
The Sentinel System is sponsored by the U.S. Food and Drug Administration (FDA) to proactively monitor the safety of FDA-regulated 
medical products and complements other existing FDA safety surveillance capabilities. The Sentinel System is one piece of FDA’s 
Sentinel Initiative, a long-term, multi-faceted effort to develop a national electronic system.  Sentinel Collaborators include Data and 
Academic Partners that provide access to healthcare data and ongoing scientific, technical, methodological, and organizational 
expertise. The Sentinel Coordinating Center is funded by the FDA through the Department of Health and Human Services (HHS) 
Contract number HHSF223201400030I.  

 

 

 
Machine Learning Pilot for Electronic 
Phenotyping 
Sentinel Protocol 

 

 

Teresa B. Gibson, PhD,1 Timothy Burrell, MD,1 Sarah Bloemers, MPH,1 Cory Pack,1 Frank Yoon, 
PhD,1 Darren Toh, ScD,2 Jenna Wong, PhD,2 Adee Kennedy, MS, MPH,2 Michael Nguyen, MD,3 
Elande Baro, PhD,3 Wei Hua, PhD,3 Sai Dharmarajan, PhD,3 Rita Ouellet-Hellstrom, PhD,3 Robert 
Ball, MD3 

1. IBM Watson Health, Ann Arbor, MI, 2. Department of Population Medicine, Harvard Pilgrim Health Care Institute 
and Harvard Medical School, Boston, MA, 3. Center for Drug Evaluation and Research, Food and Drug 
Administration, Silver Spring, MD 

 

 

 

 

 

Version 1.0 

April 20, 2020 

  

http://www.fda.gov/
http://www.fda.gov/Safety/FDAsSentinelInitiative/default.htm
https://apps.na.collabserv.com/profiles/html/simpleSearch.do?searchFor=%5bMissing:%20userid%5d&searchBy=userid


 

Machine Learning Pilot for Electronic Phenotyping | Sentinel Protocol  i 

Machine Learning Pilot for Electronic Phenotyping 

Sentinel Protocol 

Table of Contents 

I. Background ........................................................................................................................................... 3 

A. Framework ........................................................................................................................................ 3 

B. Objective ........................................................................................................................................... 4 

II. Methods ................................................................................................................................................ 4 

A. Data Source ....................................................................................................................................... 4 

B. Literature Review of Clinical Indications of Rhabdomyolysis ........................................................... 5 

C. Definition of HOI Using EMR Data .................................................................................................... 6 

D. Classification of HOI .......................................................................................................................... 7 

E. Inputs to Machine Learning Models ................................................................................................. 8 

F. Study Design: Construction of Episodes ........................................................................................... 9 

III. Analysis Approach ........................................................................................................................... 10 

A. Univariate and Bivariate Statistics .................................................................................................. 10 

B. Model Approaches .......................................................................................................................... 11 

1. Candidate Models ....................................................................................................................... 11 

2. Ensemble Methods ..................................................................................................................... 11 

C. Model Training .................................................................................................................................... 12 

1. Data Splitting ............................................................................................................................... 12 

2. Hyperparameters ........................................................................................................................ 13 

3. Diagnostics .................................................................................................................................. 13 

4. Hyperparameter Tuning .............................................................................................................. 14 

D. Model Testing and Validation ............................................................................................................. 14 

1. Predictions in Testing Set ............................................................................................................ 14 

2. Overfitting ................................................................................................................................... 14 

3. Statistical Inference ..................................................................................................................... 15 

IV. Reporting of Results ........................................................................................................................ 15 

A. Table Shells ..................................................................................................................................... 16 

B. Figure Descriptions ......................................................................................................................... 17 

V. Next Steps and Timeline ..................................................................................................................... 17 

VI. References ...................................................................................................................................... 17 

Appendix A. LOINC Reference ..................................................................................................................... 22 

Appendix B. Common Data Model Predictors ............................................................................................ 23 

Appendix C. Machine Learning Definitions ................................................................................................. 28 



 

Machine Learning Pilot for Electronic Phenotyping | Sentinel Protocol  ii 

 

History of Modifications 

Version Date Modification Author 

1.0 April 20, 2020 Original version IBM Watson Health 
    
    
    
