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ABBREVIATIONS: 
 

AE   Adverse Event 
BLR  Bayesian Logistic Regression 
CCAE  MarketScan® Commercial Claims And Encounters database 
CCO  Case-Crossover 
CI   Cholinesterase Inhibitors 
CMLE   Conditional Maximum Likelihood Estimate 
CTC   Case-Time-Control  
CVT   Cardiovascular Thrombotic  
DTP   Diphtheria-Tetanus-Pertussis Vaccine 
DTaP   Diphtheria-Tetanus-acelluar Pertussis Vaccine  
HDPS  High-Dimensional Propensity Score 
HOI  Health Outcome of Interest 
ICTPD  Information Component Temporal Pattern Discovery 
LOD   Longitudinal Observational Database 
MDCD  MarketScan® Medicaid Multi-State Database 
MDCR  MarketScan® Medicare Supplemental Database 
MMR   Measles-Mumps-Rubella Vaccine 
MI   Myocardial Infarction 
MSCCS  Multivariate Self-Controlled Case Series 
MSLR  MarketScan® Lab Database 
NSAID    Non-Steroidal Anti-Inflammatory Drug 
OMOP  Observational Medical Outcomes Partnership 
OR   Odds Ratio; Exposure Odds Ratio 
PD-SCCS  Positive Dependence Self-Controlled Case Series 
PDS  Pharmacoepidemiology and Drug Safety 
RR  Relative Risk 
SAS  Statistical Analysis System 
SCCS  Self-Controlled Case Series 
SRS   Spontaneous Reporting Systems 
SSA   Sequence Symmetry Analysis  
SSRI   Selective Serotonin Re-uptake Inhibitors 
USCCS   Univariate Self-Controlled Case Series  
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I. INTRODUCTION 

The Mini-Sentinel Case-based Methods Workgroup met throughout 2010 and engaged in several 
projects. The first addressed the following question: When should a distributed system for active 
medical product surveillance use case-based designs for safety monitoring? Section II(A) presents our 
findings.  

Another project focused specifically on self-controlled case series (SCCS) methods. Our SCCS work 
considered a multivariate extension of the SCCS approach; this work was done in collaboration with the 
Observational Medical Outcomes Partnership (OMOP). A complete SAS module for multivariate SCCS is 
now available on the OMOP website. Section II(B) of this report describes the method and some of our 
results. 

Section II(C) presents our recommendations for Mini-Sentinel. 

We also surveyed the recent SCCS literature. Section III presents the findings of our literature review. 

The Appendix presents visualizations developed by Malcolm Maclure that are designed to provide 
insights into different forms of cases-based methods and the application of these methods. While the 
Workgroup had little time to discuss the pictures in sufficient depth to reach consensus on their utility, 
they were found to be interesting enough to include as suggestions in our report. The related comments 
are also suggestions rather than Workgroup conclusions. 

II. THE SELF‐CONTROLLED CASE SERIES 

A. WHEN SHOULD A DISTRIBUTED SYSTEM FOR ACTIVE MEDICAL PRODUCT SURVEILLANCE 
USE CASE‐BASED DESIGNS FOR SAFETY MONITORING? 

To address this question, our workgroup a) defined case-based designs in relation to each other; b) 
examined their main strength: self-controlled comparisons; c) described the major difference among the 
designs: directionality; and d) discussed the range of medical products studied with these designs in 
relation to their susceptibility to exposure misclassification. 

1. Definitions and Illustrations 

The defining feature of case-based designs is that the study base is restricted to cases. Also in these 
designs, each subject serves as his or her own self-matched control, hence the term ‘self-controlled’ [1-3]. 
The term ‘crossover’ arises when the study base is restricted to subjects who supply both exposed and 
unexposed person-time and thus ‘cross over’ between two or more exposure levels [4, 5].  

Figure 1 shows the relationship between the self-controlled case series (SCCS) and case-crossover (CCO) 
designs, using data from Table 2 in “Tutorial in Biostatistics: The self-controlled case series method” by 
Whitaker et al. [2] The figure shows the times when 10 children i) received Measles-Mumps-Rubella 
vaccinations, ii) passed through a hypothesized 14-day induction period after the vaccination, iii) then 
through a hypothesized 21-day effect period (respectively called the ‘pre-risk period’ and the ‘risk 
period’ by Whitaker et al., terms that are potentially ambiguous when discussing non-zero risks in the 
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‘pre-risk’ and ‘post-risk’ periods), and iv) the day they were diagnosed with meningitis. In the top half, 
the times are expressed in terms of the child’s age in days, and the data are viewed, as in a SCCS, like a 
cohort of 10 children followed through their second year after birth. In the bottom half, the times are 
relative to the day of meningitis diagnosis, and the data are viewed retrospectively from the standpoint 
of the diagnosticians, as in a CCO analysis.  

 

Figure 1. Comparison of time scales of a) self-controlled case series and b) case-crossover designs, using data on 
measles-mumps-rubella vaccination and viral meningitis from Whitaker HJ et al. Tutorial in biostatistics: the self-
controlled case series method. Statistics in Medicine 2006;25:1768-97. 

Figure 2 shows the same data re-aligned so vaccination date is time zero. A small epidemic of meningitis 
is visible in the After period that is very unlike the incidence in the Before period. This asymmetry of 
outcomes before and after exposure onset is the focus of sequence symmetry analysis (SSA), an 
elegantly simple technique for hypothesis screening with large databases [6, 7]. Under the null hypothesis 
of no direct or indirect causal relation between exposure and outcome, incidence of outcomes is 
expected to be symmetric around time zero. Either the exposure or the outcome variable can be set as 
time zero. If we did a SSA with the outcome date set as time zero, it would look exactly like Figure 1b. 
Note that the pattern of vaccinations in Figure 1b is not only asymmetric; it is an exact mirror image of 
the pattern of outcomes in Figure 2.  
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Figure 2. Time scale of sequence symmetry analysis with vaccination time set as zero, using data on measles-
mumps-rubella vaccination and viral meningitis from Whitaker HJ et al. Tutorial in biostatistics: the self-controlled 
case series method. Statistics in Medicine 2006;25:1768-97. 

The arrows in Figure 2, labeled Before and After, indicate the meaning of the term bidirectional. A 
bidirectional design includes time before and after the index time. In Figure 2, the Before period is the 
unexposed control time; the After period is exposed. The corresponding single arrow in Figure 1b 
indicates that the standard CCO is a unidirectional design, which looks at exposure frequency only 
retrospectively from the time of the outcome. The corresponding double-headed arrow in Figure 1a 
indicates that the standard SCCS is bidirectional. Of course, exposed time (the dark blue effect period) 
occurs only after vaccination, but the SCCS includes unexposed control time from both before and after 
vaccination.  

2. The main strength of case‐based designs: self‐controlled comparisons eliminate between‐person 
confounding. 

The fundamental commonality of the three designs is that analyses are conditioned on the individual 
(i.e. one person per stratum) yielding only within-person comparisons. This is a major strength for 
conducting evaluations in Mini-Sentinel because we are concerned about potential selection bias or 
confounding by factors not recorded in healthcare databases. By structuring the comparisons so that 
each person serves as their own control, we eliminate confounding and selection bias by constant (time-
invariant) characteristics, such as chronic regular use of non-prescription drugs, average physical 
activity, long-term diet, alcohol drinking pattern, habitual health behaviors, tendency to seek 
professional care (‘medicalization’), long-past health events such as illnesses, vaccinations and injuries, 
occupation, social support, ethnicity, smoking history and body mass history.  

Of course, a second commonality is that subjects are restricted to cases. This can be regarded either as 
the primary characteristic that causes us to use a self-controlled analysis, or as a secondary consequence 
of having only one person per stratum. Reasons for preferring to study only cases include: a) with fewer 
subjects and fewer data on time-invariant variables, case-based designs help protect data privacy and 
are computationally efficient, and b) sometimes signal refinement requires additional data collection 
from charts to rule out potential biases. Compared to nested case-control studies, case-based designs 
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would require data collection from only cases. Self-controlled analyses would follow of necessity 
because of the restriction to cases.  

More often we will use only data available in the Mini-Sentinel Distributed Database and the restriction 
to cases will be a consequence of doing a self-controlled analysis to control for unmeasured factors. 
Accordingly, some investigators regard a case-based design as just a highly stratified analysis of cohort 
data. This view is illustrated by Fosbol et al [8] in reporting their study of non-steroidal anti-inflammatory 
drugs (NSAIDs) in relation to myocardial infarctions (MIs) and deaths in a Danish cohort of one million 
people followed 9 years. In their Table 4, the authors present results from CCO analyses (using 
conditional logistic regression) that have exactly the same population totals as their Table 3 of results 
from cohort analyses (using Cox proportional hazards models.) A benefit of this approach is to reduce 
the reader’s potential confusion by holding the overall context of the analysis constant. But the 
reassurance is potentially misleading because there was a shift to a different population and context – 
i.e. a shift to a case-only study base. It is just that the shift was not arbitrary. The shift occurred during 
the CCO analysis when the computer automatically restricted the study base to the subset of the cohort 
who had both an outcome event and crossed between levels of exposure or covariates.  

Self-matching results in strata of three types: 1) individuals always exposed, 2) individuals never 
exposed, and 3) individuals sometimes exposed and sometimes not, i.e. who ‘cross over.’ Types 1 and 2 
(called concordant subjects in CCO literature) automatically drop out of the univariate estimation of the 
relative risk. Thus, merely by deciding to do a highly stratified univariate analysis, we are left with Type 
3, a subgroup analysis comprising only individuals who cross between exposed and unexposed time, as 
in a crossover experiment. This is a third commonality among the designs.  

In multivariate analyses, exposure-concordant subjects are retained if they cross between levels of other 
factors. For example, referring to Figure 1a, Whitaker et al. included Child 10 in their bivariate analysis 
because Child 10 did cross between levels of their binary variable for age (less than versus greater than 
547 days.)  

