of a matrix product calculation for vertically partitioned data. The latter is 
defined as a cost of computing matrix product without the privacy constrains. In that case, the data 
transfer cost is just the cost of downloading the dataset  𝒁1 to DP2 (or  𝒁2 to DP1). For 𝒁1 the number of 
data elements is of order 𝑛𝑁. By comparison, the data transfer cost of the secure matrix product with 

the help of Analytic Center is about twice that (𝑛 +𝑚)𝑁  (sending  𝒁1̂  to DP2 and  𝒁2̂ to DP1). In 
addition, the secure matrix product requires two matrix multiplications of large (order of 𝑁 ∗ 𝑛 ) 

matrices 𝑹𝟏
′  𝒁2̂ and  𝒁𝟏

,̂  𝒁2 instead of just one 𝒁1
′  𝒁2. However, the memory required for calculating 

matrix products like  𝒁𝟏
,̂  𝒁2  is the same as in the optimal case 𝒁1

′  𝒁2. The important point here is that in 

both cases the required memory does not scale with 𝑁. This is because the matrix products like  𝒁𝟏
,̂  𝒁2   
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can be calculated as cross-product of all  𝒁�̂�columns with all 𝒁2 columns in the dataset 𝒁�̂� ||  𝒁2. In such 

approach the matrix  𝒁�̂� does not need to be transposed and matrices  𝒁�̂�  and  𝒁2 do not need to be 
loaded into memory. Instead, the calculations can process row by row: multiply data elements on the 

same row 𝑖 and add them up   (𝒁𝟏
,̂  𝒁2)𝛼,𝛽 = ∑ (𝑍𝑖,𝛼,1 ∗ 𝑍𝑖,𝛽,2 )𝑖    . As the result, the required memory 

depends only on the size of the final matrix (𝑛 ∗ 𝑚) which is relatively small. The cost of downloading 
small matrices of order 𝑛 ∗ 𝑚 can be neglected in comparison to the matrices of size 𝑁 ∗ 𝑛. To 
summarize: the communication cost of the secure protocol with Analytic Center is only about twice of 
the optimal cost while required memory is about the same.  

Let’s now compare the above approach with approaches that do not involve the Analytic Center 
(Commodity Server). Several such approaches were suggested:  Du et al 2004 (two party protocol), Karr 
et al 2009. The obvious advantage of these approaches is that DPs can setup the process without a third 
party. However, there are significant computational disadvantages. The main challenge is that these 
approaches scale non-linearly with the number of observations both in terms of required memory and 
the volume of data that must be transferred. The computational costs of the two-party approaches in 
Du et al 2004 and in Karr at al 2009 are similar. Below, we focus on the two-party solution described by 
Du et al 2004.   

Their initial step requires that both parties generate a random matrix 𝑴 which has not only 𝑁 rows but 
also 𝑁 columns. In addition, one of the Data Partners must invert matrix M. The latter has to be done in 
memory and both memory and CPU scale faster than 𝑁2 for matrix inversion. After this initial step, one 

of the DPs has to split matrix M in half vertically while the other DP has to split the inverse matrix  𝑴−𝟏 

horizontally. The next step involves calculating matrix products: 𝒁1
′  𝐌𝑡𝑜𝑝,  𝒁1

′  𝐌𝑏𝑜𝑡𝑡𝑜𝑚 , 𝒁2
′  𝐌𝑟𝑖𝑔ℎ𝑡

−1 , 

 𝒁𝟐
′  𝐌𝑙𝑒𝑓𝑡

−1   and then transferring them to the other party. The total number of data elements in these 

matrices is 4 ∗ 𝑁 ∗
𝑁

2
= 2𝑁2. The 𝑁2scaling of the computational costs including data transfers, memory 

and CPU makes it difficult to apply this approach even to moderately sized datasets. To put things in 
prospective, consider a dataset with 20,000 observations and 10 variables at each DP. The amount of 

data transferred in that case would be 2 ∗
𝑁

𝑚
= 4000 larger than the minimal required amount (total 

2𝑁2 ∗ 8 𝐵𝑦𝑡𝑒𝑠 = 1.6 𝐺𝐵 );  the amount of required memory for matrix inversion will be more than 
𝑁2

