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I. INTRODUCTION 

There is a pressing public health need to monitor the safety of marketed medical products. Therapeutic 
and prevention products, such as vaccines, drugs, and devices, go through rigorous clinical trials 
evaluating efficacy and safety before being approved, but these trials are generally not of sufficient size 
to systematically detect rare adverse events and do not always include participants similar to the 
population that receives them after their marketing. Therefore, the Food and Drug Administration (FDA) 
has begun to utilize large multi-site healthcare databases to conduct postmarket surveillance studies for 
medical product safety. The FDA’s Sentinel Initiative is an example of a program designed to improve 
the evaluation of safety across a large array of FDA-regulated medical products. This task order focuses 
on the use of Sentinel data for the evaluation of the safety of vaccines for pre-specified acute, short-
term, outcomes.   
  
This report presents new statistical methods developed during the task order for assessing safety of a 
vaccine with a single time exposure using a prospective cohort observational study design with existing 
electronic healthcare data for pre-specified safety outcomes. It has been assumed that we are in the 
multi-site distributed data setting in which individual-level covariate data cannot be readily combined 
across sites due to privacy concerns or propriety information policies. This task order has specifically 
focused on developing methods that estimate a risk difference since it is generally the key quantity of 
interest for informing important policy decisions. The methods developed assume that outcomes are 
acute with everyone having the same outcome window (e.g. 45 days) and therefore outcomes are 
binary. The new methods can be used to estimate and test for risk differences in both one-time and 
sequential studies. The research aim is to determine whether, for a prespecified set of safety outcomes, 
there is an excess rate of observed events in recipients of the vaccine of interest compared with a single 
comparison group. In this task order, we consider a concurrent control group defined to be comparable 
to those taking the vaccine of interest after controlling for confounders. For example, when evaluating a 
new vaccine for safety, an appropriate comparison group could be those coming into the office for a 
well visit or those who received injections of a comparable vaccine. However, we would still need to 
control for confounders such as sex, age, comorbidities, and site.  
 
The methods proposed in the task order use site-specific propensity scores with inverse probability of 
treatment weighting (IPTW) to control for confounding. The approach works well in settings in which the 
outcome is rare, but where there are numerous confounders that still need to be accounted for. 
Standard regression methods that directly adjust for these confounders can have estimation problems 
as the number of confounders increase. In the distributed data setting individual data is not available to 
fit such regression models. The new method keeps the individual-level data at the site by fitting site-
specific propensity models to estimate the probability of exposure given the confounders and then 
creates site-specific adjusted risk difference estimates using IPTW. These site-specific risk differences are 
combined across sites using proper statistical techniques to create an adjusted overall risk difference 
estimate and variance incorporating the variability of the site-specific propensity score models. Further 
extensions are proposed to the group sequential monitoring setting in which multiple analyses are 
planned to proactively assess safety issues when a new vaccine is released on the market. The report 
begins with a brief summary of the new method followed by an overview of different propensity score 
approaches. Then in Section IV the new statistical approach is presented in detail. We finish with an 
evaluation of these new methods with a simulation study in Section V.    
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II. SUMMARY OF FEATURES OF THE NEW IPTW DISTRIBUTED DATA APPROACH DEVELOPED 
IN PRISM – ACTIVITY 12 

Purpose: To develop a new method for the distributed data setting to control for multiple confounders 
in the concurrent control design with a single time exposure, e.g. vaccine, assessing elevated rates of 
rare acute outcomes when the quantity of interest is a risk difference. The method proposed is 
applicable to both a single-time analysis and a group sequential analysis design. 
   
Exposure Type: Acute Exposure (e.g. vaccine) 
 
Outcome Type: Binary Outcome (e.g. acute events that occur in a fixed follow-up period, e.g. 45days) 
 
Quantity of Interest: Risk Difference 
 
Confounding Control: Inverse Probability of Treatment Weighting 
 Works well in situations where there are enough exposed and unexposed participants to 

estimate propensity scores, but outcome is rare causing regression and other adjustment 
approaches to run into difficulties. The required proportion exposed or unexposed depends on 
total sample size and number of confounders. If you have a large dataset (>100,000 participants) 
even with a small proportion of exposed, or unexposed, (<10%) this method can still be viable as 
the propensity score can often be estimated even with a large number of confounders. However 
in small datasets a larger proportion of exposed subjects are required as the number of 
confounders increases. If the proportion exposed (or unexposed) is smaller or similar to the 
probability of outcome, then this method does not have obvious advantages over standard 
regression approaches. 

 
Distributed Data Setting: The method involves combining stratified covariate-adjusted risk difference 
estimates across sites and allows for propensity score models to be constructed separately at individual 
sites. Specifically, 

1. Construct Propensity Score (PS) models, P(exposed|confounders), at each site 
controlling for pre-specified confounders 

2. At each site calculate an adjusted risk difference estimate with corresponding variance 
using each site’s PS model as defined in the report Section IV.A.3 

3. To account for differential variability (due to varying sample sizes) across sites, and to 
not assume normality (which may not hold due to rare outcome prevalence), use an 
exact method that creates a large number of permuted datasets where outcomes are 
fixed, but observed exposures are permuted. Calculate adjusted risk difference 
estimates and corresponding variance using estimates specified in report Section IV.B.2. 

4. De-identified data combined across sites: Number of observations, the observed 
estimated risk difference, the observed estimated variance, and a dataset of permuted 
estimated risk differences and variances are provided by the sites 

5. An overall estimate of adjusted risk difference is calculated as specified in Section III.B.1 
and the distribution of this test statistic is calculated using the permuted datasets as 
outlined in Section III.B.2.   

 This method appropriately accounts for site as a confounder and correctly incorporates site-
related variability in the risk difference and in the variance estimates. Other methods (e.g., PS 
matching) typically do not. 



 
 
  
 
 

Methods Development - 6 -  Causal Inference Working Group Report 
 

 
Group Sequential Monitoring (appropriate for non-sequential one-time analysis setting as well): Uses 
an exact permutation approach (versus making asymptotic assumptions) to estimate appropriate 
distribution of test statistic, including variability of site specific propensity scores, which is important in a 
rare event setting. Assuming that your test statistic is normally distributed when events are rare may not 
be appropriate, yielding inflation of type I error. Further, a permutation approach allowed us to easily 
incorporate differential variability in the PS across sites since we are estimating site-specific PS models 
while remaining computationally feasible.  
 
Advantages: 

1. Estimates the risk difference, a quantity commonly of interest to decision-makers 
(previous approaches use relative risk) 

2. By using a propensity score, can control for a large number of confounders even when 
events are rare, given enough exposed and unexposed participants  

3. Identifiable data remains at sites; only summarized data need to be combined for 
central analyses 

4. Permits a causal inference interpretation given correct specification of the propensity 
score model, thus mimicking a clinical trial 

5. Is highly efficient – generally has more power compared with other propensity score 
confounding control approaches such as matching (although this is not the case if one 
includes in the population participants that are either extremely likely, or not likely, to 
receive the exposure of interest; requires identification of a good control group and 
restriction or trimming to reduce this problem) 

 
Disadvantages: 

1. Less well known compared to other confounding approaches 
2. Need to be careful to include a representative unexposed population otherwise very 

large weights can inflate the variance. This occurs because of how the inverse 
probability of treatment weighting works. The weight used for the unexposed 
population is the inverse of their estimated probability of being exposed. If you include 
in the unexposed population people who were very unlikely to be exposed (e.g. include 
in the unexposed population those who are 65yrs or older and the recommended 
schedule for the vaccine, or exposure of interest, is for only those 45-65yrs old) then the 
estimated probability of being exposed is very small for this subset of the unexposed 
population. If the estimated probability of being exposed is very small then the inverse 
probability of treatment weight will be very large, which inflates the variance. Methods 
such as trimming and restriction can help this problem, but the best practice is to 
choose a good comparison group first to mitigate this problem in advance. 
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III. COMPARISON OF EXISTING BASELINE CONFOUNDING ADJUSTMENT APPROACHES USING 
PROPENSITY SCORES 

Numerous approaches have been proposed to deal with confounding that arises in observational cohort 
studies with concurrent comparators. An increasingly common approach is use of a propensity score. A 
propensity score is the estimated probability of treatment selection conditional on observed baseline 
covariates. Propensity scores can be used to control for confounding in a variety of ways, such as 
matching based on the propensity score, stratifying on the propensity score, or adjusting for the 
propensity score in a regression setting.1-3 A less common, but potentially advantageous approach, is to 
address confounding by using inverse probability of treatment weighting (IPTW).3-5 IPTW has been 
shown to allow for a causal interpretation and to closely mimic randomized clinical trials if certain 
assumptions are met. Use of propensity score approaches in distributed data settings ( i.e. where 
propensity models are constructed separately at sites and then combined across sites) has not been 
sufficiently studied and may be difficult depending upon which propensity-based confounding control 
approach is applied. These difficulties are discussed in detail in each specific propensity score method 
section. Further, incorporating sequential monitoring over time may yield additional complications that 
could lead to preferences for certain propensity score approaches over others. In this section, we will 
provide a short summary of the different available propensity score approaches and potential 
limitations/advantageous that may occur, highlighting issues relevant in distributed data settings and for 
sequential monitoring. In subsequent sections, we will focus on one specific propensity score approach, 
IPTW, and how it can be applied in the Mini-Sentinel setting. 

A. WHAT IS A PROPENSITY SCORE? 

A propensity score is defined as the probability of treatment selection conditional on observed baseline 
covariates; that is, P(X|Z) where X is 1 if a subject receives the exposure of interest and 0 otherwise, and 
Z is a vector of confounders such as age and sex. In large-scale postmarket surveillance, an important 
additional confounder is site, S, since the probability of receiving the exposure of interest (EOI) and/or 
having the outcome of interest recorded in the available electronic records may be different across sites. 
The probability of receiving the EOI may differ by site due to drug protocols, physician preference, or 
other site-specific characteristics. The probability that an outcome is recorded may differ by site due to 
differing patient-specific characteristics that are not measured by observed baseline confounders, e.g. 
race or frailty are often unmeasured in electronic health records. Site variation in outcomes may also 
exist due to differential use of ICD-9 codes when relying on claims records for capturing outcomes. Due 
to these specific differences, site is typically also included as a potential confounder in an overall 
propensity score model for P(X|Z, S). Alternatively, propensity scores can be calculated within each site, 
i.e. using a model for Ps(X|Z), where the subscript s refers to a particular site. Site-specific propensity 
score models intrinsically account for interactions between site and other important variables that are 
included in the models; however site-specific propensity score models result in additional variability 
among estimated propensity scores because the sample size for each site-specific model is smaller than 
if the data were pooled across sites in a single propensity score model. Any approach that uses site 
specific propensity models should take into account this differential variability when conducting an 
analysis so that small sites will not “inappropriately” contribute to estimation “like a large site”, even 
though their estimates are much less reliable. In a distributed data setting, often only site-specific 
propensity score estimates may be possible to compute since individual-level covariate data cannot be 
readily combined across sites due to privacy concerns or proprietary information policies.  
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A further complication in using a propensity score approach arises when the study design requires 
sequential monitoring over time, as if often the case for postmarket vaccine and drug safety evaluations. 
At the first analyses time, only a small portion of data is available to estimate propensity scores. As time 
passes, more data become available to better estimate the propensity scores. Certain (design-based) 
approaches, such as matching or stratification, have difficulty in taking advantage of such new 
information, since, once a subject is matched, or placed into a propensity stratum, that subject must 
remain in the same matched set, or specified propensity stratum, for all subsequent analyses. The result 
of this is reduced control of confounding at early times points stemming from that fact that propensity 
scores estimated early in the study are less accurate than those estimated later. IPTW and adjusted 
approaches are not hindered by this limitation. We will discuss this issue further in future sections.   
 