Both the SCCS and CCO analyses are influenced by the same assumptions about the lengths of the 
induction period and effect period (the difference between the maximum and minimum induction times 
in the population.) This can be seen from Child 5 and Child 7. Child 5’s meningitis was diagnosed 5 days 
after the effect period ended. If the authors had chosen a 4-week rather than a 3-week effect period, 
Child 5’s diagnosis would have fallen within that period in both the SCCS and CCO analyses. Child 7’s 
meningitis was diagnosed on the second day of the effect period. If the authors had chosen a 3-week 
rather than a 2-week induction period, Child 7’s diagnosis would have fallen outside the effect period in 
both the SCCS and CCO analyses.  

As a result of these similarities among case-based designs, they all apply better to the study of transient 
effects of point or brief exposures on the immediate risk of illnesses with abrupt onset, rather than to 
cumulative effects of long exposures or illness with gradual onset. They all estimate only the within-
person transient effect of an exposure event, controlling for any cumulative effect of previous chronic 
exposure to the same agent (where cumulative effect is defined as any effect of past exposure on the 
background level of risk in the unexposed times in the window of observation in the case-based study.) 
For Mini-Sentinel, the distinction between an adverse event caused by a transient effect of exposure 
and the same adverse event caused by a chronic cumulative effect of the same exposure, can be of 
great importance, especially in the rare situation that the transient and cumulative effects are in 
different directions. For example, a case-based design could yield a relative risk greater than 1, while a 
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cohort design yielded a relative risk less than 1 if the cumulative protective effect were greater than the 
transient effect (e.g., exertion and possibly alcohol consumption can trigger an MI, yet both taken 
chronically are believed to reduce the risk of MI in the long term.) Both relative risk estimates could be 
correct because they might measure different biological effects or they test different operational 
hypotheses [9] related to a common biological effect. 

3. The main difference among case‐based designs: directionality and its relation to within‐person 
confounding. 

a. Unidirectional designs reduce reverse-causality bias. 

Standard CCO studies are unidirectional, right-censored at outcome to avoid, or reduce, reverse-
causality [10], called event-dependent exposure in SCCS literature [2]. A mild form of reverse-causality is 
quite common in drug safety studies: it is an indirect causal connection between the outcome and 
subsequent exposure, due to the tendency for outcome-related care (especially hospitalization) to 
involve review of all the patient’s drugs, resulting in some being stopped, possibly just to ‘make room’ 
for new drugs added. A more serious form is when the outcome directly causes stopping because it is a 
contraindication. For example, a CCO study of cholinesterase inhibitors (CIs) and risk of hospitalization 
for bradycardia (a known effect of these drugs), observed 43% of users discontinued CIs after discharge 
from hospital [11]. By excluding person-time after the outcome, CCOs eliminate a major opportunity for 
reverse-causality. However, they do not eliminate reverse-causality biases that occur before the 
measured outcome event (e.g., hospitalization), such as within-person protopathic bias and confounding 
by indication (or contraindication) wherein prodromal signs of the outcome cause (or prevent) initial use 
of a medical product [12].  

A standard SCCS study of the same database on CIs and bradycardia hospitalizations would have 
included post-hospitalization time in assessing each patient’s total time exposed and unexposed, which 
would have biased the relative risk estimate upwards. Sometimes reverse-causality has only a transient 
effect (e.g., contraindications of vaccination), in which case a bidirectional SCCS design can be used that 
excludes a hypothesized interval after the outcome [2]. But reverse-causality between outcomes and 
drugs can be prolonged: after hospitalization for bradycardia, prescribing of CIs to some patients would 
cease permanently.  

The most extreme form of reverse-causality bias is when death eliminates the patient’s future 
opportunity for all exposures. A specific type of this bias has been aptly named immortal-time bias [13]. It 
occurs when a cohort is defined in the middle of the follow-up, as happens in both the standard SCCS 
and SSA. To enter the cohort, one must have survived the period before exposure onset. This forbids 
death in the Before period but not in the After period. For example, if the outcome in Figure 1 were 
death, Child 1 would not have survived to be vaccinated. Like Child 10, Child 1 would contribute nothing 
to a univariate analysis of the effect of vaccination; the estimate would be biased upwards by 
underestimating prior mortality.  

Two ways to deal with immortal time bias are a) to exclude deaths also from the After period (in which 
case, the standard SCCS and SSA cannot be used to study fatal outcomes) or b) to include deaths in the 
Before period, which can be done only if they belong to a group that clearly would have been exposed if 
they had survived (e.g., vaccinations at a certain age when almost every child is vaccinated.) Recently 
Farrington et al.[3] proposed a unidirectional version of the SCCS, suited to the study of fatal outcomes 
and less susceptible to reverse-causality. The person-time is left-censored at first usage of the medical 
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product; in other words, cases are excluded if outcomes precede first usage. Counterfactual future 
exposures after death are inferred by extrapolation of past exposure patterns. This unidirectional SCCS 
design is slightly susceptible to bias from a population-wide trend in outcomes, because the first interval 
is always exposed. But outcome trends are much smaller and less problematic than population-wide 
trends in exposure to new medical products, which affects unidirectional CCOs. In another paper in this 
Supplement [14], a right-censored SCCS analysis is considered, in addition to the strengths of multivariate 
SCCS which can control for time-varying (within-person) confounders and modifiers. 

b. Bidirectional designs reduce exposure-trend bias 

Unidirectional CCOs are susceptible to exposure-trend bias because the control-window always precedes 
the case-window [15, 16]. If exposure to a medical product is growing rapidly in the source population, the 
case-window will be more exposed than the control-window, especially if those windows are long or far 
apart. Initially, when Mini-Sentinel is conducting surveillance of a new medical product, exposure-trend 
bias could be a major concern. If the new medical product is used chronically (persistently without 
interruption) by most patients, then in the initial period of follow-up of an inception cohort, the only 
discordant subjects in a unidirectional CCO would be starters (the discordant exposed.) To be a 
discordant unexposed subject, a person would need to be a previous user who stopped, and initially 
these would be few if usage were continuous. This temporary shortage of discordant-unexposed 
patients would mean the initial discordant pair ratio (an estimate of the relative risk) would be 
spuriously very high. It would approach the true relative risk as the population approaches a steady 
state of starting and stopping. A steady state is reached almost immediately if the new medical product 
is used only briefly, e.g., a vaccine.  

A bidirectional CCO was first developed to deal with exposure-trend bias in studies of the health effects 
of air pollution [17], a setting where there is no possibility of reverse-causality: air pollution levels are not 
affected by rates of hospitalization. A bidirectional CCO includes control windows after the outcome so 
that, if control windows are sampled symmetrically from the left and right of meningitis in Figure 1b, a 
linear background trend in exposure cancels out. In air pollution studies, effects on fatal outcomes still 
can be studied because, while a patient’s death eliminates their individual future exposure, it does not 
affect the population’s future exposure to air pollution, which is an ecological or group-wide exposure. 
An analogous ecological exposure in pharmacoepidemiology would be a population-wide change in 
exposure such as a policy of vaccinating essentially all children at a certain age or a change in drug 
insurance policy. Bidirectional CCOs of fatal outcomes would work in these situations. SCCS and SSA 
should also work as long as they used dynamic cohorts that allowed people to die in the before period 
as well as the after period. 

Another way to deal with exposure-trend bias is the case-time-control design [15]. It is a unidirectional 
CCO plus a unidirectional time-matched non-case group (i.e. a traditional matched control group 
sampled from the population that produced the cases.) Exposure odds ratios (OR) are calculated the 
same way in the case group and the non-case control group, and the latter’s OR is considered an 
estimate of the exposure-trend bias in the former’s OR. Dividing the case OR by the control OR gives an 
adjusted OR that is relatively free from exposure-trend bias. In response to the concern that non-cases 
might have different exposure trends than cases [16], the case-time-control design has been adapted 
using future cases as present controls, an adaptation called the case-case-time-control design [18].  
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4. Case‐based designs complement cohort designs, but analyzing intermittent users requires 
accurate data on exposure timing  

The first reason that case-based designs complement cohort designs is because intermittent users 
complement continuous users and continuous non-users, together comprising the whole population. 
Continuous users and non-users are the purest subgroups from the standpoint of an investigator of a 
cohort study, whereas the intermittent users are problematic, like patients who do not adhere to 
protocol in a randomized controlled trial. In contrast, an investigator of a case-based self-controlled 
design is interested in intermittent users more than continuous users and non-users.  

A second reason, particularly in regards to Mini-Sentinel’s Distributed Database, is that the biases in 
studying intermittent users complement the biases in studying continuous users. We have seen that 
intermittent users enable self-controlled designs that eliminate time-invariant confounding. But this 
often comes at a price: greater potential for bias from exposure misclassification when dispensing date 
in healthcare databases is not a good measure of the timing of self-administration. Another source of 
greater susceptibility to exposure misclassification occurs when using the discordant-pair ratio to 
estimate the OR: error in one of the paired observations robs information from the other observation, 
as the now concordant pair drops out [19]. Continuous users enable better exposure classification, but 
the price is greater potential bias due to unmeasured confounders and selection factors. Among 
intermittent users, the degree of exposure misclassification, of course, depends on the nature of the 
medical product. Table 1 lists medical products that have been studied by case-based designs, ranked 
approximately by their brevity of use and effect periods, and the accuracy of data on exposure timing. 

  



  

 

Table 1.  Case-based studies grouped by types of medical products and adverse events, ranked approximately by decreasing accuracy 
of timing of exposure and increasing duration of windows of observation (hypothesized effect periods).  SCCS = self-controlled case 
series.  CCO = case-crossover design.  CTC = case-time-control design.  SSA = sequence symmetry analysis.  