    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Machine Learning Pilot for Electronic Phenotyping | Sentinel Protocol  3 

I. Background 

Claims-based algorithms are used in the Food and Drug Administration (FDA) Sentinel’s active surveillance 
system to identify occurrences of health outcomes of interest (HOIs) and medical product safety 
assessment activities. Validation of a claims-based HOI algorithm typically involves manual review of 
information abstracted from medical records. Validation of an HOI through medical record abstraction is 
time-consuming, labor intensive, and costly. To improve on this method, this project investigates the 
feasibility of using machine learning to develop a claims-based HOI algorithm based on information from 
a linked claims-electronic medical record (EMR) database. In addition, machine learning methods to 
develop and validate claims-based signatures (or phenotypes) hold promise because they can (1) detect 
nonlinear relationships and interactions of features and (2) quickly identify clusters of inputs that may be 
difficult or impossible to find using traditional clinically informed or linear methods.1,2  

This project is implemented as part of the FDA Sentinel’s HOI 2.0 portfolio aimed at improving detection of 
HOIs. HOIs requiring clinical testing (e.g., pathology or imaging) often yield unstructured data (e.g., 
clinical reports or images) and more complex clinical interpretation to confirm the diagnosis. We chose 
an HOI requiring few laboratory tests to establish the diagnosis to reduce complexity of the evaluation. 
We reviewed several potential HOIs and selected rhabdomyolysis.  

A. Framework 

This proof-of-concept project has the potential to accelerate claims-based signature validation by 
improving the electronic phenotype development and validation process for outcomes detected from 
standardized information in a linked claims-EMR database. This new approach to algorithm development 
diverges from the usual gold standard approach with full physician adjudicated chart review of a claims 
algorithm. This project represents a new approach to algorithm development that leverages laboratory 
data as a marker of disease. Outputs generated from this project are intended to provide a claims-based 
phenotype for an HOI using machine learning analysis. Stakeholders, including the FDA, researchers, and 
clinicians, may benefit from applying this approach to other HOIs and research projects, potentially 
streamlining HOI validation.  

Figure 1 outlines the framework for development and validation of the HOI signature. Specific data 
sources for the EMR/Electronic Health Record (EHR) and claims data are the IBM® MarketScan® 
Commercial and MarketScan Medicare Supplemental Databases and the MarketScan Explorys® Claims-
EMR Data Set. These data sources are discussed further in the Methods section. EMR data contain the 
results of laboratory tests recorded using Logical Observation Identifiers Names and Codes (LOINC). 
LOINC corresponding to the clinical findings of the HOI are identified, the results of these laboratory 
tests are analyzed, and a determination of a diagnosis of rhabdomyolysis is made based on this 
information. Non-cases also can be identified in the EMR creating two groups—rhabdomyolysis cases 
and non-cases. 

Candidate predictors or input features to the claims-based algorithm for the HOI include diagnostic 
information based on the International Classification of Diseases, Tenth Revision, Clinical Modification 
(ICD-10-CM) procedures coding using Current Procedural Terminology, Fourth Edition; the Healthcare 
Common Procedure Coding System (HCPCS); and Place of Service (e.g., office, inpatient hospital, 
outpatient hospital). Other information available on claims data also can be included as candidate 
predictors. The claims data elements and HOI indication are fed into machine learning algorithms and 
the characteristics within the claims data most closely associated with the HOI are selected. The 
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combination of claims-based characteristics discovered by each machine learning algorithm determines 
an HOI electronic phenotype. To determine the accuracy of each phenotype, the claims-based electronic 
phenotype then is compared with the actual EMR determination of rhabdomyolysis diagnosis (the “gold 
standard” phenotype) using a validation data set that was not used in the training and development of 
the algorithm. Such a comparison allows evaluation of the accuracy of the claims-based electronic 
phenotypes produced by the machine learning algorithm.   

   

Figure 1. HOI Validation Framework 

Abbreviations: CPT, Current Procedural Terminology; HCPCS, Healthcare Common Procedure Coding System; ICD-
10, International Classification of Diseases, Tenth Revision; LOINC, Logical Observation Identifiers Names and 
Codes. 