In the rest of this section we will briefly explore and describe the different aforementioned approaches 
for confounding control in more detail and summarize their potential strengths/weaknesses. 

B. PROPENSITY SCORE MATCHING 

One popular method of confounding control in observational studies is to match an exposed participant 
to an unexposed participant based on the similarity of their respective estimated propensity scores. This 
1:1 matching can be extended to exposure matching ratios such as 1:M, where M is fixed and is the 
number of unexposed participants matched to a single exposed participant. This approach is an 
extension of an exposure matched design that uses individual baseline categorical covariates, such as 
site, age categories, and sex, to match an exposed participant to an unexposed participant within the 
same confounder stratum.  
 
Often propensity score matching is applied in combination with standard exposure matching by first 
stratifying by important confounders such as site, sex, and broad age categories, and then using 
propensity score matching within strata to implement the best matching scenario. This ensures that, for 
example, in a study where the outcome is AMI, for which site, age, and sex are strong confounders, a 
male at site A aged 40-65yrs will not be matched to a female at site B age 70-85yrs simply because they 
have comparable propensities of exposure. 
 
Given a matched dataset where the matching is done well, the data analysis is straightforward using 
conditional regression approaches, and confounding is generally well controlled. In practice, matching is 
often ignored at the analysis phase, but this has been shown to be inefficient (i.e. larger confidence 
intervals) and may introduce bias especially in the setting of time-to-event data1. Matching methods can 
also be applied in distributed data settings by treating site as a matching covariate. However, to our 
knowledge, there are no available methods for handling the differential variability of the propensity 
score across sites. A method that does not address this differential variability, essentially ignores the 
fact that confounding may not be well-controlled at some sites due to smaller sample sizes and 
imprecise estimates of propensity scores. This issue may be even more pronounced in the group 
sequential setting since at earlier analyses imprecision in propensity score estimates resulting from 
smaller amounts of data can occur, making matching potentially less effective. Further, when one 
analyzes the data frequently over time, it may be difficult to find a good match for all exposed 
individuals at each analysis time point. This can result in insufficient confounding control and increased 
bias. Below we detail the general advantages and limitations of the propensity score matching 
approach. 
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Advantages: 
 Simple (fixed sampling ratio) 
 Intuitively reflects a clinical trial setting, but the population to which the results are 

generalizable may be altered depending on how matching is conducted 
 Reduces sample size making chart review and other data collection more feasible. 
 If unexposed population is very different from exposed population then this approach will, when 

matching is possible, appropriately restricts to those that have the potential to be exposed. 
Choosing a good unexposed population and/or restricting are alternative ways to handle this 
issue. 

 
Disadvantages: 
 Does not use entire available cohort, resulting in a loss of efficiency 
 Reduction of bias relies on how well the matching is done, something that is difficult to assess 

and may be more easily compromised in a sequential monitoring setting where matching occurs 
within each new (and possibly small) increment of data  

 If the population receiving the exposure of interest is highly specialized then the ability to 
generalize the results to a broader population may be compromised, potentially hiding adverse 
events that would occur in the broader population  

 
Limitations: 
 Matching methods that take into account differential uncertainty of estimated propensity scores 

across sites and analysis times in the distributed data and group sequential monitoring settings 
have not been developed. Potential for future work using bootstrapping, but may be difficult to 
implement in practice.  

C. PROPENSITY SCORE STRATIFICATION 

Propensity score stratification is very similar to propensity score matching except that it uses the entire 
cohort instead of a matched subset. In practice stratification is done by calculating propensity scores 
and then forming strata based on percentiles of the propensity score distribution. For example, one can 
create 10 propensity score strata by using the following propensity score percentile categories 0-10%, 
11-20%, … , 91-100%. Choice of the number of strata depends on balancing the tradeoff between bias 
and inefficiency (variance). As the number of strata increases, bias decreases, but so does efficiency. 
This trade-off is particularly important in the rare event setting since only strata with at least one event 
are informative. Therefore, the number of subjects informing analyses essentially reduces to only those 
participants that reside within a stratum with at least one event. Hypothetically, if there were only 5 
events in 5 strata, a population of 10,000 in 10 strata might be reduced to, say, 5,000 in 5 informative 
strata. This occurs because approaches using stratification typically condition on strata in the analysis 
phase to control for differences across strata.  
 
In the distributed data and group sequential monitoring settings, similar issues arise for propensity score 
stratification as were described for propensity score matching. A promising method for group sequential 
monitoring that involves stratification has been developed by Li et al 20116

, but has been shown to have 
limitations when very frequent monitoring occurs or if a large number of strata are needed to control 
for confounding 7. Further work still needs to be conducted to incorporate the variability of estimated 
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propensity score models over sites and time. The following list gives a general description of advantages 
and limitations of propensity score stratification. 
 
Advantages: 
 As long as an outcome exists in every stratum, the entire available cohort is used and the results 

are generalizable to the entire cohort population  
 Has the flexibility to handle effect modification by site by requiring strata to be formed within 

site 
 
Disadvantages: 
 Selecting the number of strata to establish the appropriate bias-variance tradeoff can be 

difficult. 
 Results are generalizable only to the population from which the subcohort with informative 

strata (at least 1 outcome in stratum) was drawn. 
Limitations: 
 Stratification methods that take into account differential uncertainty of estimated propensity 

scores across sites in the distributed data setting and across analysis times in the group 
sequential monitoring setting have not been developed. There is potential for future work using 
bootstrapping, but it may be difficult to implement in practice. 

D. PROPENSITY SCORE WITH INVERSE PROBABILITY OF TREATMENT WEIGHTING 

Inverse probability of treatment weighting (IPTW) has been used in numerous contexts including sample 
survey designs and confounding control in observational studies.4, 8-10 The basic idea is to re-weight the 
observed sample (a subset of a larger population) using baseline covariate information so that an effect, 
such as a risk difference, that generalizes to the larger population of interest can be estimated. For 
example, a survey might be undertaken to assess a specific population, such as all adults aged 20-65 that 
reside within the city limits of Seattle, and a random sample of this population is identified for study. 
However, if fewer young people (e.g., 20-35yr olds) complete the survey due to response bias, our 
random sample will be older than, and no longer representative of, the desired population. If the 
sampled 20-35yr olds are representative of other 20-35 yr olds, we can account for this by upweighting 
the observed and undersampled 20-35yr olds to appropriately represent the proportion of all 20-35yr 
olds living in Seattle, and downweight the oversampled 50-65yr olds to appropriately represent the 
actual proportion of 50-65yr olds. Downweighting and upweighting allows the researcher to estimate, 
for example, the approval rating of a mayor in the entire population of Seattle instead of just among 
those that picked up the phone.  
 
Table 1: Description of how IPTW handles up and downweighting of observations 
 Unlikely to receive 

exposure of interest 
Equally likely to receive 

either treatment 
Likely to receive 

exposure of interest 
Exposed Upweighted Neutral-weight Downweighted 

Unexposed Downweighted Neutral-weight Upweighted 
 
A similar construct can be applied to control for confounding using IPTW. Propensity scores are used as 
inverse probability weights to upweight those that were unlikely to receive the treatment that they 
actually did receive, while downweighting those that were more likely to receive the treatment and did 
receive the treatment (Table 1). Similarly, among those that did not receive the treatment, the inverse 
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probability weights will upweight those that were likely to receive the treatment, but did not actually 
receive the treatment, and downweight those that were unlikely not to receive the treatment and did 
not receive it. Those that are equally likely to receive either treatment are neutrally weighted. This 
process evens out the baseline covariate distribution to allow estimation of an unconfounded average 
effect in the entire population. Under the assumption that there is no unmeasured confounding, IPTW 
mimics a randomized clinical trial, and the estimate is termed the causal effect estimate since it is 
estimating the effect as if the entire population received the exposure of interest relative to the effect if 
the entire population was unexposed. This is different then estimating the effect among those that 
received the exposure of interest relative to the effect among those that did not receive the exposure of 
interest conditional on covariates (conditional regression methods). 
  
A variety of approaches have been used in practice to estimate causal effects using IPTW weights.3 
These approaches take into account the variability of the weights in estimating the variance, usually 
through the use of bootstrapping.11 In Sections IV and V of this report we will propose and evaluate two 
extensions of these approaches: 1) to the distributed data setting for a single time analysis and 2) to the 
distributed data setting with a group sequential analysis. In addition, these methodological extensions 
are designed to estimate a causal risk difference between those exposed to a vaccine of interest and a 
comparison population and to perform well statistically even in the rare event setting, both of which are 
useful when evaluating postmarket safety endpoints. In the group sequential analysis setting we are 
able to directly account for the change in variability of the propensity score over time, but still use all of 
the data available at the new analysis to calculate updated, and more stable, propensity scores to 
estimate an adjusted risk difference. The proposed method does not require that those who were 
exposed (and therefore entered the study) earlier keep their original propensity score weights, but it 
instead allows their propensity scores to be updated using the most recent information while still 
holding the statistical properties that we desire (e.g., unbiased estimation for both the risk difference 
and variance and type I error). Below are general descriptions of advantages and limitations of this 
methodology. 
 