Medical product Windows (days) Adverse Events Design Reference 

A. Professionally Administered     

1. Vaccine      

Acellular pertussis vaccine, DTaP 0, 1-3 Seizures SCCS Huang [5] 

Diphtheria-Tetanus-Pertussis (DTP) 0-3, 0-7 Fever and convulsions SCCS Ward [4]  

Diphtheria-Tetanus-Pertussis (DTP) 4, 7  Convulsions SCCS Gold [1] 

Diphtheria-Tetanus-Pertussis (DTP) 6-11, 15-35 Febrile convulsions SCCS Farrington [3] 

Meningococcal C conjugate 0-3, 4-7, 8-14  Convulsions SCCS Andrews [2] 

Meningococcal C conjugate 3, 7 Fever and convulsions SCCS Ward [4] 

Measles-Mumps-Rubella, MMR 6–11 Convulsions SCCS Musonda [18] 

Measles-Mumps-Rubella, MMR 6-11,15-35 Convulsions and encephalitis  SCCS Ward [4] 

Measles-Mumps-Rubella, MMR 6-11, 15-35 Febrile convulsions, aseptic meningitis, purpura SCCS Farrington [3]  

Measles-Mumps-Rubella, MMR 6, 21 Febrile seizures  SCCS Gold [1] 
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Influenza vaccine 2 Asthma  SCCS Kramarz [17] 

DTP, DTaP, Hepatitis B or any vaccine 1-7 Wheezing SCCS Mullooly [7] 

Influenza vaccine 14 Asthma exacerbation  SCCS Farrington [14] 

Penta- / hexavalent, multidose vaccines 3 Unexplained sudden unexpected death SCCS Kuhnert [25] 

Oral Polio Vaccine 3-10 Myocardial infarction and stroke SCCS Smeeth [29] 

Influenza vaccine 1-14, 15-28, 29-59… Acute myocardial infarction  SCCS Gwini [15] 

Oral Rotavirus vaccine 3-5 Intussusception SCCS Murphy [30] 

Oral Polio Vaccine 0-13, 14-27, 14-41 Intussusception SCCS Andrews [26] 

Oral Polio Vaccine 0-14, 15-28, 29-42; 
0-7, 8-14,15-21…  

Intussusception SCCS Galando 
Sardiñas [27] 

Oral Polio Vaccine 3-7, 8-21, 28-41 Intussusception SCCS Cameron [28] 

Trivalent inactivated influenza  0, 1-3, 4-7, 8-14, 

15-28 

fever/chill, musculoskeletal pain, allergic, 
ophthalmologic, immunization-related adverse effects  

SCCS Mullooly [10] 

 0-7, 1-21, 1-42  Seizures, meningoencephalitis, Bell’s palsy, other 
cranial nerve disorders, demyelinating disease, 
peripheral nervous system disorders,  neuropathy, 
ataxia, anaphylaxis, Guillian-Barré syndrome, etc. 

SCCS Green [11] 
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 0-3, 1-14, 5-42, 1-42 Anemia, convulsions, gastritis/duodenitis, 
lymphadenitis, noninfectious gastroenteritis, serum 
reaction, sickle cell anemia, urticaria, viral enteritis 

SCCS Hambidge [13] 

 14 Asthma, diabetes mellitus, sinusitis, upper respiratory 
tract infection, otitis media, rhinitis, bronchitis, 
bronchiolitis, pneumonia, dyspnea/respiratory 
abnormalities, dermatitis, renal and ureteral illness 

CCO France [12] 

Parenteral inactivated influenza vaccine 7, 14, 28 Bell’s palsy  SCCS Musonda [18] 

Influenza vaccine - inactive nasal form 0-30, 31-60, 61-90 Bell’s palsy, Guillain-Barré Syndrome SCCS Stowe  [16] 

Influenza vaccine - inactive nasal form 91 Bell’s palsy SCCS Mutsch [19] 

Measles-Mumps-Rubella, MMR 0-30, 31-60 Gait disturbance SCCS Miller [22] 

Measles-Mumps-Rubella, MMR 21 Meningitis SCCS Ki [20] 

Diphtheria-Tetanus-Pertussis (DTP) 21  Idiopathic thrombocytopenia purpura SCCS Gold [1] 

Meningococcal C conjugate 27  Purpura SCCS Andrews [2] 

Measles-Mumps-Rubella, MMR 42 Purpura SCCS Andrews [2] 

DTP, DTaP, Hepatitis B or any vaccine 42 Immune hemolytic anemia SCCS Naleway [6] 

Poliovirus, Poliomyelitis,  Oral 1-2,1-3, 1-12 months Multiple sclerosis relapse CCO Confavreux [8] 

Tetanus Toxoid 60 Multiple sclerosis relapse CCO Confavreux [8] 
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Meningitis vaccine  30, 60, 180 Relapse in nephrotic syndrome SCCS Taylor [24] 

Measles-Mumps-Rubella, MMR 90 Invasive bacterial infection SCCS Miller [21] 

Hepatitis B vaccine 0-60, 61-365 Central nervous system demyelinating events SCCS Hocine [9] 

Measles-Mumps-Rubella, MMR 1-2 years Autism SCCS Taylor [22] 

Measles-Mumps-Rubella, MMR 5 years Autism SCCS Farrington [23] 

2. Devices     

Colonoscope 7-28 Ulcerative colitis exacerbation CCO Menees [67] 

B. Self-Administered     

1. Antibiotics     

Quinolones, sulfonamides, azoles (with 
warfarin)  

21-30 Gastrointestinal bleeds CCO Schelleman [31] 

Macrolides and fluoroquinolones 28 Ventricular Arrhythmia & Cardiac Arrest CCO  
CTC 

Zambon [33] 

Antibiotics 60 Risk of Flare of IBD CCO Aberra [32] 

2. NSAIDs     

Nonsteroidal anti-inflammatory drugs  1, 3, 6 Diarrhea CCO Etienney [38] 
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Nonsteroidal anti-inflammatory drugs 28 Hepatitis CCO Lee [34] 

NSAIDs, coxibs 30 Myocardial infarction  CCO Fosbøl [35] 

Nonsteroidal anti-inflammatory drugs 30 Myocardial infarction or Heart failure CCO Gislason [36] 

NSAIDs, coxibs 30 Death or reinfarction CCO Gislason [37] 

Nonsteroidal anti-inflammatory drugs 30 Stroke CCO Chang [40] 

Nonsteroidal anti-inflammatory drugs 90 Gastrointestinal bleeds CCO Biskupiak 
[41] 

3. Psychotropics     

Benzodiazepines, other psychotropics 1 Motor vehicle accident CCO Barbone [44]  

Benzodiazepines 2 Falls CCO Neutel [46] 

Benzodiazepines 5 Hip fracture  CCO Hoffmann [47] 

Benzodiazepines 7 Motor vehicle crashes CCO Hébert [42] 

Zolpidem 7, 8-14,15-21,22-28 Motor vehicle accident CCO Yang [43] 

Psychotropics 28  Motor vehicle accident SCCS Gibson [45] 

Tricyclic and SSRI antidepressants 7, 8-14,15-21,22-28 Myocardial infarction  SCCS Tata [52] 

SSRI antidepressants ? Gastrointestinal bleeds CCS Dall [53] 
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Antipsychotics 7 Stroke SCCS Pratt [49] 

Antipsychotics 35 Stroke SCCS Douglas [50] 

Bupropion 28 Sudden death SCCS Hubbard [48] 

Cholinesterase inhibitors 90 Bradycardia CCO Park-Wyllie [51] 

4. Cardiovascular     

Statin 180 Myopathy, myalgia CCO Molokhia [54] 

Antihypertensives  33 mo Depression (initiation of antidepressant) SSA Hallas [56] 

Angiotensin-converting enzyme 
inhibitors  

10 y (?) Lupus exacerbation CCO Duran-
Barragan 

[57] 

5. Miscellaneous     

Acitretin 20, 120 Vulvo-vaginal candidiasis  CCO Sturkenboom [61] 

Inhaled tiotropium bromide 30 Stroke SCCS Grosso  [58] 

Chinese herbs (prescribed) 30, 60  Hepatitis CCO Lee [65] 

Ephedrine, caffeine  90 Cardiovascular events  CCO Hallas [55] 

Many drugs 30, 60, 90, 120 Central nervous system events (delirium) CCO Wang [59] 
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Many drugs 60 Birth defects CCO 
CTC 

Hernández-
Díaz [60] 

Many drugs 90 Psoriasis vulgaris hospitalizations CCO Cohen [39] 

Isotretinoin 150 Antidepressant prescription CCO Azoulay [63] 

Isotretinoin 365 Antidepressant prescription CCO Hersom [62] 

 

 

 



  

  

 

Vaccines and episodic use of medical devices (e.g., colonoscopy) are ranked at the top of Table 1 
because the exposures are brief and infrequent, and their timing is well documented by the health 
professionals who administer them. Therefore, exposure misclassification is relatively low. (Exposure 
misclassification in vaccine studies arise mostly in hypothesizing the lengths of the induction and effect 
periods.) The SCCS method is particularly suited to situations when each person’s time can be accurately 
classified as exposed or unexposed, which is why the SCCS method is routinely used both for active 
surveillance and retrospective studies of vaccines.  

Ranked second are antibiotics because they are normally used briefly and infrequently, and the timing of 
use is usually immediately after dispensing. However, many people stop taking antibiotics before the full 
course of tablets is complete. Therefore, exposure misclassification increases with days since dispensing. 
Unlike vaccines, but like colonoscopy, antibiotics are usually prescribed in response to medical 
problems, and occasionally in anticipation of a medical event (e.g., imminent surgery). Therefore, 
within-person confounding by indication and reverse-causality bias are more likely in studies of 
antibiotics than vaccines.  

Case-based studies of NSAIDs are more susceptible to exposure time misclassification than antibiotics 
because NSAIDs are not normally prescribed as a course; many patients take them sporadically. 
Immediately after dispensing, the probability of NSAID use is high, but choosing a cut-off date when 
usage has probably stopped is more difficult than with antibiotics. Therefore, overall relative risk 
estimates from case-based studies are more questionable for NSAIDs than for antibiotics.  