B. Objective 

The aim of this project is to use a variety of machine learning classification techniques including logistic 
regression LASSO (Least Absolute Shrinkage and Selection Operator), support vector machines, a tree-
based method, and artificial neural networks, applied to a linked claims-EMR database to demonstrate 
the feasibility and efficiency of the development and validation of a claims-based HOI algorithm for 
rhabdomyolysis. This project has the potential to accelerate validation of claims-based signatures by 
improving the electronic phenotype development and validation process for outcomes detected from 
standardized information in a linked claims-EMR database. 

II. Methods 

A. Data Source 

Data sources include the MarketScan Commercial and MarketScan Medicare Supplemental Databases 
and the IBM Explorys EHR Database. The MarketScan Commercial Database provides claims information 
on employer-sponsored private health insurance provided under a variety of fee-for-service, fully 
capitated and partially capitated health plans. The MarketScan Medicare data mainly represent claims 
paid through the Medicare fee for service system. The IBM Explorys EHR Database contains deidentified, 
longitudinal clinical data across the continuum of care from ambulatory and inpatient to specialty care 
and post-acute care settings.  
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The MarketScan Explorys Claims-EMR Data Set links individual patient longitudinal treatment and claims 
records from the MarketScan Commercial Database and the MarketScan Medicare Supplemental 
Database to the same individual’s records in the IBM Explorys EHR Database. Linking is deterministic at 
the patient level, and the linked data set is deidentified as required under Health Insurance Portability 
and Accountability Act provisions.  

The MarketScan Explorys Claims-EMR Data Set contains approximately 5 million unique patients 
represented across the United States, with the highest concentration of population at 41% in the 
Midwest followed by the South, West, and Northeast regions. It comprises data from a variety of 
insurers/administrative systems, as well as a variety of provider groups, across the nation. 

For each individual in the MarketScan Explorys Claims-EMR Data Set, administrative claims history data 
are available, which is an essential feature for creating an HOI claims-based signature. Laboratory tests 
are identified by LOINC code in the EMR and are available for patient services in the inpatient and 
outpatient setting. Laboratory tests with a categorical result or numeric result value are included within 
the data set. Qualifying laboratory results include the test result, unit of measurement, and reference 
points for the test value (e.g., upper limit of normal [ULN]). Data for the study will be accessed for 
service dates beginning October 1, 2015, to coincide with the introduction of ICD-10-CM. Updated data 
from the MarketScan Explorys Claims-EMR Data Set are scheduled to be available in the second quarter 
of 2020, allowing service dates to extend into calendar year 2019. 

B. Literature Review of Clinical Indications of Rhabdomyolysis 

Rhabdomyolysis is a serious condition that results from the destruction of muscle tissue that can lead to 
acute kidney injury and death. We conducted a literature review to assess clinical characteristics to 
inform candidate predictors or input features for the machine learning algorithms. Search specifications 
included peer-reviewed articles focusing on rhabdomyolysis and associated outcomes with the search 
covering articles published from 1994 through 2019.  

Clinical symptoms for rhabdomyolysis were consistently noted in the literature as muscle pain, muscle 
weakness, and dark urine color. Rhabdomyolysis incidence was observed to occur most often in adults 
and rarely in children.3,4 It also was determined that men experience rhabdomyolysis more often than 
women.3,5 Etiology varied within the literature and focused on three causes: traumatic, exertional, and 
nonexertional (i.e., toxin or medication related).3-5, 43-61 

A well-know nonexertional cause of rhabdomyolysis are lipid lowering agents such 
hydroxymethylglutaryl (HMG) CoA reductase inhibitors, also known as statins. These are used for 
cardiovascular disease prevention and are often discontinued due to side effects such as muscle aches 
or muscle injury. Medications that inhibit statin metabolism, such as CYP3A4 inhibitors and fibrates 
(Appendix B – Medications) increase the risk of side effects and of rhabdomyolysis even more in the 
setting of statin therapy.6-42 