(𝑛+𝑚)2
≈ (

𝑁

(𝑛+𝑚)
)
2
= 1,000,000 larger than minimally necessary (total 𝑁2 ∗ 8 = 0.8 𝐺𝐵). I don’t have 

experience with inverting matrices of this scale but when you Google “How to invert large matrix…” the 
typical recommendation is “Don’t do it…, find the other way to get what you need”. 

The above two-party approach can be improved somewhat by splitting the data into blocks and in effect 
doing a combination of horizontal and vertical distributed regression. The main advantage of such an 

approach is that matrix inversion 𝑴𝒃𝒍𝒐𝒄𝒌
−𝟏  could be done on a smaller matrix. The disadvantage is that it 

will make the algorithm significantly more complicated. Also, there is a limit on how small a block can be 
used. This is because the number of records in each block must be much larger than the number of 
parameters 𝑁𝑏𝑙𝑜𝑐𝑘 ≫ 𝑛. Otherwise, matrix M will not be effective in obscuring individual level data. 
Thus, one still needs to do an inversion of a matrix that is at least an order of magnitude larger than in 
the optimal case and the same is true for the communication cost.   

In my judgment, the advantages of using the Analytic Center approach for regression with vertically 
partitioned data should outweigh its disadvantages in most potential applications and for large analytic 
datasets this seems to be the only viable option. 

It is instructive to compare privacy preserving distributed regression on vertically partitioned data with 
distributed regression on horizontally partitioned data. In both cases, the goal is to do the regression 
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without revealing individual level data. In the horizontal case, this can be achieved by exchanging highly 
summarized data. By contrast, in the vertical case one always has to exchange the individual level data 
and then merge them on the primary key. The best that one can do in this case is to transform individual 
level data in such a way that the individual data cannot be unscrambled back but necessary summarized 
data can be still be calculated. As a result, the communication cost of distributed regression on vertically 
partitioned data is significantly higher than that for horizontally partitioned data. At best, the former 
scales linearly with the number of observation while the latter does not depend on 𝑁 at all.  

Both the vertical and horizontal cases can be done with and without the Analytic Center. However, from 
a computational perspective, the advantages of using the Analytic Center are much more significant in 
the vertical case. It allows orders of magnitude improvements in all computational aspects of the 
process: communication costs, memory and CPU. By contrast, in the horizontal case, the computational 
costs with and without Analytic Center are similar and the main advantage of the Analytic Center is that 
it facilitates the process.  

In our implementation of horizontal distributed regression, the Analytic Center and the intermediate 
server for data transfer (PopMedNet portal) are used together. One can use a similar approach for 
vertical regression as well. However, there are important differences. In the horizontal case, the data 
are exchanged only between the Analytic Center and DPs. There is no data exchange between DPs. In 

the vertical case, the scrambled individual level data ( 𝒁1̂ , 𝒁2̂ ) are exchanged only between DPs and it is 
very important that the Analytic Center cannot read these data on the portal. This is because it can 

unscramble the datasets 𝒁1̂ ,  𝒁2̂  using datasets 𝑹1, 𝑹2. One way of dealing with this issue is for DPs to 

encrypt the datasets  𝒁1̂ ,  𝒁2̂ using a password that they share between themselves but do not share 
with the Analytic Center. SAS has a built-in encryption capability that can be used for this purpose. 
Another approach is to not use an intermediate server for data transfer at all and, instead, use direct 
data transfer between DPs and also between DPs and the Analytic Center. The presence of a network 
firewall makes such a setup more complicated but it is doable. Most companies have so called “staging 
servers” to get data from their clients. For example, the HPHC receives enrollment data from their 
clients (employers). A staging server is accessible from the outside and it works in combination with the 
automatic script that moves data from a staging server to the production server inside the company’s 
firewall.  