The more uncertainty there is about when patients were exposed to a product, the more selective the 
investigator must be about what people and what times to include. For example, we can exclude 
sporadic users and do a case-based study restricted to people with a series of regularly spaced dates of 
NSAID dispensing spanning several months, preceded and followed by long periods with no dispensing 
of NSAIDs.  

Some psychotropic medications (e.g., drugs for anxiety) are taken sporadically in response to fluctuating 
symptoms, so the days when the patient is exposed are mostly unknown and case-based designs are 
largely infeasible. Other psychotropics are taken with regularly spaced dispensing dates spanning several 
months which are preceded and followed by long periods with no dispensing. Then case-based designs 
are feasible. 

Many cardiovascular medications are prescribed as lifelong therapies and would not be amendable to 
case-based designs if all patients were adherent. However, stoppers are common enough that case-
based designs have proven to be possible, although the reason for stopping might an unmeasured 
contraindication.  

The more selective we are about subsets of people to include, the more selective we are inclined to be 
about subsets of times to include. Consequently, as we move down Table 1 and exposure timing 
becomes more inaccurate, the more attractive are matched CCO designs. It makes increasing sense to 
use the outcome as time zero and inspect the patterns of exposure data in a case window and a 
matching control window. Also inspecting data for potential within-person confounding by factors that 
coincide with both the outcome and the immediately preceding exposure event, is probably easier to do 
when the outcome event is chosen as time zero. By analogy, within-person confounders would probably 
be easier to visualize in Figure 1b than in Figure 1a simply because of the way the data are aligned.  
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One message from Table 1 is that SCCS and CCO designs are complementary. SCCS tends to be 
preferable at the top of the table and CCO tends to become preferable as we move down. There is no 
obvious cut-off point. In the middle, some investigators (whom we might call ‘lumpers’) would prefer to 
keep all the observation time in the analysis and deal with threats to validity by including additional 
terms in statistical models, as in SCCS designs. Other investigators (whom we might call ‘splitters’) would 
prefer to handle threats to validity by restriction/selection, as in CCO designs. Other factors that played 
no role in Table 1 rankings, e.g., time-varying confounding, would also influence instigators’ preferences. 

The further down Table 1 we go, the more chronic users there are in the population and the more we 
regard cohort designs as primary, and case-based designs as secondary. Also, the further down we go, 
the more we rely on head-to-head comparisons, which in case-based designs entails examining multiple 
medications in relation to one class of outcome. In reviewing these studies, we repeatedly found that 
comparing relative risks for different drugs, particularly similar active comparators or ‘negative control’ 
drugs that are expected to have no effect, was helpful for assessing potential biases. Therefore, Mini-
Sentinel should anticipate investigators wanting to evaluate multiple comparator products as controls in 
case-based studies that are primarily intended to evaluate a single medical product. 

B. MULTIVARIATE SELF‐CONTROLLED CASE SERIES 

Farrington[1] proposed the self-controlled case series (SCCS) method in order to estimate the relative 
incidence of adverse events to assess vaccine safety. The major features of SCCS are that (1) it 
automatically controls for fixed individual baseline covariates, and (2) only cases (individuals with at 
least one event) need to be included in the analysis. With SCCS, each individual serves as their own 
control. 

SCCS is one of several self-controlled methods that the epidemiology literature describes, many of which 
are variants on the case-crossover method[4]. However unlike the case-crossover method, which 
requires the choice of a comparator time period to serve as a control, SCCS makes use of all available 
temporal information without the need for selection. 

The standard SCCS model considers one AE and one drug of interest. However patients generally take 
multiple drugs throughout the course of their observation period. Additionally, patients may take many 
different drugs at the same time point, which leads to a potential for drug interaction effects. In order to 
account for the presence of multiple drugs and interactions, the intensity expression for the SCCS model 
can be extended in a natural way. Farrington’s original SCCS approach considered other time-varying 
covariates such as age and the multivariate SCCS (MSCCS) builds on his work. We refer the reader to [83] 
and Appendix 2 for a detailed description. 

The set of figures below demonstrate the empirical performance of the MSCCS method in the context of 
the OMOP HOI experiment. This experiment considers 53 drug-outcome pairs, 9 of which are known to 
be positively associated. Figure 1 shows that MSCCS outperforms its univariate counterpart (USCCS) on 
all four databases and is amongst the top methods presented. Figure 2 presents the same information 
but grouped by database. Figure 3 shows the actual Receiver-Operating Characteristic (ROC) curves for 
USCCS and MSCCS and makes visually apparent the improvement in area-under-the-curve presented in 
Figure 1. Each dot in each panel of Figure 3 represents the sensitivity-specificity tradeoff that can be 
achieved with different choices of threshold for the observed relative risk. Ideally, each panel would 
have a point in the upper left corner corresponding to high sensitivity and high specificity. While MSCCS 
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does have points closer to the upper left corner than USCCS, considerable room for improvement still 
exists. 

 

Figure 1. Performance of MSCCS as compared with univariate SCCS (USCCS) and three other methods, BLR 
(Bayesian Logistic Regression), HDPS (High-dimensional Propensity Scoring) and ICTPD (Information Component 
Temporal Pattern Discovery). The vertical axis show area-under-the-curve in the OMOP HOI experiment. CCAE, 
MDCD, MDCR, and MSLR are four different claims databases. 

 

 
Figure 2. Performance of MSCCS as compared with univariate SCCS (USCCS) and three other methods, BLR 
(Bayesian Logistic Regression), HDPS (High-dimensional Propensity Scoring) and ICTPD (Information Component 
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Temporal Pattern Discovery). The vertical axis show area-under-the-curve in the OMOP HOI experiment. CCAE, 
MDCD, MDCR, and MSLR are four different claims databases. 

 

 
Figure 3. Receiver-Operator Characteristic curves to illustrate performance of multivariate self-controlled case 
series (MSCCS) as compared with univariate SCCS (USCCS) on four databases. Each column represents a different 
claims database. The first row represents MSCCS and the second row represents USCCS. Within each panel, the 
horizontal axis sows the false positive rate and the vertical axis shows sensitivity. Each dot represents one of the 53 
drug-outcome pairs in the OMOP HOI experiment. 

SCCS versus Case‐crossover 

The group also empirically compared the self-controlled case series approach with the case-crossover 
(CCO) approach in the context of the OMOP experiment. Figure 4 below presents the findings 
graphically. Each dot represents a drug-outcome pair, and the red line segments represent 95% intervals 
(CCO on the horizontal axis and SCCS on the vertical axis). Many drug-outcome pairs lie close to the 
diagonal in Figure 4, and thus for these pairs, SCCS and CCO essentially agree. However, there are drug-
outcome pairs where sharp disagreement exists between the two methods. For example, for 
antiepileptics and angioedema (bottom right in Figure 4), CCO produces a log relative risk of about 1.5 
(corresponding to a relative risk of 4.5) while SCCS produces a log relative risk of about -0.5 
(corresponding to a relative risk of 0.6). However, for this pair, and for many of the off-diagonal pairs, 
the 95% confidence intervals for both estimates overlap substantially. 
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Figure 4. Point estimates (red and blue dots) and 95% confidence intervals for SCCS versus case-crossover 
methods. The red dots represent true positive pairs and the blue dots are negative controls. The numbers at the 
top of the figure represent method-specific parameter choices in days. 

C. RECOMMENDATIONS TO MINI‐SENTINEL 

• Case-based methods are useful insofar as they provide an alternative approach to confounding 
control. 

• Case-based designs can be superior to cohort designs for signal refinement when the medical 
product is used only briefly on or after a well-recorded date (e.g., vaccine, antibiotic) and when 
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unmeasured time-invariant characteristics of the patients are suspected of being confounders or 
selection factors in a cohort analysis.  

• Case based designs are problematic when dispensing dates are not a good measure of the time 
of self-administration and when dates of medically-attended events are not good measures of 
the onset of the underlying outcomes of interest. For example if the condition has a variable and 
insidious onset - like many cancers - that are unmeasured until we see a diagnosis at a visit or 
hospital stay. 

• Case-based studies of intermittent users often complement cohort studies of continuous users, 
but are only as representative as the subgroup of intermittent users. As with any subgroup 
analysis, we often will not know, until we are immersed in our data, what are the main threats 
to validity and the relative merits of case-based versus cohort methods. 

• Bidirectional SCCS and unidirectional CCOs are complementary because they have different 
susceptibility to reverse-causality bias and exposure-trend bias. Both of these biases pose 
challenges for signal refinement in surveillance of new medical products. Modifications of both 
designs deal with these biases in some situations. Continued research is needed comparing the 
performance of these designs.  

• SSA might be an efficient tool for signal generation in future but would be counterproductive 
before Mini-Sentinel has established methods for signal refinement. 

• Mini-Sentinel should capture bidirectional outcome data before starting and after stopping use 
of medical products. If the logistics of Mini-Sentinel data management dictate that follow-up 
starts no earlier than first use of the medical product, a left-censored SCCS design is possible if 
enough patients stop and provide post-exposure outcome data. 

• Case-based approaches require fewer patient records and fewer variables (little or no data on 
time-invariant characteristics), so they are computationally efficient and suited to Mini-
Sentinel’s aim to preserve privacy. 

• There is no free lunch – the underlying assumptions for case-based approaches may or may not 
be reasonable in practice. 
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III. THE SELF‐CONTROLLED CASE SERIES: RECENT DEVELOPMENTS 

A. OVERVIEW 

Increasing scientific, regulatory and public scrutiny focuses on the obligation of the medical community, 
pharmaceutical industry and health authorities to ensure that marketed medical products have 
acceptable benefit-risk profiles. This is an intricate and ongoing process that begins with carefully 
designed randomized clinical trials prior to approval but continues after regulatory market authorization 
when the product is in widespread clinical use. In the post-approval environment, surveillance schemes 
based on spontaneous reporting systems (SRS) represent a cornerstone for the early detection of novel 
medical product hazards. Key limitations of SRS-based pharmacovigilance include under-reporting, 
duplicate reporting, and the absence of a denominator or control group to provide a comparison. 