Diagnosis and clinical determination of the condition focused on several laboratory tests. The principal 
laboratory evidence for diagnosing rhabdomyolysis is an elevated creatine kinase (CK) serum level. 
Elevated CK is the most sensitive laboratory test for evaluating muscle injury leading to 
rhabdomyolysis.43 Rosenson (2014) provided the following specific measure of CK levels: “Mild as 3-fold 
greater than upper limit of normal (ULN), Moderate as 10-fold greater ULN, and Severe as 50-fold or 
more than the ULN.”44 Other researchers have stated that CK levels greater than 5 times the ULN are 
indicative of rhabdomyolysis.45 In the setting of statin-induced rhabdomyolysis, CK elevation levels are 
defined as 10 times the ULN.46,47,48,49 Additional research articles note that no defined magnitude of 
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elevation for CK level is available and call for a homogenous definition of CK levels for 
rhabdomyolysis.50,51 The timeline for serum CK elevation is approximately 2–12 hours after muscle 
injury, with peak levels at 24–72 hours after injury. Levels decline back to normal over the following 6–
10 days.52,53 

Myoglobulin levels also were evaluated as potential evidence for causing dark urine. The literature notes 
different views on utilization of this parameter for diagnosing rhabdomyolysis and discusses the issues 
of using myoglobin as urine dipstick testing because it is nonspecific and has a short half-life, which 
limits the sensitivity in testing.49,54,55 However, in testing for rhabdomyolysis in the intensive care unit, 
the low cost of testing myoglobulin and its initial pathophysiological role may call for its utilization in 
assessing for acute kidney injury (AKI) in the setting of rhabdomyolysis.18 However, it may be more 
useful as a screening tool rather than a diagnostic test. Additional laboratory testing for rhabdomyolysis 
included evaluation for increased muscle enzyme levels for lactate dehydrogenase, aspartate 
aminotransferase, and alanine aminotransferase.49,51,55  

In addition to diagnostic markers, the literature focuses on outcomes related to rhabdomyolysis. Severity 
of the condition can range from asymptomatic elevation of CK to severe outcomes such as compartment 
syndrome, hyperkalemia, and renal failure.54,56 Renal failure, or AKI, was noted as one of the more severe 
outcomes of rhabdomyolysis. Individuals under the age of 10 years and with a body weight of less than 
50 kg were noted to be at higher risk for potentially fatal outcomes.5 Authors noted the importance of 
early identification of causation through laboratory testing of potassium, calcium, and serum creatinine 
levels.57,58 To reduce potential negative outcomes associated with rhabdomyolysis, early identification 
and treatment with renal replacement therapy is essential.59  

Overall, the literature supports relying on elevated serum CK levels to diagnose rhabdomyolysis of any 
etiology. To distinguish elevated CK levels from other potential health outcomes, such as myocardial 
infarction, troponin levels are essential to evaluate as well.60 Early on, urine myoglobulin presence can 
be used for disease screening to expedite diagnosis and treatment to improve outcomes. Appropriate 
diagnosis methods and evaluation for AKI is essential for reducing severe outcomes such as AKI. Surgery 
without myocardial infarction involvement does not appear to be a confounder because routine 
postoperative CK level rise does not appear to be clinically significant.61 

C. Definition of HOI Using EMR Data 

The primary laboratory test used to identify rhabdomyolysis is CK. As noted in the literature review, CK 
is a primary laboratory test for evidence of muscle damage. CK level ULN for this study is defined as 200 
units/liter (U/L). The standard unit of measurement of CK will initially be set at U/L and variations of this 
measurement (international U/L, etc.). Other units of measure such as nanograms per milliliter that can 
be converted to the U/L threshold may be incorporated in the validation exercise. 

Serum creatinine testing is used to assess of the presence of AKI. Creatinine varies by sex as defined in 
Table 1. Definition of HOI Scenarios, RhabdomyolysisTable 1, with a 1.5 increase over ULN. Troponin 
testing is added to help distinguish rhabdomyolysis from other potential conditions with elevated CK 
levels such as myocardial infarction.60 Because troponin is used to distinguish rhabdomyolysis from 
other clinical conditions, lack of testing or a negative value will be assessed. Troponin negative results 
vary by LOINC test as defined in Table 1.  
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Table 1. Definition of HOI Scenarios, Rhabdomyolysis 

LEVEL CRITERIA SCENARIO 1  SCENARIO 2 

Definite 

Must have all of the following: 