Advantages: 
 Uses the entire cohort and results are generalizable to population of interest 
 Estimates effects with a causal interpretation under appropriate assumptions 
 Generalizes to the entire cohort instead of to a restricted cohort 
 Can flexibly handle effect modification by site by separately modeling propensity scores at each 

site and then appropriately combining data across sites taking account differential variability 
 Has been shown to reduce the most bias and have the highest power compared to other 

propensity score approaches.12, 13 
 
Disadvantages: 
 Less familiar and less well understood in the general research community 
 Bias/variance tradeoff needs to be taken into account. Observations with very large weights can 

inflate variance so methods such as trimming and restriction need to be assessed. 8 However, 
trimming and restriction may increase bias so a careful understanding of tradeoffs should be 
obtained before applying these approaches by conducting sensitivity analyses 

 
An overview outlining the general differences between propensity score approaches can be found in 
Table 2.
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Table 2: Comparison of Propensity Score Approaches to Adjust for Baseline Confounding 
 Gold Standard: PS Matching PS Stratification PS IPTW (new) 

Regression Model 
Basic Controls for confounding Fixed ratio matching of Matches entire exposed Re-weight observed data 

Description by adjusting for all 
individual confounders 

exposed and unexposed 
by similar PS. Reduces 

and unexposed cohort by 
PS strata. Most methods 

by inverting the PS to 
generate a more 

directly in model population to a smaller limit to those with generalizable population 
subset of original dataset informative strata (at (upweight low PS and 

least one outcome in downweight high PS) 

 

 

strata) 
 

  

Challenges for  If data are combined  Site-specific PS models  Site-specific PS models  Site-specific PS models 

Application in 
Distributed 
Settings 

across sites then 
confidentially issues 

 Estimating site specific 
regression models 

imply more variable PS 
estimates 

 No available methods 
incorporate this 

imply more variable PS 
estimate 

 No available methods 
incorporate this 

imply more variable PS 
estimate 

 Can handle variability 
across sites by correctly 

usually not feasible variability across sites. variability across sites. calculating the 
(rare event and many  Can be difficult to  Number of strata can stratified variance. 
confounders) determine amount of be large (number of  Sensitive to choice of 

confounding control. sites times number of exposure population 
With different models PS strata) which and making certain 
across sites: What is a reduces number of observations too 
good match?? How well informative strata informative (restriction 
have we matched at  Larger can have more and trimming 
different sites strata then smaller sites necessary) 
(especially at small and therefore better 
sites)? How do we confounder control. 
interpret extent/quality How do we deal with 
of overall confounder this in the analysis and 
adjustment across interpret results 
sites? accordingly? 

 
 

 
 

  

Challenges to  Assumptions such as  Earlier matching (and  More heterogeneity  Earlier confounder 

Application 
Sequentially 

normality may not be 
met in rare event 
setting 

thus confounding 
control) may be poor 

 Must keep matching 

(and thus more residual 
confounding) may exist 
within strata at earlier 

control may be less well 
done, but this is 
incorporated in the 

fixed (no re-matching analyses due to more variability of the PS 
as more data accrues) variable PS estimation  estimated risk 
to properly calculate  Must keep people in difference. 
test statistics over time original confounding  Assumptions need to 
and to not allow strata to make be made about future 
change in population sequential inference proportion of exposed 
(those included in the  Number of strata can to estimate sequential 
unexposed initially be large since it grows boundaries 
should not be dropped by number of analyses 
from future analysis) x number of sites x 

 How well are we number of PS strata. 
controlling for 
confounding? 
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IV. STATISTICAL METHODS FOR ESTIMATING THE RISK DIFFERENCE USING INVERSE 
PROBABILITY OF TREATMENT WEIGHTING IN THE DISTRIBUTED DATA SETTING WITH 
EXTENSION TO GROUP SEQUENTIAL MONITORING  

As discussed in previous sections there are several approaches for using propensity scores to deal with 
confounding arising from observational cohort studies. However, there is sparse literature evaluating 
the performance of IPTW methods in a distributed data setting like Mini-Sentinel (where typically individual 
level data remains at sites and only de-identified summary data is available for analysis) or detailing how to 
use them sequentially over time. In this section we extend IPTW methods to two specific postmarket 
safety surveillance settings: 1) Data are distributed across multiple sites (i.e. propensity models are 
formed independently at sites and then combined across sites), and 2) Data (that are either distributed 
or not distributed across sites) are group sequentially monitored over time. In Section V we will report 
the details and results of a simulation study evaluating the proposed methods and comparing them to 
existing approaches. 
 
We will first introduce the methods assuming that the analysis is being performed at a single site 
(pooled (non-distributed) data setting) and without sequential monitoring of the outcome. We will 
review IPTW statistical methods that are available for estimating the risk difference in this simple 
observational setting. Then in Section IV.B we will propose a new method that properly incorporates the 
distributed data structure. Finally in Section IV.C we will propose how to extend both distributed and 
non-distributed IPTW methods for group sequential monitoring.  

A. INVERSE PROBABILITY OF TREATMENT WEIGHTING (IPTW) APPROACHES WITH NO 
DISTRIBUTED DATA STRUCTURE OR SEQUENTIAL MONITORING 

The IPTW approach can be applied using estimating equations to estimate quantities of interest 
including odds ratios (OR), relative risks (RR), and risk differences (RD). In this task order, we focused on 
the risk difference (RD) since it is a highly relevant quantity of interest for medical decision making and 
policy changes, particularly for vaccines. However, it is also possible to similarly extend approaches 
involving RRs and potentially to ORs, but this is less straightforward. Numerous studies have already 
assessed the performance of applying the IPTW approach for OR and RR effect estimation,13-15 but few 
have evaluated these approaches for the RD.3, 12 In this section we will first detail general methods for 
the pooled (non-distributed) data setting, including introducing notation and presenting standard 
approaches for IPTW risk difference estimates.  

1. Estimating propensity scores in a single site setting 

Assume at a single site, s, we have outcome Ysi (i=1, ... , Ns), with treatment Xsi , equal to 1 if subject i at 
site s has the exposure of interest, and equal to 0 otherwise, and let Zsi be a set of measured 
confounders. Define, Xsi to be 1 or 0 if the subject i at site s is exposed to the treatment or not. Then 
define the propensity score, esi, as the probability of receiving, i.e. being exposed to, the treatment Xsi 
given confounders Zsi, so that esi=P(Xsi=1|Zsi). We can estimate esi using logistic regression assuming a 
logistic model, logit(E(Ysi))=Zsi βZ, where βZ is estimated using the maximum likelihood approach. This is 
typically done in practice and yields siê =(1+exp(-Zsi βZ ))

-1. These propensity scores will be used as the 

inverse probability weights to upweight individuals who were estimated to be unlikely to receive the 
treatment, but actually did receive the treatment, while downweighting individuals who were estimated 
to be likely to receive the treatment and did receive the treatment. Similarly among those that did not 
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actually receive the treatment, the inverse probability weights will upweight those estimated to be likely 
to receive to the treatment and downweight those estimated to be not likely to receive the treatment. 
This evens out the baseline covariate distribution, across exposed and unexposed populations, to allow 
one to estimate a population unconfounded average effect estimate. 

2. Generalized Weighted Least Squares Regression (GWLS) for Risk Difference Estimates 

This approach uses standard generalized weighted least squares regression to estimate a risk difference. 
Specifically it assumes a linear regression model, but incorporates confounding adjustment using inverse 
probability weighting. To calculate a risk difference we assume the following outcome distribution, 
 

Ysi~ N(β0+βXXsi,σ2wsi), 
 
where 
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In this setup, since our outcome Ysi is binary, β0 estimates the probability of outcome in the unexposed 
group and βX is the risk difference estimate of interest. σ 2 is a nuisance parameter estimating the 
variability of Ysi, but the IPTW are incorporated in the variance component of the model to give more 
weight (lower variance) to those less likely to receive the treatment that they actually received and less 
weight (larger variance) to those more likely to receive the treatment that they actually received. The 
model parameters can be estimated using standard weighted least squares regression. However, since 
the outcome is binary and not normally distributed it is better to estimate the variance using robust 
standard errors.16 This approach does not take into account the variability of the propensity scores. The 
following methods will further this approach to account for the fact that the propensity scores are 
estimated and may be differential across sites. 

3. Risk difference estimates derived directly to incorporate propensity score estimation 

There are numerous approaches available to estimate the risk difference using IPTW and propensity 
scores.3 For this report we have chosen one weighting approach. We initially included a doubly robust 
estimate, but this was found to be infeasible for the rare event setting (even when the probability of 
outcome was as high as 5%) since doubly robust estimates require modeling the probability of outcome 
conditional on confounders within the exposed group and separately modeling the same quantity within 
the unexposed group. Specifically, because of the small number of events, at least one of the models 
often failed to be estimable. Therefore we used a standard approach originally proposed by Rosenbaum 
et al5 which takes the following form, 
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The estimated variance of s∆̂ is derived using the empirical sandwich method taking into account that esi 

is estimated. The formula for the variance is given by, 
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If the esi are not estimated, such as in the case of known sample weights, then the variance of s∆̂ can be 

estimated as, 
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which is larger than ( )s∆̂V̂ . This variance, )ˆ(V~ s∆ , will be used later when describing a permutation 

approach for the distribution of the standardized test statistic under the null. 
 
It should be noted that bootstrapping is the most standard approach for obtaining IPTW variance 
estimators. However, we chose this empirical estimator approach because it is simpler and 
computationally faster to use making it more practical to implement, especially in the context of a 
distributed data setting.  
 
In the following section, we will extend this approach to the distributed data setting in which propensity 
scores and corresponding test statistics are estimated at each site and then combined across sites to 
test scientific hypotheses. We will use the scenario where data are pooled across sites to evaluate the 
operating characteristics and potential information loss of the combined site-specific estimates as part 
of our simulation study. 

B. INCORPORATING THE DISTRIBUTED DATA SETTING 

1. Stratified IPTW Method 

 
A variety of approaches exist for combining data across sites. The most straightforward approach is to 
use a stratified modeling approach and treat each site’s estimate as independent. Specifically, for the 

risk difference with site-specific estimate, s∆̂ , a valid overall population estimate, ∆̂ , is 
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where ws can be the sample size of the site, Ns, or the inverse of the variance of the estimator from that 

site, )ˆ(V̂ s∆ . However, due to potential instability of the site-specific variance estimates in the rare 

event setting, we found that weighting with the sample size performed much better, and we therefore 
present this approach in our simulation study. Note that other effect estimates, such as a relative risk, 
could be weighted using a similar approach.  
 
Another standard approach would be to pool the individual-level data across sites and treat site as a 
covariate. This model will be treated as the gold standard since efficiency gains should be realized by 
using pooled data, but if there is an interaction with confounders by site it may lead to a biased 
estimate. A third approach for combining data across sites, which we will call the naive approach, is to 
combine estimates but ignore the fact that the propensity scores were modeled differently across sites. 
Specifically, using the site-specific propensity weights as if they were derived in a single model pooled 
across sites and just calculating a weighted risk difference estimate directly.  
 
In Section V we will evaluate approaches using different assumptions to address which method is 
preferred. Since the naïve method fails to account for the uncertainty and potential differential sites 
effects that arise when propensity scores estimated from different site-specific models are combined 
together, we do not assess it here. Our simulation study evaluates a standard linear regression approach 
adjusting for covariates directly in the model with robust standard errors for estimation of the risk 
difference with data pooled across sites (referred to as GLM), the IPTW approach with data pooled 
across sites using unstratified estimator from Section IV.A.3, and the new stratified IPTW estimator 
(referred to as IPTW_s) which estimates site-specific IPTW estimates and then combines them across 
sites in the manner detailed in Section IV.B.1. This framework allows us to assess the differences 
between the commonly used GLM regression adjustment approach and the IPTW approach in the ideal 
situation where individual-level data are shared (pooled) across sites, as well as the performance of the 
stratified estimator relative to these other two. 

2. Permutation Test for the Rare Event Data Setting 

The previous sections have developed a framework for mean and variance estimation of an IPTW risk 
difference estimate and addressed issues specific to the distributed data setting. These estimates have 
been shown to be asymptotically normal using standard central limit theory reasoning.3 However, in the 
rare event setting it is often preferable to use non-parametric derivations when performing tests of 
statistical significance in order to better hold important statistical properties such as type I error. In this 
section we will describe one such method, a permutation approach, for this one-time analysis setting 
and in the Section IV.C.3 will extend this approach to the group sequential monitoring setting.  
 