Newer data sources have emerged that overcome some of the SRS limitations but present 
methodological and logistical challenges of their own. Longitudinal observational databases (LODs) 
provide time-stamped patient-level medical information, such as periods of medical product exposure 
and dates of diagnoses. Typical examples include medical claims databases and electronic health record 
systems. The scale of some of these databases presents interesting computational challenges – the 
larger claims databases contain upwards of 50 million lives with up to 10 years of data per life. A nascent 
literature on risk identification and refinement in LODs now exists including adaptations of some of the 
Bayesian methods developed in the SRS context.  

In this paper we consider one particular approach, the self-controlled case series. We present a Bayesian 
analysis of this method and provide an overview of some recent related developments. We use the term 
“drug” in what follows but our comments pertain to medical products more generally. 

B. LONGITUDINAL OBSERVATIONAL DATABASES 

 

Figure 1. A longitudinal observational dataset with three patients, three distinct drugs (A, B, and C) and two 
distinct outcome events (X and O) 

Figure 1 provides a schematic of LOD data for coverage periods for three patients. Patient 1 was 
exposed to drug A during two separate exposure periods. While on drug A, patient 1 experienced 
outcome event X on three different occasions. Patient 2 was exposed to drugs A, B, and C during 
successive non-overlapping eras. Patient 2 experienced outcome event X before consuming any drugs 
and also experienced outcome event X while consuming drug B. Patient 3 was exposed to drug C and 
later started taking drug B in addition to drug C. This patient experienced outcome event O while taking 
both B and C and later experienced outcome events O and X after the drug B and C eras had ended. We 
note that LODs generally provide drug prescription dates so that construction of drug “eras” involves 
subtle decisions concerning gaps between successive prescriptions as well as off-drug risk periods. With 
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outcome events, we think of outcomes as occurring at points in time whereas in truth outcomes are 
processes spread out in time. 

The methodological challenge is to estimate the strength of the association between each drug and each 
outcome event, while appropriately accounting for covariates such as other drugs and outcome events, 
patient demographics, etc.  

In this context, several papers have looked at vaccine safety, for example, Lieu et al. (2007), McClure et 
al. (2008), and Walker (2009). The Vaccine Safety Datalink provides an early example of a LOD 
specifically designed for safety. Papers focusing on drug safety include Curtis et al. (2008), Jin et al. 
(2008), Kulldorff et al. (2008), Li (2009), Noren et al. (2008), and Schneeweiss et al. (2009). 

C. THE SELF‐CONTROLLED CASE SERIES METHOD 

Farrington (1995) proposed the self-controlled case series (SCCS) method in order to estimate the 
relative incidence of adverse events to assess vaccine safety. The major features of SCCS are that (1) it 
automatically controls for time-fixed covariates that don’t vary within a person during the study period, 
and (2) only cases (individuals with at least one event) need to be included in the analysis. With SCCS, 
each individual serves as their own control. In other words, SCCS compares outcome event rates during 
times when a person is exposed versus outcome event rates during times when the same person is 
unexposed. In effect, the cases’ unexposed time lets us infer expectations about what would have 
happened during their exposed time had they not been exposed. 

SCCS is one of several self-controlled methods that the epidemiology literature describes, many of which 
are variants on the case-crossover method (Maclure, 1991). However unlike the case-crossover method, 
which typically requires the choice of a comparator time period to serve as a control, SCCS makes use of 
all available temporal information without the need for selection. 

Epidemiological applications of SCCS tend to focus on situations with small sample sizes and few 
exposure variables of interest. In contrast, the problem of drug safety surveillance in LODs must contend 
with millions of individuals and millions of potential drug exposures. The size of the problem presents a 
major computational challenge – ensuring the availability of an efficient optimization procedure is 
essential for a feasible implementation. 

1. One drug, one adverse event 

We will first focus on the case where there is one drug and one adverse event of interest.  

To set up the notation, i will index individuals from 1 to N. Events and exposures in our databases are 
recorded with dates, so temporal information is available down to the level of days (indexed by d). Let τi 
be the number of days that person i is observed, with (i,d) being their dth day of observation. The 
number of events on day (i,d) is denoted by yid, and drug exposure is indicated by xid, where xid = 1 if i is 
exposed to the drug on (i,d), and 0 otherwise. 

SCCS assumes that AEs arise according to a non-homogeneous Poisson process, where the underlying 
event rate is modulated by drug exposure. We will start with the simple assumption that person i has 
their own individual baseline event rate eφi

 , which is constant over time. Under the SCCS model, drug 
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exposure yields a multiplicative effect of eβ on the baseline incidence rate. In other words, the event 
intensity for person i on day d can be written as a function of drug exposure xid. 

 

The number of events observed on (i,d) given the current exposure status is distributed as a Poisson 
random variable with rate λid, which has the following density: 

 

The SCCS likelihood contribution for person i is the joint probability of the observed sequence of events, 
conditional on the observed exposures 

 

There are two assumptions implicit in the Poisson model that allow us to write out this likelihood: 

1. events are conditionally independent given exposures 

, and 

2. past events are conditionally independent of future exposures given the current exposure 

. 

These assumptions are likely to be violated in practice (e.g., one might expect that having an MI increase 
the future risk of an MI and also impacts future drug usage), however they allow for simplifications in 
the model. At this point one could maximize the full log-likelihood over all individuals (lc = Σi log Lc

i) in 
order to estimate the parameters. However since our primary goal is to assess drug safety, the drug 
effect β is of primary interest and the person-specific φi effects are nuisance parameters. A further 
complication is that claims databases can contain well over 10 million patients. Since the dimension of 
the vector of person-specific parameters φ = (φ1, . . . ,φN)′ is equal to the number of individuals N, 
estimation of φ would call for optimization in an ultra high-dimensional space and presumably would be 
computationally prohibitive. 

In order to avoid estimating the nuisance parameter, we can condition on its sufficient statistic and 
remove the dependence on φi. Under the Poisson model this sufficient statistic is the total number of 
events person i has over their entire observation period, which we denote by ni = Σd yid. For a non-
homogeneous Poisson process, ni is a Poisson random variable with rate parameter equal to the 
cumulative intensity over the observation period:  
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In our case the cumulative intensity is a sum (rather than an integral) since we assume a constant 
intensity over each day. Conditioning on ni yields the following likelihood for person i: 

 

Notice that because ni is sufficient, the individual likelihood in the above expression no longer contains 
φi. This conditional likelihood takes the form of a multinomial, but differs from a typical multinomial 
regression. Here the number of “bins” (observed days) varies by person, the β parameter is constant 
across days, and the covariates xid vary by day.  

Assuming that patients are independent, the full conditional likelihood is simply the product of the 
individual likelihoods. 

 

Estimation of the drug effect can now proceed by maximizing the conditional log-likelihood to obtain

. Winkelmann (2008) showed that this estimator is consistent and asymptotically Normal in the 
Poisson case.  

It is clear from the expression for the likelihood that if person i has no observed events (yi = 0), they will 
have a contribution of Lc

i = 1. Consequently, person i has no effect on the estimation, and it follows that 
only cases (ni ≥ 1) need to be included in the analysis. 

SCCS does a within-person comparison of the event rate during exposure to the event rate while 
unexposed, and thus the method is “self-controlled”. Intuitively it follows that if i has no events, they 
cannot provide any information about the relative rate at which they have events. That the SCCS 
analysis relies solely on data from cases is a substantial computational advantage – since the incidence 
rate of most AEs is relatively low, typical SCCS analyses will utilize only a modest fraction of the total 
number of patients. 

2. Multiple drug exposures and drug interactions 

So far we have discussed the scenario where there is one AE and one drug of interest. However patients 
generally take multiple drugs throughout the course of their observation period. Additionally, patients 
may take many different drugs at the same time point, which leads to a potential for drug interaction 
effects. In order to account for the presence of multiple drugs and interactions, the intensity expression 
for the SCCS model can be extended in a natural way.  

Suppose that there are p different drugs of interest, each with a corresponding exposure indicator xidj = 
1 if exposed to drug j on day (i,d); 0 otherwise. Let eβj

 be the multiplicative effect of drug j on the event 
rate.  

A multiplicative model describes the intensity for patient i on day d: 
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where xid = (xid1, . . . , xidp)′ and β = (β1, . . . , βp)′. 

Since ni is still sufficient for φi, person-specific effects will once again dropout of the likelihood upon 
conditioning. One can derive the expression in a similar manner to the previous case of one AE and one 
drug case, resulting in: 

 

To simplify the summation in the denominator, days with the same drug exposures can be grouped 
together. Suppose that there are Ki distinct combinations of drug exposures for person i. Each 
combination of exposures defines an exposure group, indexed by k = 1, . . . , Ki.  

For person i and exposure group k, we need to know the number of events i has while exposed to k (yik) 
along with the length of time i spends in k (lik). For person i we only require information for each of Ki 
exposure groups, rather than for all τi days. This allows for coarser data and more efficient storage – 
since patients tend to take drugs over extended periods of time, Ki is typically much smaller than τi. 

(1) 

SCCS can be further extended to include interactions and time-varying covariates (e.g., age groups). The 
intensity on (i,d) including two-way drug interactions and a vector of time-varying covariates zid can be 
written as  

 

where γ denotes a two-way interaction between drugs r and s. 

Remark 1. In practice, many adverse effects can occur at most once in a given day suggesting a binary 
rather than Poisson model. One can show that adopting a logistic model yields an identical conditional 
likelihood to (1). This equivalence allows shifting to a logistic model with follow-up truncated at the 
outcome event, when that event is the onset of an enduring condition that permanently changes 
exposure propensity (see Discussion below.)  