CK elevation > 10–50 × ULNd  

Serum creatinine 1.5 × ULN  

- Males: 1.5 × ULN = 2.03 mg/dL 

- Females: 1.5 × ULN = 1.56 mg/dL 

Negative troponin or no troponin lab present  

CK > 10–50 × ULNd 

Serum creatinine 1.5 × ULN 

Negative troponin or no 
troponina,b,c 

CK > 10–50 × ULNd 

Serum creatinine 1.5 × ULN  

Negative troponin or no 
troponina,b,c 

or CK elevation > 50 × ULNd or CK elevation > 50 × ULNd or CK elevation > 50 × ULNd 

Probable 

Must have all of the following: 

CK elevation > 10–50 × ULNd 

Negative troponin or no troponin lab present 

CK > 10 × ULNd 

Negative troponin or no 
troponina,b,c 

CK > 10 × ULNd 

Negative troponin or no 
troponina,b,c 

Possible   CK elevation > 4 × ULNd 

Abbreviations: CK, creatine kinase; HOI, health outcome of interest; LOINC, Logical Observation Identifiers Names and Codes; 
ng/mL, nanograms per milliliter; ULN, upper limit of normal. 
a Negative troponin levels for LOINC 10839-9: value <0.04 ng/mL. 
b Negative troponin levels for LOINC 6598-7: value <0.01 ng/mL. 
c Negative troponin levels for LOINC 67151-1: value <15 ng/mL. 
d CK level ULN for this study is defined as 200 units/liter (U/L) 

As outlined in Table 1, two scenarios demonstrate cases for rhabdomyolysis with varying CK, serum 
creatinine, and troponin levels. Scenario 1 includes cases within the Definite and Probable categories, 
and Scenario 2 includes Definite, Probable, and Possible cases. Laboratory testing is specified through 
LOINC as outlined in Appendix A.  

D. Classification of HOI 

HOI (i.e., rhabdomyolysis) status represents the outcome that will be predicted by the machine learning 
algorithms in this analysis. The model outcome is expressed as a dichotomous (1/0) outcome using the 
two scenarios described in Table 1: 

• In Scenario 1, the HOI is defined as Rhabdomyolysis = Yes if Definite or Probable and No 
otherwise. 

• In Scenario 2, the HOI is defined as Rhabdomyolysis = Yes if Definite, Probable, or Possible and 
No otherwise. 

In both scenarios, noncases (0) are defined as individuals reporting a CK test with a normal result. To 
develop the claims signature, we use Scenario 1 as the main scenario and Scenario 2 as a second analysis 
to determine whether the claims signature varies when the definition of rhabdomyolysis is expanded to 
include the Possible cases.   

In the future, if time, resources, and sample sizes allow it may be instructive to develop a claims 
signature for each level of outcome (i.e., a multicategorical outcome variable). One can use various 
techniques such as an ordered logit to take advantage of the ordered nature of the outcome (e.g., 
Definite is defined using higher levels of CK than Probable). Threshold models with rhabdomyolysis 
diagnosis as a latent term may be a future refinement to take advantage of the continuous nature of the 
laboratory results values. 
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E. Inputs to Machine Learning Models 

With clinical input and information from the literature review from Section II.B., we will develop 
definitions of candidate predictors or input features for the machine learning models. We consider only 
features that can be derived from claims data such as medications, diagnoses and procedures. Features 
should be meaningful, not highly correlated with each other, and measurable. 

Definitions of candidate predictors or input features will be aligned with definitions of data elements in 
the Sentinel Common Data Model (SCDM). Analysis of medication is solely designed to assess the 
predictive performance of the algorithm and not to explain the causal role of medications. The largest 
predictors will be examined to analyze the role of medications, cast in the context of predictive purpose. 
We may also include additional information not present in the SCDM to test the explanatory or 
discriminatory power of the additional information associated with inclusion. These include laboratory 
tests and provider specialty not in the SCDM.  

Initial input features are based on categories derived from the SCDM. Table 2 includes categories 
containing input features or candidate predictors. Appendix B contains further details on the 
predictors. 