The null hypothesis of interest in the postmarket safety setting is that there is no treatment effect, i.e. 
H0: ∆s=0, implies that Xsi is independent of Ysi conditional on confounders Zsi. Therefore, to derive a 
permutation test under the null, which is used to estimate p-values, one can simply permute all X's while 
fixing the outcome and confounder data as observed, ((Ys(1), Zs(1)), … , (Ys(Ns), Zs(Ns))), resulting in a 
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permutation, Xs
p =(Xs(1)

p, … , Xs(Ns)
p ), where p indicates the pth of Nperm permutations. However, since we 

are randomly permuting X's we observe that the propensity score for the permutated dataset is 

constant, i.e. P(Xs
p |Z)=P(Xs

p)=∑=

SN

i ssi NX
1

/ , since Xs
p is independent of Z, for all p. Once we fix the 

propensity scores to be constant, we must incorporate this into the estimate of variance of the 

estimator for the permuted data. Specifically, for the permuted data the estimated is not )ˆV( s∆ but 

)ˆ(V~ s∆ , where the correction due to estimated propensities has been removed. Keeping the propensity 

scores constant allows for computational efficiency when calculating the following stepped permutation 
algorithm: 
 
For p=1,…,Np where Np is large, 
 

Step 1: Within each site permute observed X’s to form (Xs(1)
p, … , Xs(ns)

p ) 

Step 2: Set all propensity scores within each site s to be, esi=∑=

SN

i ssi NX
1

/ . 

Step 3: Calculate s∆̂ and )ˆ(V~ s∆ on the permuted data to create p
s∆̂ and )ˆ(V~ s

p ∆ , respectively. 

Step 4: If not in the distributed data setting then return Zs
p = )ˆ(V~ˆ

s
pp

s ∆∆ , otherwise 

calculate p∆̂ and )ˆ(V~ ∆p from the site specific estimates and return Zp = )ˆ(V~ˆ ∆∆ pp . 

 
Given the Np permuted test statistics under the null one can calculate an empirical, one-sided p-value as 
the following,  

 1

ˆ( )
pN

p

p

p

I Z Z
P

N
=

≥
=
∑

 

where Ẑ is the standardized test statistic computed from the observed, non-permuted dataset using 

risk difference, s∆̂ ,and variance of the risk difference, )ˆ(V̂ s∆ , in the non-distributed setting, or risk 

difference, ∆̂ , and variance, )ˆ(V̂ ∆ , in the distributed data setting. We use a one-sided p-value instead 
of two-sided since the hypothesis often evaluated is if the exposure of interest has a higher risk of 
outcome compared to the unexposed population. If a two side p-value is of interest then simply taking 
the absolute value of both the permuted test statistics and observed test statistic will result in a two-
sided p-value. 
 
Note that the permutation test will provide tests of statistical significance, but not provide 95% 
confidence intervals for the risk difference estimates. One can do this using the Wald-type estimates 

with the variance, )ˆ(V̂ ∆ , or can conduct non-parametric bootstrap approach which will mimic the 
permutation approach for hypothesis testing. The bootstrap approach requires sampling with 
replacement from the observed data, ((Ys1, Zs1 , Xs1), … , (YsNs, ZsNs ,XsNs), a full set of bootstrapped data 
((Ys(1), Zs(1) , Xs(1)), … , (Ys(Ns), Zs(Ns) ,Xs(Ns)). On each of the bootstrapped datasets the propensity model must 
be refit at each site and the adjusted risk difference estimates must be recalculated. Requiring the 
propensity model to be refit each time adds significant amounts of computational time and potential for 
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issues with model convergence, which makes the permutation approach much more feasible especially 
in the next section when discussing extension to group sequential monitoring.   

C. INCORPORATING GROUP SEQUENTIAL MONITORING 

Another nuance of postmarket vaccine safety surveillance is the need to detect elevated rates of 
adverse events as quickly as possible, which motivates the use of routine monitoring. When multiple 
tests are performed over time and stopping rules for signaling a safety problem are defined, formal 
group sequential monitoring approaches are necessary to hold the overall false positive error rate (type 
I error). We will propose two general group sequential monitoring methods that incorporate IPTW. The 
first method uses a standard group sequential approach derived in the context of randomized clinical 
trials for more common outcomes.17 The second approach is derived in the context of flexible regression 
methods for the rare adverse event setting.18 In the simulation study we will evaluate performance of 
these methods in the rare event setting and with a relatively common testing frequency, which may be 
important for active surveillance studies.  

1. Group Sequential Data Framework 

Now that we are in the context of group sequential monitoring we must introduce the concept of 
multiple analysis times. Specifically, assume that accruing data will be analyzed at specific time points 
(t=1,…,T). We also assume that an individual i at site s is either exposed to the vaccine, Xsi(t)=1, or not 
exposed, Xsi(t)=0 and either has the outcome of interest, Ysi(t)=1, or does not ,Ysi(t)=0, before analysis 
time t. Note that since we are assessing acute outcome events with short follow-up windows it is 
standard to only include participants in the study population after their short follow-up window (e.g. 45 
days) has elapsed so that everyone has the same follow-up time. There are other data lag time issues 
that are also standard that have been discussed elsewhere and will be not discussed in this report.19, 20 
Further, assume that the cumulative number of participants observed at site s up to analysis time t is 
Ns(t). If in the distributed data setting, further assume that the cumulative total number of observed 

people across sites at analysis time t is N(t)=∑ =

S

s s tN
1

)( . 

 
The same null hypothesis is tested at each analysis time t, HO: ∆(t)=0, and if the test statistic at analysis t 
exceeds a pre-defined critical boundary, c(t), it signals a significantly elevated rate of events in the 
exposed group at analysis t; otherwise, the study continues to the next analysis time until the pre-
defined end of the evaluation, N(T). At each analysis, new information accumulates, which includes new 
participants since the last analysis who were either exposed or unexposed to the vaccine. Different 
approaches for incorporating updated data yield different assumptions that need to be accounted for in 
the calculation of the critical boundary. The critical boundary can be chosen in numerous ways, but it 
must maintain the overall type I error rate across all analyses, taking into account both multiple testing 
and the skewed distribution of the test statistic that results when one conditions on whether or not 
earlier test statistics exceeded the specified critical value. A general review of sequential monitoring 
boundaries has been presented by Emerson et al21 and is beyond the scope of this report, but we will 
present an approach specific to the observational surveillance setting and one general existing method 
used in randomized clinical trials that can be applied in an observational setting. 
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2. Group Sequential Lan-Demets Method (GS LD) 

This is a standard group sequential method developed by Lan and Demets17 that assumes a normal 
distribution to derive a sequential monitoring boundary using a specified error-spending function. The 
derived boundary can then be used to compare any normally distributed test statistic. Specifically, an 
error spending approach uses the concept of cumulative alpha or type I error, α(t), defined as the 
cumulative amount of type I error spent at analysis t and all previous analyses, 1, … , t-1. We assume 
that 0<α(1)< α(2)<…< α(T)= α, where α is the overall type I error to be spent across the evaluation 
period. The function α(t) can be any increasing monotonic function that preserves family-wise error21, 
but there are several common approaches including the Pocock boundary function α(t)=log(1+(exp(1)-

1)N(t)/N(T))α, O'Brien-Fleming boundary function α(t)= ( )( ))(/)(/12 2/1 TNtNZ α−Φ− , and the 

general power boundary function α(t)=(N(t)/N(T))hα for h>0. The most commonly used boundary 
function for safety evaluations has been a flat, Pocock-like, boundary on a standardized test statistic 
scale. Compared to an O'Brien Fleming boundary, which is commonly used in efficacy studies, this 
boundary spends more α at earlier versus later analyses given the amount of statistical information, or 
sample size, observed up to time t. This flat boundary has been discussed as Pocock-like, but a Pocock 
boundary when testing more frequently (quarterly or more often) is not completely flat.7 For further 
discussion of boundary shapes and statistical trade-offs between them in practice for postmarket 
surveillance see Nelson et al19. 
 
Given the error spending boundary function, Lan and Demets developed an asymptotic conditional 
sequential monitoring boundary for any asymptotically normal test statistic based on independent 
increments of data. This boundary can be computed and used to compare to almost any standardized 
test statistic, including one that controls for confounding. For our setting of IPTW risk difference the 

standardized test statistic is, Z_s(t)= ))(ˆ(V̂)(ˆ tt ss ∆∆  for non-distributed data, and 

Z(t)= ˆ ˆ ˆ( ) V( ( ))t t∆ ∆  for distributed data. The value of Z(t) (resp Z_s(t)) is then compared to the 

asymptotic conditional monitoring boundary developed by Lan and Demets resulting either in a decision 
to stop if Z(t) (resp Z_s(t )) exceeds the monitoring boundary or in a decision to continue collecting 
additional data (if at end of study then stop for no evidence of elevated risk). This is an appealing 
approach because the boundary is very simple to calculate and relies on a well-defined asymptotic 
distribution. However, in practice with rare events and frequent testing (which implies a small amount 
of new information between analyses) the asymptotic properties of the boundary fail to hold. This 
problem is analogous to the scenario where an exact test may be preferred to an asymptotically normal 
test when the sample size is small. The new method that we introduce in the next section has sought to 
address the shortcomings of this approach to allow for better statistical performance in a wider variety 
of settings. 

3. Group Sequential IPTW Permutation Approach (GS WPerm) 

This method will extend the permutation approach initially presented in Section IV.B.2 for use in the 
group sequential setting. For the group sequential boundary formation we will use a general unifying 
boundary definition developed by Kittleson and Emerson.22 This approach defines the boundary as a 
general function of time c(t)=au(t) where u(t) is a function dependent on the proportion of statistical 
information (e.g., sample size) up to time t and is of the form u(t)=(N(T)/N(t))1-2ω , where ω>0 is a fixed 
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parameter depending upon design (e.g. u(t)=1 is Pocock-like and u(t)=(N(T)/N(t))0.5 is O'Brien and 
Fleming-like). One solves for the constant a using an iterative simulation approach to hold the overall 
type I error at α. Specifically, a can be obtained via the following stepwise process: 

Step 1: At analysis time t permute data following the permutation approach in Section IV.B.2 to 
obtain a permuted standardized test statistic Zp(t). 

Step 2: Choose a value of a; if Zp(t)≥ a, then Sigp=1 (signal) and stop, otherwise continue to next 
t+1. 

Step 3: If t=T, then Sigp=0 (no signal). 
 
This process is repeated a large number of times, Nperm, and the empirical α-level for the boundary is 

calculated as ∑ =
= pN

p permN
1 p /Sigα̂ . One solves for a by repeating the simulation and changing a until 

αα =ˆ , the desired type I error. 
 