Remark 2. It is straightforward to show that the conditional likelihood in (1) is log-concave. 

3. Bayesian Self‐Controlled Case Series 

We have now set up the full conditional likelihood for multiple drugs, so one could proceed by finding 
conditional maximum likelihood estimates of the drug parameter vector β. However in the problem of 
drug safety surveillance in LODs there are millions of potential drug exposure predictors (tens of 
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thousands of drug main effects along with drug interactions). This high dimensionality leads to potential 
overfitting under the usual maximum likelihood approach, so regularization is necessary. 

We take a Bayesian approach by putting a prior over the drug effect parameter vector and performing 
inference based on posterior mode estimates. There are many choices of prior distributions that shrink 
the parameter estimates toward zero and address overfitting. In particular, we focus on the (1) Normal 
prior and (2) Laplacian prior.  

1. Normal prior. Here we shrink the estimates toward zero by putting an independent Normal prior 
on each of the parameter components. Taking the posterior mode estimates would be 
analogous to a ridge Poisson regression, placing a constraint on the L2-norm of the parameter 
vector. 

2. Laplace prior. Under this choice of prior a portion of the posterior mode estimates will shrink all 
the way to zero, and their corresponding predictors will effectively be selected out of the model. 
This is equivalent to a lasso Poisson regression, where there is a constraint on the L1-norm of 
the parameter vector estimate.  

Efficient algorithms exist for finding posterior modes, rendering our approach tractable even in the 
large-scale setting. In particular, we have adapted the cyclic-coordinate descent algorithm of Genkin et 
al. (2007) to the SCCS context. An open-source implementation is available at http://omop.fnih.org. 

D. EXTENSIONS TO THE BASIC SCCS MODEL 

1. Relaxing the Independence Assumptions I: Events 

Farrington and Hocine (2010) present an approach that extends SCCS to allow for within-individual 
event dependence. This method treats the vector of observed event times ti = (ti1, . . . , tini)′ for each 
individual i as a single point in an ni-dimensional region, where ni denotes the number of events 
experienced by individual i. This region is restricted to Qi (ni) = { ti ∈ (ai, bi]ni: ti1 < · · · < tini } (where (ai, 
bi] denotes the observation period for individual i) since the components of ti are ordered by time, and 
no event times can occur outside of the observation window (ai, bi]. Standard SCCS assumes that events 
are realizations of a one-dimensional Poisson process and conditions upon the observed number of 
events ni. Under Farrington and Hocine’s model, however, the event time vector ti is treated as a single 
point arising from an ni-dimensional Poisson process. In this framework, conditioning on ni is equivalent 
to conditioning on the occurrence of a single point in the region Qi (ni).  

If λi(t1, . . . , tni | xi) is the intensity of the ni-dimensional Poisson process on Qi (ni), the conditional 
likelihood of ti given the occurrence of one such point in Qi (ni) is  

(2) 

Farrington and Hocine assume that the ni-dimensional Poisson intensity can be written in the form 
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(3) 

where the product term is made up of independent univariate intensities λi(t | xi), and the Hni (.) 
function determines the dependence between events. From (2) and (3) we can see that terms of λi(t | xi) 
that are fixed in time will cancel out of the conditional likelihood, as they do in the original SCCS 

model. Similarly, fixed terms of Hni (.) will also drop out of the conditional likelihood. Farrington and 
Hoccine explore different possible choices for H. 

2. Relaxing the Independence Assumptions II: The PD Model 

The PD-SCCS model (Simpson, 2011) extends SCCS to allow positive dependence between events, 
meaning that the occurrence of an event can increase an individual’s future event risk. Let Ni(t) record 
the number of events that person i has experienced up until time t. Assume, as before, that i has ni total 
events during their observation period and that these events occur at times ti1 < · · · < tini. It is 
convenient to define a counting process, such as Ni(t), in terms of its intensity function λi (t | xi(t)). This 
function gives the instantaneous probability that an event occurs at time t, given the history of the 
process and covariates. Under the SCCS model, the Poisson intensity for i at time t is 

(4) 

as was previously described. PD-SCCS extends this model by incorporating Ni(t - ), the number of events 
that i has experienced up to but not including time t, as an additive effect on the individual baseline eφi. 
The PD-SCCS intensity function takes the form  

(5) 

where δ is the parameter that controls the level of dependence between events. Based on plugging the 
PD-SCCS intensity (5) into the likelihood expression for a general intensity-based process, one can see 
that the total number of events ni is sufficient for the nuisance parameter φi. As in the SCCS model, 
conditioning on ni removes φi from the likelihood expression. Symmetry arguments yield a closed form 
for the conditional likelihood, which in the denominator requires integrating over all possible ways for i 
to have ni events during their observation period. Inference for β and δ is based on this conditional 
likelihood. Since the intensity function must be non-negative, the event dependence parameter is 
restricted to δ > 0. In the case that δ = 0, the PD-SCCS intensity model in (5) reduces to that of the SCCS 
model in (4). 

3. Relaxing the Independence Assumptions III: Exposures 

As discussed above, the SCCS model assumes that events are conditionally independent of subsequent 
exposures. Farrington et al. (2009) present an ingenious relaxation of this assumption using a 
counterfactual modeling approach. Their approach applies to the specific situation where the risk 
returns to its baseline level at the end of each risk period, where the event of interest is non-recurrent, 
and where the occurrence of the event precludes future exposures.  
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Here we sketch the Farrington et al. approach using a simplified version of their running example. 
Consider a situation in which each individual can have up to two exposures. For individual i, again 
denote by (ai, bi] the observation period and denote by ci1 and ci2 the actual exposure times, should they 
occur.  

For notational simplicity, we consider point exposures followed by some known increased-risk time. The 
exposures then partition the observation period into up to five periods indexed by j: a control period, 
followed by an increased-risk period, followed by a control period, followed by a second increased-risk 
period, followed by a final control period. Denote by nij the number of events occurring in the jth period, 
nij ∈ {0, 1}. Let β1 and β2 denote the log relative incidences associated with the first and second 
increased risk periods respectively and denote by Ti the event time. 

If Ti occurs after ci2 then no further exposures can occur and inference about β2 can proceed in the usual 
fashion. Inference for β1 is more complex in the situation where the event occurs after just one exposure 
because the timing of the counterfactual second exposure is then unavailable. Farrington et al. then 
make the following key observation: suppose, counterfactually, that no individual experienced a second 
exposure. Then it would be possible to estimate β1 without bias. For this to work, we would need to 
know n∗i4, the number of events in the fourth period, had no second exposure occurred. This is missing 
for those individuals that did in fact have a second exposure. However, ni4e−β2

 is an unbiased estimate of 
n∗i4 for these individuals – this amounts to backing out the actual elevated risk during the second 
exposure. Using n∗i4in place of ni4 then leads to an unbiased estimate of β1.  

Farrington et al. present the general case, an associated sandwich estimator for the variance, and also a 
computationally efficient equivalent approach based on pseudo likelihood.  

We note that Roy et al. (2006) present an alternative approach. 

4. Structured SCCS Models 

We are currently exploring several extensions to the basic model.  

1. Hierarchical model: Drugs. Drugs form drug classes. For example, Vioxx is a Cox-2 inhibitor. Cox-
2 inhibitors in turn are non-steroidal anti-inflammatories. A natural extension assumes 
regression coefficients for drugs from within a single class arise exchangeably from a common 
prior distribution. This hierarchy could extend to multiple levels. 

2. Hierarchical model: AEs. AEs also form AE classes. For example, an MI is a cardiovascular 
thrombotic (CVT) event, a class that includes, for example, ischemic stroke and unstable angina. 
In turn, CVT events belong to a broader class of cardiovascular events. This extension assumes 
that the regression coefficients for a particular drug but for different AEs within a class arise 
from a common prior distribution. Again this hierarchy could extend to multiple levels. 

E. DISCUSSION 

We have described self-controlled case series methods for post-approval drug safety risk estimation, 
some Bayesian and some not. Key advantages of the self-controlled case series approach include: 

• SCCS adjusts for all time-invariant multiplicative confounders, 
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• Estimation requires only cases, and 

• A regularized/Bayesian implementation of SCCS scales to large databases with the potential to 
adjust for large numbers of time-varying covariates. 

The main problems with the SCCS approach concern the underlying independence assumptions, in 
particular, the assumption that events are conditionally independent, and the assumption that the 
exposure distribution and the observation period must be independent of event times. We described 
approaches to circumvent these assumptions and these may be useful in some applications. 

Furthermore, since SCCS estimates the exposure-outcome association in cases, it ignores data on 
individuals in the study population that did not experience the outcome event. For example, there may 
be seasonality driving both the exposure and the outcome, where season is an important time-varying 
covariate. 

To adjust for seasonality, it is helpful to address both (a) the relation between season and the exposure, 
and (b) the relation between season and the outcome. While SCCS can incorporate time varying 
covariates, ignoring LOD’s rich data on the non-cases limits our power to address (a). In another paper in 
this issue, we discuss how analyses of data from non-cases can supplement case-based analyses. We 
note that one possible approach to dealing with the exposure independence issue is to truncate 
observation time after the first event occurrence. This violates other SCCS assumptions but may still be 
useful in practice. Figure 2 shows estimates for a number of drug-outcome pairs with and without 
truncation. Clearly the truncation does alter some estimated relative risks substantially and future work 
will evaluate the empirical performance of this approach. 