Table 2. Predictor Categories from the Sentinel Common 
Data Model 

Administrative Data 

Demographic (Age at Index Date, Sex) 

Encounter Data  

Encounter Type (Inpatient) 

Diagnosis  

Diagnosis  

Diagnosis Code Type (ICD-10-CM,  
Systematized Nomenclature of Medicine – Clinical 

Terms (SNOMED CT)) 

Medications (models will be estimated with and 
without medications) 

Medication 

Procedure  

Procedure 

Procedure Code Type (ICD-10-PCS, CPT) 

Other 

Provider specialty 

Abbreviations: CPT, Current Procedural Terminology; ICD-10-CM, 
International Classification of Diseases, Tenth Revision, Clinical 
Modification; ICD-10-PCS, International Classification of Diseases, 
Procedure Coding System; SNOMED CT, Systematized Nomenclature of 
Medicine – Clinical Terms. 
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F. Study Design: Construction of Episodes 

To construct a claims signature for rhabdomyolysis, instances of rhabdomyolysis are first identified in 
the EMR laboratory results data and a time window is placed around the rhabdomyolysis EMR events. 
Concurrent data within this event window are then extracted from the claims database to inform 
modeling efforts to discover a claims signature for rhabdomyolysis.   

The longitudinal database design is displayed in Figure 2 and follows Schneeweiss et al. (2019).62 First, 
data are extracted from the Explorys Claims-EMR Data Set with event dates from November 1, 2015, 
through July 31, 2019, coinciding with the introduction of ICD-10 codes in November 2015. Claims data 
contain paid dates through December 31, 2019. In each entry listed in the figure, the data source is 
specified: EMR for the EMR database and Claims for the claims databases (inpatient medical, outpatient 
medical, outpatient pharmacy, and enrollment data). This study anchors in patient event time, not 
calendar time.  

The figure is read from top to bottom, starting with an episode-entry date based on the existence of a 
CK test in the EMR data. An attrition table (i.e., patient counts) will be constructed to coincide with the 
order of instructions in Figure 2. For cases, this date (Day 0) coincides with the first instance of a CK test 
exceeding 4 x ULN. To determine the anchor date, a washout window is applied. For cases, this must be 
the first instance of high CK with a washout window of 60 days prior (Days [–60, –1]). After cases are 
determined based on CK results, noncases are determined and the anchor date for this group is the first 
instance of a CK test below 4 x ULN. Noncases must not have a CK result reported within the same 
washout window (Days [–60, –1]). 

Figure 2. Database Design and Episode Construction 

 
Abbreviation: EMR, electronic medical record. 
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EMR laboratory test results starting 1 week before the anchor date and 45 days after the anchor date 
are examined to determine the rhabdomyolysis level (Table 1, e.g., Definite, Probable) for each patient. 
All levels of all relevant laboratory tests (CK, serum creatinine, and troponin) are examined in this time 
window (Days [–7, +45]) to determine the level. Troponin and serum creatinine will be coded as binary 
(indicating higher/lower than threshold) to assess the level of rhabdomyolysis. Although most 
occurrences of rhabdomyolysis are resolved in 6 to 10 days,45,48 we allow for longer episodes by 
following experience in the EMR for a fixed 45 days following the index date. We look back 7 days to 
allow for different sites of care to report laboratory testing results in the EMR on dates that are 
relatively close in time. 

After the level is determined, patients who are not adults during the time window (starting 60 days 
before) are excluded (Day [–60, –60]). 

To ensure that complete claims data are available to study, an exclusion is added to ensure that all 
patients must be continuously enrolled in the claims database for the study time window of 30 days 
before the anchor date and 45 days after the anchor date (Days [–30, +45]). Finally, all medical and 
outpatient pharmacy claims are extracted during the study time window with claims data elements such 
as diagnosis codes, dates of service, procedure codes, place of service, and provider type available to 
determine the claims signature (Days [–30, +45]). 

An attrition table with sample sizes will be produced. For sample size considerations, including statistical 
power of validation testing, see Section III.D.  

III. Analysis Approach 

A. Univariate and Bivariate Statistics 

Univariate statistics are calculated for outcomes and features in the analytic file, including mean, 
median, percentile, standard deviation, skewness, and kurtosis for continuous variables. Histograms also 
are created for continuous variables. For categorical variables, frequency distributions of values are 
created. Of importance are features that have no variation, which should be removed before model 
construction. We also will count the number of episodes created per individual. 