This simulation framework requires that we have a complete dataset, (Xsi, Ysi(t), Zsi), for all analysis time 
points t=1, … ,T . However, this is not practical at earlier analysis times t<T. To get around this, at times 
t<T we can instead make assumptions about how the data look at future time points. Specifically, to 
derive the permutation approach under the null we only need to know the prevalence of X and Y at 
future looks since P(X|Z)=P(X) under the null. Therefore, to approximate the future prevalence of X and 
Y, we can sample the future observations, N(T)-N(t), by sampling with replacement from the observed 
(Xsi,Ysi). This will create a complete dataset necessary to perform the permutation approach described 
previously for all analyses. 
 
In practice, at each new analysis time we will keep the prior critical values c(1), … ,c(t-1) since these 
were the signaling thresholds used at previous analysis times. Using these values, we will then solve for 
the current analysis time critical value c(t) using the newly updated observed information which may 
have different prevalence of outcomes compared to what we had assumed during previous analysis 
times and potentially different sample sizes than initially planned. Allowing both different expected 
outcome prevalence and sample size at a given look affects the variability of the estimator and therefore 
the corresponding signaling threshold c. Therefore, at each analysis time the boundary will be updated 
in order to mimic the original boundary family (i.e. stay constant if Pocock-like boundary), but it will 
move slightly compared to the initially planned boundary in order to keep the overall type I error 
constant as the variability of the data changes over time. 

V. SIMULATION STUDY TO EVALUATE PERFORMANCE OF IPTW METHODS 

The following simulation study was conducted to evaluate the operating characteristics of a stratified 
IPTW estimator of the risk difference due to a specific exposure of interest in the context of postmarket 
safety surveillance. As detailed above, IPTW is used to control for confounding due to variables other 
than site, and stratification is used to control for confounding due to site. This is because in the 
postmarket surveillance setting obtaining sufficient amounts of data to detect relatively rare adverse 
events often requires the involvement of multiple Data Partners at different sites. Barriers to effective 
data sharing, such as privacy concerns and proprietary information policies, makes pooling of individual-
level data across sites rarely used unless deemed critical to the question of interest, and so stratified 
methods that allow for efficient use of site-specific, individual-level data are desirable. Furthermore, 
it is necessary to develop methods capable to conduct single time analyses, as well as group sequential 
analyses on accruing data. In both instances, it is important to understand the operating characteristics 



 
 
  
 
 

Methods Development - 21 -  Causal Inference Working Group Report 
 

of proposed estimators in order to effectively evaluate quantities such as the false positive rate 
(type I error) and the average time to detection of a true signal. 
 
Section V.A below details the design and results of simulations evaluating the proposed stratified IPTW 
estimator for a two-year, one-time study analysis compared to the IPTW estimator and the gold 
standard adjusted regression estimator applied to data pooled across sites. Section V.B provides the 
same information but in the context of a two-year study where multiple analyses are conducted at 
particular intervals over the study period, i.e., a group sequential analysis. In both the one-time and 
group sequential analyses the risk difference due to the exposure of interest is varied, the two-year 
incidence of outcome in the unexposed portion of the population varies from 1% to 5%, the proportion 
of exposed individuals in the study population is varied from 25% to 50%, the proportionate distribution 
of the sample among the sites changes from an equal sample size at each of three sites to a Mini-
Sentinel-like site distribution of one small site (10%) and two larger sites (45% each), and the strength of 
confounding by site takes on three different configurations: 1) smaller odds of exposure in two sites 
compared to a third , 2) no difference in exposure odds between the three sites and 3) greater odds of 
exposure in two of the sites relative to the third. The strength of confounding by other variables such as 
age and sex is held fixed as well as the total sample size of 10,000 across simulations. In the case of a 
one-time study analysis, we further assess a very rare event setting where the two-year incidence of 
outcome in the unexposed is 0.02% and the sample size is increased to 100,000, as well as a setting 
where the effect of certain confounders on exposure differs by site, i.e., site modifies the effect of 
another variable with respect to exposure.  

A. ONE TIME STUDY ANALYSIS 

1. Data Structure 

For this type of scenario, the outcome of interest, Yi(t), is a binary outcome that is 1 if the outcome 
occurred during the fixed follow-up period (e.g. 45 days after taking vaccine), or 0 otherwise. Below is 
the specific step-wise simulation design for creating a dataset of N study participants for (i=1,…,N); 

1) Start date, Di, is the time in which individual i is enrolled in the study and this is uniformly 
distributed throughout the two-year (720 day) study, Di ~ Discrete Uniform(1,719);  

2) Site distribution, Si~Multinomial(p=(p1,p2,p3)), represents the proportionate distribution of 
study participants among three sites. In this study we have explored two potential site 
distributions. The first is an equal distribution of participants across the three sites with 
p=(1/3,1/3,1/3). The second, sometimes referred to as a Mini Sentinel-like distribution, yields 
a distribution where two sites are quite large relative to the third with p=(0.10, 0.45, 0.45). 
The variable Si is generated from the multinomial distribution, and then the two 
corresponding binary (dummy) variables, Si1 and Si2, are generated for use in regressions and 
calculations using design matrices. 

3) Confounder distributions : The simulations performed for this study include a simple binary 
confounder (sex), Z1i, which is distributed as Bernoulli(0.50), and a continuous confounder 
(age), Z2i, which is distributed as Uniform(35,65) and then centered at 50 and scaled so that a 
one-unit change is equivalent 10 years. Additionally, the site variable comes from a 
multinomial distribution as detailed in 2) above.  

4) Exposure distribution conditional on confounders, two different scenarios:  
a. Site is a confounder but does not interact with other confounders: 
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b. Site is a confounder and interacts with other confounders: 
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In both scenarios a and b, exp(βx,0) = P(Xi|Si=0, Zi=0), which in the confounding scenario 
considered in this study represents the probability of exposure for men (or women depending 
on which sex is coded as 1 or 0) in site 1 who are 50 years old. Furthermore, for each 
coefficient other than βx,0, exp(β) is the odds ratio of exposure associated with a one unit 
change in that particular variable holding the other variables fixed. For each simulation we 
solved for βx,0 so that the overall probability of X was fixed at either 50% or 25% across all 
simulation configurations. Details of the methods used for finding this solution are provided in 
the appendix. 

5) Outcome distribution conditional on exposure and confounders:  
The distribution of the outcome Yi is Bernoulli with mean defined by the following logistic 
model: 
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Markov Chain Monte Carlo integration is used to set the marginal, population-level probability 
of an event, P(Y|X=0) to the desired level, 1%, 5% or 0.02% in the very rare case, and then 
setting the marginal probability of an event in the exposed to P(Y|X=0)+RD where RD defines 
the desired risk difference, which, in this study, is varied between 0 (no effect) and 
P(Y|X=0)*1.5. In essence this involves solving for βy,0 above such that P(Y|X=0) equals the 
desired probability of outcome in the unexposed, and then using that solution to solve for βy,x 

such that P(Y|X=1)=P(Y|X=0)*1.5. The details of this procedure are provided in the appendix. 
This simulation set-up allows us to vary strength of confounding by manipulating exp(βy,z) or exp(βx,z), 
and to set the marginal probabilities of exposure and outcome. 

2. Equivalently sized sites 

Situation:  
• One-time analysis comparing methods across probability of the outcome of 1% and 5% for a 

two-year study with 10,000 participants 
• Sample is equally distributed across three sites, i.e. p=(1/3, 1/3, 1/3)  
• Three different effect sizes are examined: No effect (Power = Type I error), as well as 1.25 

and 1.5 times the probability of outcome in the unexposed group. The resulting true risk 
differences are given in Tables 1a & 1b 

• The odds ratio of exposure due to a one unit change in the binomial and continuous 
confounders is fixed at 2 and the site effect varies in magnitude from 0.5 to 1 (no effect) to 2 
and is fixed for two of the sites relative to the third 

• The odds ratio of outcome relative to a one unit change in the binomial, continuous and site 
confounders is fixed at 2 
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a. Prevalence of Exposure is 50% 

Results for this section are provided in Table 1a, Section V11.  
Main Conclusions:  

• All three methods appear to approximately hold type I error 
• As probability of outcome increases, power increases 
• Stratified IPTW estimator performs comparably to both adjusted regression (GLM) and IPTW 

estimators using data pooled across sites 
• Change in site-specific confounding strength and/or direction only modestly effects power  

b. Prevalence of Exposure is 25% 

Results for this section are provided in Table 1b, Section V11.  
Main Conclusions:  

• All three methods approximately hold type I error for 1% prevalence by consistent inflation 
of type I error occurs for the GLM method for 5% prevalence especially as two sites are 
more likely to be exposed compared to one site 

• As probability of outcome increases power increases, though power tends to be lower than 
in the case of 50% exposure, especially for the IPTW estimators 

• Stratified IPTW estimator performs similarly to estimators using data pooled across sites 

3. Mini-Sentinel like site distribution 

Situation:  
• One-time analysis comparing methods across probability of the outcome of 1% and 5% for a 

two-year study with 10,000 participants 
• 10% of study sample comes from one site and the remaining 90% are split evenly across the 

other two sites, i.e. p=(0.10, 0.45, 0.45) 
• Three different effect sizes are examined: No effect (Power = Type I error), as well as 1.25 

and 1.5 times the probability of outcome in the unexposed group. The resulting true risk 
differences are given in Tables 2a & 2b 

• The odds ratio of exposure due to a one unit change in the binomial and continuous 
confounders is fixed at 2, and the site effect varies in magnitude from 0.5 to 1 (no effect) to 
2 and is the same for two of the sites relative to the third 

• The odds ratio of outcome relative to a one unit change in the binomial, continuous and site 
confounders is fixed at 2 

a. Prevalence of Exposure is 0.50 

Results for this section are provided in Table 2a, Section V11.  
Main Conclusions:  

• All three methods appear to approximately hold type I error, though type I error is slightly 
inflated when site confounding set at 0.5 and slightly deflated when site confounding is set 
at 2 for all estimators 

• As probability of outcome increases power increases 
• Stratified IPTW estimator performs similarly to estimators using data pooled across sites 
• At a true relative risk of 1.25, when confounding by site is present, power is decreased for all 

estimators at both 1% and 5% incidence (as confounding effect increases).  
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b. Prevalence of Exposure is 0.25 

Results for this section are provided in Table 2b, Section V11.  
Main Conclusions:  

• All three methods appear to approximately hold type I error, though type I error is 
slightly deflated for all estimators when site confounding is set at 0.5 in the case of 1% 
incidence 

• Type I error for the adjusted regression estimator (GLM) is elevated for the case of 5% 
incidence for all site confounding settings similar to what was found for equally sized 
site distribution 

• Type I error is slightly deflated for the IPTW and stratified IPTW estimators when no site 
confounding is present in the case of 5% incidence 

• As probability of outcome increases power increases, though power tends to be lower 
than in the case of 50% exposure (when accounting for elevated type I error) 

• Stratified IPTW estimator performs similarly to estimators using data pooled across sites 

4. Very Rare Event Setting 

Results for this section are provided in Table 3a and 3b, Section V11.  
Situation:  

• One-time analysis with probability of outcome of 0.02% comparing methods across 
prevalence of exposure of 50% and 25% for a two-year study with 100,000 participants 

• Site distribution is varied from uniform (table 3a) to Mini-Sentinel like (table 3b) 
• Odds ratios for binomial, continuous and site confounders set to 2 for both exposure and 

outcome 
Main Conclusions:  

• All three methods appear to approximately hold type I error under the uniform site 
distribution 

• Type I error is inflated under the MS-like site distribution where prevalence of exposure is 
50%, though this does not occur when prevalence of exposure is 25% 

• Stratified IPTW estimator performs similarly to pooled data estimators 
• Power increases slightly as prevalence of exposure increases 
• Detection limit is large for achieving acceptable power, RR between 2 and 3 for 80-90% 

power even when sample size is at 100,000. 