Real-life LODs are noisy and have the potential to introduce all sorts of artifacts and biases into analyses. 
For example, conditions and the drugs prescribed to treat the conditions are often recorded 
simultaneously at a single visit to the doctor, even though the condition actually predated the visit. This 
can introduce “confounding by indication” - the drug used to treat a condition can appear to be caused 
by the condition. Many such challenges exist and it remains to be seen whether or not false positives 
will render risk identification in LODs impractical. Since all methods rely on dubious assumptions, future 
research will focus on establishing the operating characteristics of competing approaches. The 
Observational Medical Outcomes Partnership (OMOP) has empirically compared the predictive 
performance of SCCS, multivariate SCCS, and a wide variety of competing methods. Initial results 
suggest that SCCS is competitive with other methods and multivariate SCCS is a top performer. 
Nonetheless, the performance of all methods in OMOP leaves much room for improvement. 
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Truncated versus Non‐Truncated SCCS, log RR 

 

Figure 2. Relative risk estimates from SCCS versus truncated SCCS for 53 drug-outcome pairs in the OMOP 
experiment. 
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IV. APPENDIX: PICTORIAL MODELS CAN HELP ELUCIDATE STATISTICAL MODELS 

This Appendix presents several pictures that Mini-Sentinel’s Methods Core Workgroup on Case-Based 
Approaches found helpful supplements when discussing several topics, including: 1) the relationship 
between Self-Controlled Case Series and Case-Crossover Designs, 2) exposure-trend bias when 
unidirectional case-crossover designs are nested in an inception cohort design, and 3) exposure 
misclassification bias due to uncertainty about induction times and about drug intake times in relation 
to dispensing times and quantities. While the Work Group had little time to discuss the pictures in 
sufficient depth to reach consensus on their utility, they were found to be interesting enough to include 
as suggestions in our report. The comments are also suggestions rather than Group conclusions.  

An advantage of case-based designs is they involve a relatively small numbers of patients compared with 
the numbers of subjects in cohort designs. This enables pictures of raw data to be feasible to construct 
and inspect. Sometimes the pictures can be created in an Excel spreadsheet, allowing for simultaneous 
visualization of raw data, assumptions and results of simple analyses. 

A. COMPARISON OF STUDY DESIGNS 

Figures 1 and 2 illustrate the relationships among the designs using timelines. The sequence of events in 
each subject’s timeline can be easily converted into a story, helping us to understand reverse-causality 
bias. 

B. UNIDIRECTIONAL MATCHED‐PAIR CASE‐CROSSOVER DESIGN IN RELATION TO AN 
INCEPTION COHORT 

Figure 3 in this appendix illustrates the potential for exposure-trend bias in unidirectional case-crossover 
designs when an inception cohort is selected, or when a new drug enters the market. The figure shows 
that short-duration use does not pose much of a problem. Another version of this figure could be made 
showing much longer exposure duration. In that case, the predominant type of discordant case initially 
would be exposed in the case-window and unexposed in the control-window. This spreadsheet is, of 
course, just hypothetical to facilitate explanation. In actuality, Mini-Sentinel might wish to display real 
drug use data in this fashion so that the potential for exposure-trends bias could be evaluated pictorially, 
possibly with simulations in the same spreadsheet as the picture.  

C. ‘STARS AND STRIPES’ DIAGRAMS OF THE EXPOSURES OF DISCORDANT CASES 

In our review paper, Table 1 ranks case-based studies partly by accuracy of exposure measurement. 
Vaccine safety investigations rank at the top because vaccination is a point exposure administered by a 
health professional. Investigations of pharmaceuticals taken chronically rank further down in the table. 
The timing of actual intake of the drug must be inferred from dispensing dates and quantities, and ‘days 
supply’ if available. Investigators can find it difficult to discuss analytic strategies in case-based designs 
when several ingredients of the operational definition of exposure must be juggled, at the same time as 
wondering about the prevalence of different patterns of exposure. 

For example, in an investigation on stimulants as potential triggers of cardiovascular events being 
conducted by a member of the Work Group, conversations among investigators about drug exposure 
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patterns were frustrating because there were too many assumptions to juggle. This led to the suggestion 
that the field needs a standardized type of diagram for visualizing medication use data in a population. It 
would show at a glance that vaccines are point exposures and antibiotics are near-point exposures. It 
would show at a glance that antihypertensive use is dominated by continuous users. This led to the idea 
of ‘Stars and Stripes’ which was developed into Figure 4, a sketch that was presented to the Work Group 
for brief discussion. 

It is hypothesized that a ‘Stars and Stripes’ diagram will be particularly useful for planning case-crossover 
analyses, enabling prediction of what might be seen in the case-window just before the onset of illness, 
and in the control-window. 

The idea in Figure 4 is to sketch an overview of exposure patterns in the general population or the 
overall database prior to design, so as to assist us in designing the investigation well. After the 
investigation has been designed, another version of a ‘Stars and Stripes’ diagram might be helpful. For 
example, Figure 5 shows a potential diagram for an inception cohort and a unidirectional case-crossover 
design. The latter attempts to incorporate the hypothesized Effect Period (minimum and maximum 
induction time). It would be desirable for the diagram to enable investigators to visualize changes in their 
assumptions about induction times and the impacts on effect estimates. Such diagrams could be used to 
display data available from only databases, or they could be enhanced by supplementary population-
based observational investigations of true intake patterns associated with dispensing patterns (e.g., 
migraine-drug use patterns.)  

D. POTENTIAL FORMAT FOR DISPLAY OF CASE‐BASED DATA IN MINI‐SENTINEL 

Figure 6 is a sketch of a possible format for displaying data on exposed cases periodically updated from 
distributed databases. The purpose of this format is to facilitate signal detection when little or no 
preliminary thinking on exposure-effect periods, or case and control windows, has been done. As the 
mandate of the Work Group is to discuss methods for signal refinement, this figure was only presented 
and not discussed in detail. 

 

 

 

 

  



!
!
! !
!
!

! "#$#%&'$(#$')!E+*'!P+*'1!"'(4-1*!Q-.R#$:!S.-9,!T',-.(!K`!

!

!"#$%&'()'*+,-./01+2'+!'-3/1+2450,3'02*67838'02',.5*938'*.134*/+11+:3/'8310;2'.28'23<4713/'*+9+/5'+!'*+25027+71'713/1'<9+'15+-'.!53/'(',+2591

63;328=' '>'8"?@&A?&B'8%$#C''','>'*D?&'EF',E%G"B"HI '80.;+2.6'160*3'+!'-3/1+2450,3
!"#$%&'($')"*$+,"$-.,./"%$ ''!+/'23<4713/'*+9+/5'1578J

0123)"%$45)"$#.6%3#$ , 0123)"%$436/&3-$#.6%3#$ *
76"123)"%$45)"$#.6%3#$ , 76"123)"%$436/&3-$#.6%3#$ * , * 8.)43&%56/$2"&)36*$436/&3-9+,"$"123)"%

$:;8;<0=>;?!@A$=@B09=<?BB?C0<$80B;D!B$7B0$E7>7<0$=?!><?AB
FG/H$ 'K9+/0L+25.6K'160*31'+!'-3/1+2450,3'!+/',.5*9384-.0/'*.134*/+11+:3/'1578031' ;I$%&'($')"$436+6'"%$J.K"K$)/322"&)$#"&"$"14-'%"%L*$
FM/H$ 5<+'136!4,.5*938'<028+<1'+!'*+25/+6'50,3'M*N'DAB'*.13'50,3'M,N'JN?<:;8;>OL$ P'/$5$P.%.&"4+365-$45)"94&3))3Q"&$%").(6$#5)$')"%*

FF&%$ '1578J'OP * , '>'L3/+'6.;'Q35<332'<028+<1 /H.)$/R2"$3I$%.)43&%56/$2"&)36$#3'-%$P5-564"$/H"
FS6%$ '1578J'OR' %.)43&%56/$2"&)36)$#./H$45)"9+,"$"123)"%$JP"-3#L

FT)/$ * , '>'PR4,+259'6.;'Q35<332'<028+<1 '6%"&$/H"$6'--$HR23/H").)
FU/H$

SV/H$ * , $=3643&%56/$2"&)36*$P3/H$+,")$'6"123)"%$
SW/H$
SX/H$ 8.)43&%56/$2"&)36*$45)"9+,"$"123)"%

SY/H$ * , ;I$%&'($')"$436+6'"%$J.K"K$)/322"&)$#"&"$"14-'%"%L*$56%$5$'6.%.&"4+365-$%").(6$#5)$')"%
SG/H$ /H.)$#3'-%$P"$/H"$36-R$/R2"$3I$%.)43&%56/$2"&)36
SM/H$ '*.134*/+11+:3/
SF&%$ '1578J'OR'''SA'>'TU Z"&3$43643&%56/$2"32-"$#./H$P3/H$+,")$"123)"%*$P"45')"$"123)'&"$.)$)H3&/$56%$-5($P"/#""6$#.6%3#)$.)$-36(
ST)/$ ;I$%&'($')"$436+6'"%$J.K"K$)/322"&)$#"&"$"14-'%"%L*$
SU/H$ /H"6$,56R$43643&%56/$"123)"%$2"32-"$#3'-%$P"$.64-'%"%
TV/H$
TW/H$ =3643&%56/$2"&)36*$P3/H$'6"123)"%$

TX/H$ * , ;I$%&'($')"$436+6'"%$J.K"K$)/322"&)$#"&"$"14-'%"%L*$
TY/H$ /H"6$/H.)$43643&%56/$2"&)36$#3'-%$P"43,"$%.)43&%56/
TG/H$
TM/H$ 8.)43&%56/$2"&)36*$45)"9+,"$'6"123)"%

TF/H$ * , ;I$%&'($')"$436+6'"%$J.K"K$)/322"&)$#"&"$"14-'%"%L*$
TS/H$ /H"6$/H.)$%.)43&%56/$2"&)36$#3'-%$P"43,"$43643&%56/
TT/H$

TU/H$ ''*.134 * , $=3643&%56/$2"&)36*$P3/H$+,")$'6"123)"%$

V/H$ '*/+11+:3/

W/H$ '1578J'OP * , $8.)43&%56/$2"&)36*$45)"9+,"$"123)"%

X/H$ 'SA'>'VU * , =3643&%56/$2"&)36*$P3/H$+,")$"123)"%
Y/H$

M/H$7)"& * , $8.)43&%56/$2"&)36*$45)"9+,"$'6"123)"%
F&%$7)"&

S6%$7)"& * , $=3643&%56/$2"&)36*$P3/H$+,")$'6"123)"%$

T)/$7)"&
T S F M G Y X W V TU TT TS TF TM TG TY TX TW TV SU ST SS SF SM SG SY SX SW SV FU FT FS FF FM FG FY FX FW FV MU
*.6328./',+259'02'8.5.Q.13

sforrow
Typewritten Text
	

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text
Methods Development				-45-			Case-Based Methods Workgroup Report

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text



!