Bivariate statistics also are created. Pairwise correlations can identify very highly correlated features 
(e.g., those with a correlation of 0.95 or greater) that provide little independent information and may be 
combined or reduced before model construction. 

In addition, contingency tables between rhabdomyolysis and each feature illustrate the unadjusted 
association between each feature and laboratory evidence of rhabdomyolysis. To assess differences in 
feature distributions between rhabdomyolysis cases and noncases, t-tests are performed for continuous 
features and chi-squared tests are performed for categorical features; these can be quickly implemented 
by regression modeling commands in statistical software.  

In some scenarios, features with no predictive value are dropped. However, to maintain consistency 
across methods, we analyze all candidate features and predictors through the univariate and bivariate 
statistics. 



 

Machine Learning Pilot for Electronic Phenotyping | Sentinel Protocol  11 

B. Model Approaches 

1. Candidate Models 

Developing a claims-based signature for rhabdomyolysis is a classification problem in which the class 
label for episode i, yi, is either 0 (noncase) or 1 (rhabdomyolysis case). Multiple episodes from the same 
patient are deduplicated when they contain the same outcomes and features, specifically clinical 
conditions, because they would provide redundant information for training the models. The data set can 
be denoted by D = {(x1, y1), (x2, y2), …, (xn, yn)}, where xi are m-dimensional vectors of input variables or 
features. A classification algorithm generally attempts to model to the relationship between y and x—
describing the relationship by a probability distribution P(x, y), which characterizes the joint probability 
of class membership and features. In implementation, the class label is based on a threshold of 

probability (e.g., Pr(yi|xi)  0.50 is defined as a case). The thresholds can be calibrated to a model 
performance measure, such as prediction error or similar diagnostic for misclassification (e.g., sensitivity 
or specificity). To determine the optimal thresholding rule, we apply cross-validation in the training set 
to determine thresholds that optimize model performance.  

The most common machine learning classification models for dichotomous outcomes are logistic 
regression, decision trees (e.g., classification trees and random forests), support vector machines, and 
artificial neural networks (see Table 3).63 For this collection of models, we will tune models in the 
training dataset to optimize their predictive performance on the scaled Brier score (see Section C.3).  

2. Ensemble Methods 

To leverage the predictive performance of all models, we apply SuperLearner, an ensemble-based 
method that weights model predictions from multiple candidate models in the ensemble and then yields 
a composited prediction that typically outperforms the prediction from any single model. The 
SuperLearner algorithm uses k-fold cross-validation to determine optimal weights that minimize 
prediction error.64 To implement the ensemble, we incorporate the individual models (Table 3), which 
will have been tuned separately in the training set. The Super Learner is accordingly tuned on the same 
diagnostic on which the candidate models were separately tuned, that is, the scaled Brier score.  

Table 3. Description of Candidate Models 

MODEL DESCRIPTION 

Logistic regression Logistic regression is characterized by a parameter/outcome relationship P(y|x) = f(x, ), 

where f is the logistic function. Model parameters () are estimated by maximum 
likelihood estimation. Logistic regression typically is less complex than other methods and 
results in parameter estimates of main effects unless interaction terms are explicitly 
entered in the model. In comparison to other classification models, logistic regression 
presents a greater degree of interpretability, that is, to characterize associations between 
outcome and features.  

LASSO logistic 
regression 

LASSO regression applies optimization and shrinkage techniques to a regression model. 
The aim is to select the smallest number of predictors with the best performance; as 
such, feature selection occurs automatically as part of the model fitting process. 
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MODEL DESCRIPTION 

Classification tree CART methods implement recursive partitioning to identify subclasses in which study 
units are homogeneous in the target variable (i.e., outcome), according to a prespecified 
objective function. Variants of CART conduct statistical tests at each node, such as 
conditional inference trees. Akin to logistic regression, a classification tree can offer 
interpretability, by showing how the dataset is recursively partitioned to form feature 
subclasses that are homogeneous in the outcome. 

Random forest This method is characterized by aggregation of predictions made by multiple decision 
trees of varying depth. Each tree is grown on a separate bootstrap resample of the 
training data; at each split the three chooses among a randomly selected subset of 
candidate features to help de-correlate the trees in the forest. This process also induces 
feature selection.  