5. Interaction with exposure by site 

Results for this section are provided in Table 4, Section V11.  
Situation:  

• One-time analysis with comparing methods across probability of outcome of 1% and 5%, 
prevalence of exposure of 50% and 25% and both uniform and MS-like site distributions for 
a two-year study with 10,000 participants. 

• In the model for exposure, the effect of the continuous confounder (age) varies by site. The 
odds ratios of exposure for sites 1, 2 and 3 are 0.5, 1.0 and 2.0, respectively, for a 10 year 
increase in age 

• Odds ratios for binomial confounder in the exposure model is set to 2 
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• Odds ratios for the binomial, continuous and site variables in the outcome model are set to 
2 

• Three models were tested: 1) The IPTW estimator for data pooled across sites using the 
correct weighting model which includes an interaction between age and site; 2) the IPTW 
estimator for the pooled data where the weighting model is misspecified by ignoring the 
interaction between age and site; and 3) the stratified IPTW estimator which using site-
specific weighting models and thus should mimic the correctly specified model for the 
pooled data 

• Effect sizes between a relative risk of 1 and 2 are explored, with the corresponding true risk 
differences given in table 4 

Main Conclusions:  
• Type I error is inflated for the misspecified model in all cases. Especially as prevalence 

increases to 0.05 with type error as high as 15% 
• Stratified IPTW estimator performs similarly to the pooled estimator with the correct 

weighting model 

B. GROUP SEQUENTIAL STUDY ANALYSIS 

1. Data Structure 

In the case of sequential analyses, the data structure is exactly as described in Section V.A.1 with the 
addition of multiple analyses over time. In this case we consider performing an analysis at each look, l 
for l=1, … , L. The looks occur at time tl using a subset of the data such that Di< tl, i.e., each participant 
included in the study at look l was exposed to the exposure of interest prior to time tl. 

2. Evenly sized sites 

Situation:  
• A two-year group sequential study with 10,000 total participants where the first look occurs 

at 180 days with quarterly looks thereafter for a total of 7 looks 
• Sample is equally distributed across three sites, i.e. p=(1/3, 1/3, 1/3)  
• Compares methods across probability of the outcome of 1% and 5% 
• Odds ratios of exposure for binary and continuous confounders set at 2 for all simulations, 

while the odds ratio of exposure for two sites relative to the third varies over the values 0.5, 
1.0 and 2.0 

• Odds ratios for outcome relative to binary, continuous and site confounders set at 2 for all 
simulations 

• Evaluation metrics are power, average time to detection of a signal and average time to 
study end 

a. Prevalence of Exposure is 50% 

Results for this section are provided in Table 5a, Section V11.  
Main Conclusions:  

• Type I error is slightly inflated for all estimators in the case of 1% incidence of outcome, 
but particularly so for the IPTW estimators when site confounding is present 
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• Power may still be slightly inflated for the IPTW estimators as a relative risk of 1.25 in 
the case of 1% incidence, but power appears to converge for all three estimators at a 
relative risk of 1.5. In this case, the IPTW estimators have slightly lower average time to 
detection, 7-14 days shorter, and study end than the GLM estimator 

• In the case of 5% incidence of outcome all estimators approximately hold the type I 
error, the IPTW estimators tend to have slightly lower power, 1.7%-2.9% difference, at 
moderate effect sizes (RR=1.25), but times to study end are similar across the three 
estimators 

• As probability of outcome increases, power increases 
• Stratified IPTW estimator performs similarly to estimators using data pooled across sites 

b. Prevalence of Exposure is 0.25 

Results for this section are provided in Table 5b, Section V11.  
Main Conclusions:  

• Type I error is slightly deflated for all estimators in the case of 1% incidence of outcome 
• Power is comparable across the three estimators, but time to study end tends to be 

shorter for the IPTW methods in the 1% prevalence case 
• In the case of 5% incidence of outcome all estimators approximately hold the type I 

error for the case of 0.5 and no site confounding but when site confounding is 2, the 
GLM estimator shows signs of inflation and the IPTW estimators show signs of deflation. 
This trend continues for the power at a RR of 1.25 which makes interpretation of 
differences time to detection and study end difficult 

• As probability of outcome increases, power increases and power is slightly lower 
compared to the case of 50% probability of exposure 

3. Mini-Sentinel like site distribution 

Situation: 
 

• A two-year group sequential study with 10,000 total participants where the first look occurs 
at 180 days with quarterly looks thereafter for a total of 7 looks 

• 10% of study sample comes from one site and the remaining 90% are split evenly across the 
other two sites, i.e. p=(0.10, 0.45, 0.45) 

• Compares methods across probability of the outcome of 1% and 5% 
• Odds ratios of exposure for binary and continuous confounders set at 2 for all simulations, 

while the odds ratio of exposure for two sites relative to the third varies over the values 0.5, 
1.0 and 2.0 

• Odds ratios for outcome relative to binary, continuous and site confounders set at 2 for all 
simulations 

• Evaluation metrics are power, average time to detection of a signal and average time to 
study end 

a. Prevalence of Exposure is 0.50 

Results for this section are provided in Table 6a, Section V11.  
Main Conclusions:  
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• Type I error is moderately inflated for all estimators in the case of 1% incidence of 
outcome, particularly when there is no site confounding or the OR of exposure for site is 
set at 2 

• Type I error for all estimators tends to be less inflated in the case of 5% incidence, which 
is again more prominent when the OR for exposure due to site is set at 2 versus 0.5 

• Time to detection and study end is comparable in all instances though variability in 
power makes minor differences between estimators difficult to interpret 

• As probability of outcome increases, power increases 
• Stratified IPTW estimator performs similarly to estimators using data pooled across sites 

b. Prevalence of Exposure is 0.25 

Results for this section are provided in Table 6b, Section V11.  
Main Conclusions:  

• Type I error is moderately deflated for all estimators in the case of 1% incidence of 
outcome 

• Type I error for GLM estimator is slightly inflated in the case of 5% incidence of outcome 
• Time to detection and study end is comparable in all instances though variability in 

power makes minor differences between estimators difficult to interpret 
• As probability of outcome increases, power increases, though power tends to be lower 

than in the case of 50% exposure, especially for the IPTW estimators 
• Stratified IPTW estimator performs similarly to estimators using data pooled across sites 

VI.  DISCUSSION AND FUTURE WORK 

This task order has developed a new statistical method, stratified IPTW estimation using propensity 
scores, for conducting postmarket safety studies in a distributed data setting. This method can be used 
to estimate and test for differences in risk in both one-time and sequential studies. We have specifically 
focused on developing methods that estimate a risk difference since it is generally the key quantity of 
interest for informing important policy decisions.  Using simulation studies we have assessed the 
performance of these methods relative to standard regression techniques applied to pooled (non-
distributed) data. The simulation results show that stratified IPTW methods perform comparably to 
pooled estimators in the rare event setting when confounding is present. Moreover, the proposed 
extension to group sequential monitoring also proved to be comparable to standard methods with non-
distributed data. Therefore, our overall conclusion is that the stratified IPTW methods are a viable 
approach to estimating risk differences in the postmarket surveillance safety setting when data is 
distributed among many sites. Future work comparing this IPTW stratified approach to propensity score 
matching and propensity score stratification still need to be explored. Extensions to relative risks and 
odd ratio stratified regression approaches need to be developed and evaluated when the quantity of 
interest is not a relative risk. 

A. TASK ORDER DELIVERABLES 

• Mini-Sentinel Report including non-statistical write-up of methods, statistical write-up of 
methods, and results of the simulation evaluation 

• Code: We have created R code to run all of the IPTW methods including non-distributed one-
time analysis, distributed one-time analysis, non-distributed group sequential, and distributed 
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group sequential. The code has been given to the FDA, but is also available at 
http://faculty.washington.edu/acook/software.html  

http://faculty.washington.edu/acook/software.html
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VII. TABLES AND FIGURES FOR SIMULATION STUDY 

Table 1a. Power across varying strength of confounding and probability of outcome for the case of a 
binary (sex), a continuous (age) and a categorical confounder (site) with a binary outcome. 
Analysis type: Single; Probability of Exposure: 50%; Outcome confounding strength: OR of 2; Site 
distribution: Uniform 

Effect Size Confounders Power 

  RD OR (X|Z,S) P(Y)=1% P(Y)=5% 
RR P(Y)=1% P(Y)=5% Z1 Z2 S1 S2 GLM IPTW IPTW_S GLM IPTW IPTW_S 

2 2 0.5 0.5 0.059 0.058 0.058 0.049 0.039 0.039 
1.00 0.00 0.00 2 2 1 1 0.052 0.054 0.048 0.049 0.049 0.046 

2 2 2 2 0.042 0.050 0.048 0.051 0.049 0.052 
2 2 0.5 0.5 0.298 0.303 0.305 0.848 0.817 0.816 

1.25 0.0025 0.0125 2 2 1 1 0.309 0.310 0.300 0.798 0.797 0.796 
2 2 2 2 0.283 0.304 0.293 0.799 0.791 0.795 
2 2 0.5 0.5 0.687 0.678 0.677 0.999 0.998 0.999 

1.50 0.005 0.025 2 2 1 1 0.683 0.677 0.680 1.000 1.000 1.000 
2 2 2 2 0.688 0.696 0.686 1.000 1.000 0.999 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; 
GLM=generalized linear model with adjustment for confounding using data pooled across sites; IPTW=inverse probability 
weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted estimator 
 
 
 
Table 1b. Power across varying strength of confounding and probability of outcome for the case of a 
binary (sex), a continuous (age) and a categorical confounder (site) with a binary outcome. 
Analysis type: Single; Probability of Exposure: 25%; Outcome confounding strength: OR of 2; Site 
distribution: Uniform 

Effect Size Confounders Power 
  RD OR (X|Z,S) P(Y)=1% P(Y)=5% 
RR P(Y)=1% P(Y)=5% Z1 Z2 S1 S2 GLM IPTW IPTW_S GLM IPTW IPTW_S 

2 2 0.5 0.5 0.045 0.049 0.046 0.060 0.053 0.057 
1.00 0.00 0.00 2 2 1 1 0.052 0.049 0.044 0.061 0.043 0.040 

2 2 2 2 0.050 0.042 0.048 0.090 0.041 0.048 
2 2 0.5 0.5 0.286 0.269 0.276 0.796 0.734 0.725 