!

!"#$%&'()"*+,'*&

-"$.$+"+*&'()"*+,'*&/#%0&
1,'23&)"#$%*&

4()"*+,'&')#*"5'*&

-"$.$+"+*&'()"*+,'*&/#%0&
')#*"5'*&"6&#$%',,+)."$&

7#$89'*&

:+9.)9'*&

7#$89'*&

:+9.)9'*&

:#('5;&)"#$%<')#*"5'&

=#8+,'&>?&&@7%2,*&2$5&7%,#)'*@;&&!")+92."$&5,+8&+*'&)2A',$*&2%<2<892$B'&

sforrow
Typewritten Text
Methods Development				-46-			Case-Based Methods Workgroup Report

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text



!
!
! !
!
!

! !!

!

!"#$%&'()&*)+,#(-).(/))

!"#$%&'()&*)
0/1&'2).(/)

!/3$4()

5',%$3)!#"6).(/)7$8/#'(),')
5'1/9%&'):&;&#-)

<$(-).(/)

0/1&'2)
<$(-).(/)

<$(-)!#"6).(/)7$8/#'()=/*&#/)>2?/#(/)
@?/'-),')$).',2,#/1%&'$3):$(/A:#&((&?/#)

0-"24)

+,6"#/)BC))D0-$#()$'2)0-#,9/(DE))!#"6)"(/)9$8/#'()$-A$A63$'1/)$F/#)(-"24)2/(,6')

sforrow
Typewritten Text

sforrow
Typewritten Text
Methods Development				-47-			Case-Based Methods Workgroup Report



!
!
! !
!
!

! !!

!

!"#$%&'()*'##"+,&-!"%!"*."!/,*-0,+-)-,+.!1#-2 !"34"(&",!255")*2,-(-#2!.!
56789:;86<=>?76, !"#$%&'$( !"#$%&'$(

@6ABC6 -D6C )*+, )-*. ),/ )0* )-, ). )/ )* )- )1 23 41 4- 4* 4/ 4. 4-, 40* 4,/ 4-*. 4*+,

5$%6&7#(89:(;<(&=>&?$(& 1 1 1 1 1 1 1 1 1 1 -11 @. @, @/ @* @1 .+ .1 A+ A1 ,+

.(&.+"()!,'$,$.*!),+E,
-::,&?C>=BF?GHI:?C, B-61C

DE& B-61C -6- -6* 16@ -60 16. -61 16, -6/ -6- 16* -60 160 -6- -6* -6+ -6/ -6- -60 16@

FG!& B-61C

HFI& B-61C

H%#=J(& B-61C

-::,*6G;=C?7BC9, B-61C

K$%LM9& B-61C

FN7I& B-61C

(%<&

J!),*E,'$,')K"*,5"+!,
-::,&?C>=BF?GHI:?C,56>G, B-61C

KF5&";L"O"%=#$& B-61C

9:PL9O:=<J(#$& B-61C

O(%9O:=<J(#$& B-61C

<9:<"'MO:=<J(#$& B-61C

%L"9Q"R(&R"'#(<S<$& B-61C

-::,*6G;=C?7BC9, B-61C

";L9:(R&$%(#="R$ B-61C

O(%9)9T=;"$%$ B-61C

(%<&

NO$(#89S=;&U";R=V$&
BI9W$C

&&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&& &&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&&

&&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&& &&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&&

&&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&& &&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&&

&&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&& &&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&&

&&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&& &&&&&X&&&&&&&X&X&&&X&X&XX&&&&&&X&X&&&&&&&&&&&&&&&&&&X&X&&&&&&&&&&&&&X&&&&&&&&&&&&XX&&&X&X&&&&&&&X&&&&X&&&&X&&&&&X&XXXX&&&&&&&X&&&&&&

!EY?25&,96&&7=%(;S9:&>=#M9%&>=#&R"$P:9W&=>&<9$()O9$(R&R9%9&>=#&$"T;9:&T(;(#9S=;&";&D";")H(;S;(:&

sforrow
Typewritten Text

sforrow
Typewritten Text
Methods Development				-48-			Case-Based Methods Workgroup Report

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text



!
!
! !
!
!

! !!

!
) )

!"#$%&'($ !)*&+),%&'($ -./0/12345.67 !)*&+),%&'($8935.:;0< =/0/12345.67
>6?8:@2836?282AB5?20C D1/518D21?5.%&/E289F518++(G! ++(G HI:I128D21?5.%&/E2 ++(G

"#$%&'(&)*+,&-.&/%('0%&10+,&'2,3'$%4 !&526%.7'+%8&3*+%+&9&:&70#'0&;0&%.7'+%8! /;&<.7'+20%&=2,>'? !&526%.7'+%8&3*+%+&9&:&70#'0&;0&%.7'+%8! /;&<.7'+20%&=2,>'?

@*;+&/%('0%&@.A5*BC&-.>#6,%0B*)!AD)*+,&EA*BC&EF !&5%.7'+%8&3*+%+&9&:&;0&26%.7'+%8!&&& !&5%.7'+%8&3*+%+&9&:&;0&26%.7'+%8!&&&

@
%(
G

H#
I%
);

J0
'/

G

J'
++
G

K
*;
/%

K
*;
/%

J'
++
G

J0
'/

G

H#
I%
);

@
%(
G

JA @
%(
G

H#
I%
);

J0
'/

G

J'
++
G

K
*;
/%

K
*;
/%

J'
++
G

J0
'/

G

H#
I%
);

@
%(
G

@
%(
G

H#
I%
);

J0
'/

G

J'
++
G

K
*;
/%

K
*;
/%

J'
++
G

J0
'/

G

H#
I%
);

@
%(
G

70'/*/);&26%.7'+%8 B15K6K7L82AB5?20 "',*) 70'/*/);&26%.7'+%8 B15K6K7L82AB5?20 70'/*/);&26%.7'+%8 B15K6K7L82AB5?20
L M N O P < @ = Q R L M N O P < @ = Q R R>Q R>@ R>P R>N L M N O P < @ = Q R R>Q R>@ R>P R>N

STU VW XT YY Z[ U\T UVZ USY U[V UTS USSY U\U SZ WY VV [S WS [Y W[ Z[ VW UGT UGV UGS UGU U\U SZ WY VV [S WS [Y W[ Z[ VW UGT UGV UGS UGU

+A

]%
6+
#^
B%

_G
&]
%6

+#
^B
%

_G
&]
7%

3#
13

]%
6+
#^
B%

_G
&]
%6

+#
^B
%

]7
%3
#1
3

_G
&]
7%

3#
13

]7
%3
#1
3

PMO`-<&[/G&&J',%6^*)&('0$*,&('0&8#+7)*;&'(&3*+%>/*+%8&8*,*&('0&+#C6*)&C%6%0*^'6&#6&K#6#>]%6^6%)&

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text
Methods Development				-49-			Case-Based Methods Workgroup Report

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text

sforrow
Typewritten Text


	MS_MethodsDevelopment_CaseBasedReport_20110904_sf2
	I. INTRODUCTION
	II. THE SELF-CONTROLLED CASE SERIES
	A. WHEN SHOULD A DISTRIBUTED SYSTEM FOR ACTIVE MEDICAL PRODUCT SURVEILLANCE USE CASE-BASED DESIGNS FOR SAFETY MONITORING?
	1. Definitions and Illustrations
	2. The main strength of case-based designs: self-controlled comparisons eliminate between-person confounding.
	3. The main difference among case-based designs: directionality and its relation to within-person confounding.
	a. Unidirectional designs reduce reverse-causality bias.
	b. Bidirectional designs reduce exposure-trend bias

	4. Case-based designs complement cohort designs, but analyzing intermittent users requires accurate data on exposure timing 

	B. MULTIVARIATE SELF-CONTROLLED CASE SERIES
	C. RECOMMENDATIONS TO MINI-SENTINEL
	D. REFERENCES

	III. THE SELF-CONTROLLED CASE SERIES: RECENT DEVELOPMENTS
	A. OVERVIEW
	B. LONGITUDINAL OBSERVATIONAL DATABASES
	C. THE SELF-CONTROLLED CASE SERIES METHOD
	1. One drug, one adverse event
	2. Multiple drug exposures and drug interactions
	3. Bayesian Self-Controlled Case Series

	D. EXTENSIONS TO THE BASIC SCCS MODEL
	1. Relaxing the Independence Assumptions I: Events
	2. Relaxing the Independence Assumptions II: The PD Model
	3. Relaxing the Independence Assumptions III: Exposures
	4. Structured SCCS Models

	E. DISCUSSION
	F. REFERENCES

	IV. APPENDIX: PICTORIAL MODELS CAN HELP ELUCIDATE STATISTICAL MODELS
	A. COMPARISON OF STUDY DESIGNS
	B. UNIDIRECTIONAL MATCHED-PAIR CASE-CROSSOVER DESIGN IN RELATION TO AN INCEPTION COHORT
	C. ‘STARS AND STRIPES’ DIAGRAMS OF THE EXPOSURES OF DISCORDANT CASES
	D. POTENTIAL FORMAT FOR DISPLAY OF CASE-BASED DATA IN MINI-SENTINEL


	CaseBasedReport_Maclure pictures