1.25 0.0025 0.0125 2 2 1 1 0.319 0.293 0.287 0.855 0.788 0.786 
2 2 2 2 0.334 0.275 0.277 0.901 0.775 0.782 
2 2 0.5 0.5 0.659 0.627 0.646 0.997 0.992 0.994 

1.50 0.005 0.025 2 2 1 1 0.686 0.649 0.647 0.998 0.997 0.998 
2 2 2 2 0.734 0.648 0.648 0.999 0.995 0.997 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; 
GLM=generalized linear model with adjustment for confounding using data pooled across sites; IPTW=inverse probability 
weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted estimator 
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Table 2a. Power across varying strength of confounding and probability of outcome for the case of a 
binary (sex), a continuous (age) and a categorical confounder (site) with a binary outcome. 
Analysis type: Single; Probability of Exposure: 50%; Outcome confounding strength: OR of 2; Site 
distribution: Mini-Sentinel 

Effect Size Confounders Power 
  RD OR (X|Z,S) P(Y)=1% P(Y)=5% 
RR P(Y)=1% P(Y)=5% Z1 Z2 S1 S2 GLM IPTW IPTW_S GLM IPTW IPTW_S 

2 2 0.5 0.5 0.063 0.067 0.064 0.059 0.054 0.059 
1.00 0.00 0.00 2 2 1 1 0.049 0.051 0.053 0.056 0.056 0.056 

2 2 2 2 0.043 0.043 0.042 0.039 0.038 0.040 
2 2 0.5 0.5 0.314 0.308 0.304 0.825 0.809 0.816 

1.25 0.0025 0.0125 2 2 1 1 0.322 0.326 0.323 0.834 0.829 0.829 
2 2 2 2 0.301 0.302 0.308 0.803 0.790 0.791 
2 2 0.5 0.5 0.700 0.707 0.702 1.000 1.000 1.000 

1.50 0.005 0.025 2 2 1 1 0.680 0.678 0.675 1.000 1.000 0.999 
2 2 2 2 0.705 0.718 0.703 1.000 1.000 1.000 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; 
GLM=generalized linear model with adjustment for confounding using data pooled across sites; IPTW=inverse probability 
weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted estimator 
 
 
 
Table 2b. Power across varying strength of confounding and probability of outcome for the case of a 
binary (sex), a continuous (age) and a categorical confounder (site) with a binary outcome. 
Analysis type: Single; Probability of Exposure: 25%; Outcome confounding strength: OR of 2; Site 
distribution: Mini-Sentinel 

Effect Size Confounders Power 
  RD OR (X|Z,S) P(Y)=1% P(Y)=5% 
RR P(Y)=1% P(Y)=5% Z1 Z2 S1 S2 GLM IPTW IPTW_S GLM IPTW IPTW_S 

2 2 0.5 0.5 0.037 0.032 0.034 0.067 0.046 0.051 
1.00 0.00 0.00 2 2 1 1 0.047 0.046 0.046 0.068 0.033 0.032 

2 2 2 2 0.058 0.055 0.049 0.072 0.047 0.048 
2 2 0.5 0.5 0.296 0.274 0.275 0.815 0.754 0.747 

1.25 0.0025 0.0125 2 2 1 1 0.297 0.271 0.265 0.853 0.757 0.760 
2 2 2 2 0.298 0.270 0.271 0.859 0.748 0.753 
2 2 0.5 0.5 0.652 0.622 0.620 0.999 0.999 0.999 

1.50 0.005 0.025 2 2 1 1 0.701 0.657 0.654 0.999 0.996 0.996 
2 2 2 2 0.686 0.639 0.635 0.999 0.996 0.996 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; 
GLM=generalized linear model with adjustment for confounding using data pooled across sites; IPTW=inverse probability 
weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted estimator 
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Table 3a. Power for very rare event setting (P(Y)=0.02%) comparing estimators across varying 
prevalence of exposure case of a binary (sex), continuous (age) and categorical confounder (site) with a 
binary outcome. 
Analysis type: Single; Outcome confounding strength: OR of 2; Site distribution: Uniform 

Effect Size Confounders Power 
    OR (X|Z,S) P(X)=50% P(X)=25% 

P(Y) RD RR Z1 Z2 S1 S2 GLM IPTW IPTW_S GLM IPTW IPTW_S

0.0002 0.0000 1.0 2 2 2 2 0.054 0.063 

 

0.064 0.045 0.057 

 

0.058 
0.0002 0.0002 2.0 2 2 2 2 0.571 0.574 0.564 0.492 0.508 0.496 
0.0002 0.0004 3.0 2 2 2 2 0.931 0.926 0.924 0.924 0.905 0.901 
0.0002 0.0006 4.0 2 2 2 2 0.993 0.993 0.990 0.992 0.992 0.992 
0.0002 0.0008 5.0 2 2 2 2 1.000 1.000 1.000 1.000 1.000 1.000 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; 
GLM=generalized linear model with adjustment for confounding using data pooled across sites; IPTW=inverse probability 
weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted estimator 
 
 
 
Table 3b. Power for very rare event setting (P(Y)=0.02%) comparing estimators across varying 
prevalence of exposure case of a binary (sex), continuous (age) and categorical confounder (site) with a 
binary outcome. 
Analysis type: Single; Outcome confounding strength: OR of 2; Site distribution: Mini-Sentinel 

Effect Size Confounders Power 
    OR (X|Z,S) P(X)=50% P(X)=25% 

P(Y) RD RR Z1 Z2 S1 S2 GLM IPTW IPTW_S GLM IPTW IPTW_S

0.0002 0.0000 1.0 2 2 2 2 0.081 0.089 

 

0.088 0.044 0.052 

 

0.054 
0.0002 0.0002 2.0 2 2 2 2 0.547 0.557 0.562 0.520 0.545 0.532 
0.0002 0.0004 3.0 2 2 2 2 0.935 0.933 0.932 0.912 0.911 0.918 
0.0002 0.0006 4.0 2 2 2 2 0.998 0.993 0.994 0.992 0.991 0.988 
0.0002 0.0008 5.0 2 2 2 2 1.000 1.000 1.000 0.999 0.999 0.999 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; 
GLM=generalized linear model with adjustment for confounding using data pooled across sites; IPTW=inverse probability 
weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted estimator 
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Table 4. Power comparing IPTW estimators with correct specification of weighting model using pooled data, misspecified weighting model  
using pooled data and stratified weighting (IPTW_s) for a setting where a continuous confounder (age) interacts with site relative to exposure 
and probability of outcome, probability of exposure and site distribution are varied. 
Analysis type: Single; Outcome confounding strength: OR of 2 for binary (sex), continuous (age) and categorical (site) variables; 
Exposure confounding strength: OR of 2 for binary (sex) variable, ORs of 0.5, 1.0 and 2.0 for continuous variable (age) at sites 1, 2 and 3 

P(Y) P(X) Effect Size Power Power 

        Uniform Site Distribution MS Like Site Distribution 
RD RR Correct Misspecified Correct Misspecified 

IPTW_S IPTW_S 
    Model Model Model Model 

0.000 1.0 0.054 0.096 0.056 0.069 0.081 0.067 
0.001 1.1 0.112 0.175 0.113 0.133 0.168 0.136 

0.5 0.003 1.3 0.406 0.539 0.403 0.410 0.464 0.412 
0.005 1.5 0.715 0.827 0.716 0.731 0.779 0.723 
0.010 2.0 0.990 

0.01 
0.000 1.0 0.053 

0.997 
0.094 

0.990 0.993 0.994 0.992 
0.051 0.064 0.082 0.067 

0.001 1.1 0.104 0.173 0.109 0.114 0.131 0.116 
0.25 0.003 1.3 0.316 0.449 0.310 0.353 0.401 0.347 

0.005 1.5 0.613 0.777 0.614 0.638 0.686 0.638 
0.010 
0.000 

2.0 0.964 
1.0 0.054 

0.994 
0.157 

0.968 0.979 
0.054 0.052 

0.985 
0.073 

0.981 
0.048 

0.005 
0.5 

0.015 
1.1 0.268  
1.3 0.929  

0.543 
0.988 

0.267  0.296 
0.925  0.939 

0.389 
0.971 

0.294 
0.941 

0.025 
0.05 

0.000 
1.5  0.999 
1.0 0.043 

1.000 
0.153 

0.999  1.000 
0.046 0.045 

1.000 
0.064 

1.000 
0.046 

0.005 
0.25 

0.015 
1.1 0.235 
1.3 0.860 

0.481 
0.963 

0.238 0.234 
0.854 0.852 

0.297 
0.911 

0.230 
0.863 

0.025 1.5 0.993 0.999 0.994 0.999 1.000 0.999 
* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; RR=relative risk; RD=risk difference; OR=odds ratio; Correct model=IPTW estimator with interaction included in weighting model 
using pooled data; Misspecified model=IPTW estimator where weighting model ignores interaction using pooled data; IPTW_s=stratified IPTW estimator 
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Table 5a. Power, days to rejection, and days to study end across varying strength of confounding and probability of outcome for the case of a 
binary (sex), a continuous (age) and a categorical confounder (site) with a binary outcome. 
 
Analysis type: Sequential; Frequency: First look at 180 days, quarterly thereafter; Duration: Two years; Probability of Exposure: 50%; Outcome 
confounding strength: OR of 2 for all variables; Site distribution: Uniform 

P(Y) 
   

Effect Size Confounders Power Time to Detection Time to Study End 

IPTW IPTW_S 
  

 
RR 

  
RD Z1 

2 2 

OR (X|Z,S) 
Z2 S1 

0.5 

S2 

0.5 

GLM 

0.061 

IPTW 

0.065 

IPTW_S 

0.069 

GLM 

357.0 

IPTW 

336.5 

IPTW_S 

341.7 

GLM 

697.9 695.1 693.9 
1.00 0.00 2 2 1 1 0.058 0.064 0.063 339.8 312.2 311.4 698.0 693.9 694.3 

2 2 2 2 0.059 0.075 0.071 334.1 343.2 339.7 697.2 691.7 693.0 
2 2 0.5 0.5 0.253 0.267 0.277 410.2 392.0 394.8 641.6 632.4 629.9 

1% 1.25 0.0025 2 2 1 1 0.255 0.270 0.266 398.1 378.7 375.2 637.9 627.8 628.3 
2 2 2 2 0.255 0.277 0.272 396.7 385.3 396.1 637.6 627.3 631.9 
2 2 0.5 0.5 0.598 0.594 0.603 399.0 392.0 392.8 528.0 525.2 522.7 

1.50 0.005 2 2 1 1 0.595 0.598 0.604 390.6 377.6 381.0 524.0 515.3 515.3 
2 2 2 2 0.612 0.608 0.596 399.1 384.7 386.3 523.6 516.2 521.1 
2 2 0.5 0.5 0.051 0.045 0.050 347.6 326.0 345.6 701.0 702.3 701.3 

1.00 0.00 2 2 1 1 0.055 0.056 0.060 337.1 343.9 331.5 698.9 698.9 696.7 
2 2 2 2 0.056 0.054 0.054 329.5 328.3 330.0 698.1 698.9 698.9 
2 2 0.5 0.5 0.770 0.741 0.743 389.0 385.9 383.1 465.1 472.4 469.7 

5% 1.25 0.0125 2 2 1 1 0.728 0.718 0.711 377.7 375.0 372.5 470.8 472.3 473.0 
2 2 2 2 0.743 0.719 0.717 396.5 388.0 388.6 479.6 481.3 482.4 
2 2 0.5 0.5 0.998 0.998 0.998 235.6 242.2 242.5 236.5 243.2 243.5 

1.50 0.025 2 2 1 1 0.999 0.999 1.000 240.0 244.1 243.9 240.5 244.6 243.9 
2 2 2 2 0.998 0.996 0.995 239.6 243.5 242.9 240.6 245.4 245.3 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; GLM=generalized linear model with adjustment for 
confounding using data pooled across sites; IPTW=inverse probability weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted 
estimator 
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Table 5b. Power, days to rejection, and days to study end across varying strength of confounding and probability of outcome for the case of a 
binary (sex), a continuous (age) and a categorical confounder (site) with a binary outcome. 
Analysis type: Sequential; Frequency: First look at 180 days, quarterly thereafter; Duration: Two years; Probability of Exposure: 25%; Outcome 
confounding strength: OR of 2 for all variables; Site distribution: Uniform 

P(Y) 
  

Effect Size Confounders 
OR (X|Z,S) 

Power Time to Detection Time to Study End 

  
  

RR 
  

RD Z1 
2 

Z2 
2 

S1 
0.5 

S2 
0.5 

GLM 

0.032 

IPTW 

0.038 

IPTW_S 

0.040 

GLM 

388.1 

IPTW 

374.2 

IPTW_S 

389.3 

GLM 

709.4 

IPTW 

706.9 

IPTW_S 

706.8 
1.00 0.00 2 2 1 1 0.044 0.045 0.046 405.0 394.0 383.5 706.1 705.3 704.5 

1% 

2 2 2 2 0.039 0.032 0.034 396.9 351.6 367.9 707.4 708.2 708.0 

1.25 0.0025 
2 
2 
2 

2 
2 
2 

0.5 
1 
2 

0.5 
1 
2 

0.190 
0.225 
0.240 

0.212 
0.238 
0.218 

0.227 
0.240 
0.223 

436.3 
462.4 
437.3 

423.3 
446.6 
422.3 

427.0 
446.3 
414.9 

666.1 
662.0 
652.1 

657.1 
654.9 
655.1 

653.5 
654.3 
652.0 

2 2 0.5 0.5 0.537 0.564 0.580 425.5 421.4 418.0 561.9 551.6 544.9 
1.50 0.005 2 2 1 1 0.583 0.571 0.571 429.5 417.8 420.1 550.6 547.5 548.7 

2 2 2 2 0.612 0.585 0.579 418.1 406.0 408.0 535.2 536.3 539.4 
2 2 0.5 0.5 0.057 0.043 0.050 391.6 380.9 397.8 701.3 705.4 703.9 

1.00 0.00 2 2 1 1 0.058 0.046 0.048 374.0 367.8 403.1 699.9 703.8 704.8 

5% 

2 2 2 2 0.068 0.031 0.035 398.4 397.7 385.7 698.1 710.0 708.3 

1.25 0.0125 
2 
2 

2 
2 

0.5 
1 

0.5 
1 

0.701 
0.780 

0.644 
0.696 

0.641 
0.696 

392.4 
387.3 

400.8 
397.8 

399.3 
401.9 

490.3 
460.5 

514.4 
495.7 

514.4 
498.6 

2 2 2 2 0.825 0.698 0.703 368.9 386.8 386.1 430.4 487.4 485.3 
2 2 0.5 0.5 0.995 0.991 0.991 254.9 272.9 272.0 257.2 276.9 276.0 

1.50 0.025 2 2 1 1 0.999 0.996 0.996 243.6 261.0 262.4 244.1 262.8 264.2 
2 2 2 2 1.000 0.997 0.996 228.7 257.1 255.6 228.7 258.5 257.5 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; GLM=generalized linear model with adjustment for 
confounding using data pooled across sites; IPTW=inverse probability weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted 
estimator 
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Table 6a. Power, days to rejection, and days to study end across varying strength of confounding and probability of outcome for the case of a 
binary (sex), a continuous (age) and a categorical confounder (site) with a binary outcome. 
Analysis type: Sequential; Frequency: First look at 180 days, quarterly thereafter; Duration: Two years; Probability of Exposure: 50%; Outcome 
confounding strength: OR of 2 for all variables; Site distribution: Mini-Sentinel 

P(Y) 
  

Effect Size Confounders 
OR (X|Z,S) 

Power 

IPTW IPTW_S

Time to Detection 

IPTW IPTW_S 

Time to Study End 

  
  

RR 
  

RD Z1 
2 

Z2 
2 

S1 
0.5 

S2 
0.5 

GLM 

0.055 0.059 

 

0.061 

GLM 

353.5 343.2 346.7 

GLM 

699.8 

IPTW 

697.8 

IPTW_S 

697.2 
1.00 0.00 2 2 1 1 0.067 0.075 0.078 349.3 331.2 339.2 695.2 690.8 690.3 

1% 

2 2 2 2 0.071 0.080 0.070 377.7 367.9 367.7 695.7 691.8 695.3 

1.25 0.0025 
2 
2 
2 

2 
2 
2 

0.5 
1 
2 

0.5 
1 
2 

0.249 
0.247 
0.243 

0.244 
0.256 
0.253 

0.248 
0.255 
0.250 

392.5 
383.7 
403.7 

373.6 
380.7 
384.5 

376.0 
377.6 
384.1 

638.5 
636.9 
643.1 

635.5 
633.2 
635.1 

634.7 
632.7 
636.0 

2 2 0.5 0.5 0.616 0.608 0.613 405.3 399.7 395.4 526.1 525.2 521.0 
1.50 0.005 2 2 1 1 0.613 0.606 0.606 394.5 384.7 385.8 520.5 516.8 517.5 

2 2 2 2 0.619 0.623 0.625 398.7 386.1 390.0 521.1 512.0 513.7 
2 2 0.5 0.5 0.052 0.059 0.054 360.0 376.8 365.0 701.3 699.8 700.8 

1.00 0.00 2 2 1 1 0.058 0.062 0.060 344.5 345.5 360.0 698.2 696.8 698.4 

5% 

2 2 2 2 0.070 0.065 0.064 378.0 386.3 398.0 696.1 698.3 699.4 

1.25 0.0125 
2 
2 

2 
2 

0.5 
1 

0.5 
1 

0.772 
0.724 

0.754 
0.722 

0.752 
0.716 

381.0 
385.4 

384.2 
384.8 

375.2 
384.3 

458.3 
477.7 

466.8 
478.0 

460.7 
479.6 

2 2 2 2 0.741 0.717 0.717 380.0 374.4 375.9 468.1 472.2 473.3 
2 2 0.5 0.5 0.998 0.998 0.996 238.7 243.9 243.5 239.7 244.9 245.4 

1.50 0.025 2 2 1 1 0.999 0.999 0.999 240.5 244.6 245.4 241.0 245.1 245.9 
2 2 2 2 0.999 0.998 0.998 238.2 243.5 243.1 238.7 244.4 244.1 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; GLM=generalized linear model with adjustment for 
confounding using data pooled across sites; IPTW=inverse probability weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted 
estimator 
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Table 6b. Power, days to rejection, and days to study end across varying strength of confounding and probability of outcome for the case of a 
binary (sex), a continuous (age) and a categorical confounder (site) with a binary outcome. 
Analysis type: Sequential; Frequency: First look at 180 days, quarterly thereafter; Duration: Two years; Probability of Exposure: 25%; Outcome 
confounding strength: OR of 2 for all variables; Site distribution: Mini-Sentinel 

P(Y) 
  

Effect Size Confounders 
OR (X|Z,S) 

Power Time to Detection Time to Study End 

  
  

RR 
  

RD Z1 
2 

Z2 
2 

S1 
0.5 

S2 
0.5 

GLM 

0.035 

IPTW 

0.041 

IPTW_S 

0.046 

GLM 

447.4 

IPTW 

386.3 

IPTW_S 

387.4 

GLM 

710.5 

IPTW 

706.3 

IPTW_S 

704.7 
1.00 0.00 2 2 1 1 0.041 0.049 0.047 443.4 404.1 404.0 708.7 704.5 705.2 

1% 

2 2 2 2 0.040 0.048 0.041 373.5 375.0 384.1 706.1 703.4 706.2 

1.25 0.0025 
2 
2 
2 

2 
2 
2 

0.5 
1 
2 

0.5 
1 
2 

0.215 
0.222 
0.240 

0.228 
0.224 
0.237 

0.231 
0.232 
0.231 

439.5 
441.5 
435.0 

432.6 
427.9 
425.7 

428.2 
423.6 
422.7 

659.7 
658.2 
651.6 

654.5 
654.6 
650.3 

652.6 
651.2 
651.3 

2 2 0.5 0.5 0.558 0.574 0.576 413.2 402.6 402.3 548.8 537.8 537.0 
1.50 0.005 2 2 1 1 0.576 0.560 0.560 442.7 418.7 417.5 560.3 551.3 550.6 

2 2 2 2 0.576 0.559 0.557 426.1 422.3 418.7 550.7 553.6 552.2 
2 2 0.5 0.5 0.052 0.034 0.038 394.6 420.9 419.2 703.1 709.8 708.6 

1.00 0.00 2 2 1 1 0.078 0.046 0.044 455.8 428.5 425.5 699.4 706.6 707.0 

5% 

2 2 2 2 0.064 0.051 0.051 392.3 391.8 397.1 699.0 703.3 703.5 

1.25 0.0125 
2 
2 

2 
2 

0.5 
1 

0.5 
1 

0.747 
0.779 

0.679 
0.674 

0.674 
0.672 

391.3 
392.5 

399.8 
404.5 

401.1 
405.7 

474.5 
464.9 

502.6 
507.3 

505.1 
508.8 

2 2 2 2 0.780 0.668 0.671 378.0 391.3 391.3 453.2 500.4 499.4 
2 2 0.5 0.5 0.999 0.992 0.994 245.4 262.9 264.4 245.9 266.6 267.1 

1.50 0.025 2 2 1 1 0.998 0.992 0.991 245.1 261.5 262.1 246.1 265.1 266.2 
2 2 2 2 0.999 0.995 0.996 240.2 265.0 264.8 240.7 267.3 266.6 

* Bold indicates outside +/- 1.5% of the expected type I error of 0.05 
Abbreviations: X=exposure; Y=outcome event; Z=confounders; S=site; RR=relative risk; RD=risk difference; OR=odds ratio; GLM=generalized linear model with adjustment for 
confounding using data pooled across sites; IPTW=inverse probability weighted estimator using data pooled across sites; IPTW_s=stratified inverse probability weighted 
estimator
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