Support vector 
machines 

This method maps the data onto a multidimensional “kernel space” within the feature 
space and uses optimization techniques to determine the location and coordinates of 
multidimensional hyperplanes that best separate observations from different outcome 
classes in Euclidean space. 

Artificial neural 
networks 

Neural networks are characterized by a semiparametric or nonparametric probability 
model (i.e., f is not known). The output is a nonlinear function of features. As an 
extension of the conventional regression framework which adopts only an input and 
output layer, a neural network contains one or more “hidden” layers between those 
layers so that the network can automatically model more complex, nonlinear 
relationships. A “deep model” has at least two hidden layers. 

Abbreviation: CART, Classification and Regression Trees; LASSO, Least Absolute Shrinkage and Selection Operator. 

We will enter all input features into each model and estimate models as is feasible. We will produce a list 
of features by importance as produced in each model. For the logistic model, this will be based on the 
coefficient absolute value. For the support vector machine with a linear kernel, feature importance can be 
determined by the relative coordinates (weights) of the vector orthogonal to the hyperplane. For artificial 
neural networks, the relative importance of a feature can be characterized by the sum of weighted 
connections between relevant nodes; additionally, the artificial neural network and its weighted 
connections can be visualized in an interpretation diagram, which shows connections between layers that 
define feature importance.   

C. Model Training  

1. Data Splitting 

Generally, low prevalence of an HOI in claims data poses challenges for standard data-splitting 
approaches—that is, into training and testing sets and for cross-validation. Data splitting based on 
stratified sampling can ensure that subsets contain exactly the same proportion of rhabdomyolysis cases 
and noncases—that is, class balancing. Specifically, we apply random sampling within each stratum 
defined by the class  

First, we will split the study data into training and testing sets in a random 80/20 split. Model training is 
based on the training set, an 80-percent sample of the study data; we will tune the model 
hyperparameters (described below) through k-fold cross-validation. Specifically, we use k-fold cross-
validation in the training set to prevent or minimize the risk of overfitting when fitting our models. We 
will explore 5- and 10-fold cross-validation; the folds will be randomly sampled from the training set 
with class balancing on cases and noncases.  
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As the “hold out” sample, the testing set is used to assess the model’s generalization error, that is, 
performance on an unseen 20-percent sample that was not used for training. Using an independent 
testing set in this way, we will evaluate whether we have indeed overfit our final models to the training 
set. In particular, reflecting a real-world test setting, it will not be balanced on rhabdomyolysis classes 
(i.e., it will not necessarily have the same proportion of cases/noncases as the training set). 

2. Hyperparameters 

Most machine learning models require tuning of hyperparameters. Hyperparameters represent higher-
level concepts whose values are specified prior to the model-fitting process and affect the structure and 
complexity (and thus potential performance) of machine learning models.  

Table 4. Hyperparameters 

METHOD R PACKAGE/PROCEDURE HYPERPARAMETERS 

Logistic regression glm N/A 

LASSO logistic regression glmnet —regularization term 

Classification tree; random forest randomForest Mtry—number of variables randomly samples 
as candidates at each split 

Ntree—number of trees to grow 

Support vector machines kernlab C—regularization term 

Polynomial degree—kernel specification 

Sigma—radial basis function kernel  

Scale 

Tau (for regularization) 

Artificial neural networks nnet Size—number of hidden units 

Decay—weight decay 

Abbreviation: LASSO, Least Absolute Shrinkage and Selection Operator; N/A, not applicable. 

We describe the main hyperparameters for each machine learning method in Table 4. To identify the 
optimal value for each hyperparameter (i.e., “tune” the hyperparameters), we will implement a grid-
search procedure (described later)—an approach commonly used to perform hyperparameter tuning. 

3. Diagnostics  

To tune the machine learning models (during training) and assess the performance of the final models 
(during testing), a loss (or objective) function must be chosen over which model performance will be 
evaluated. For rhabdomyolysis classification, accuracy is defined by the predicted class from the models, 
which generally yield predictions on the probability scale. To better account for the probability scale in 
assessing model performance for hyperparameter tuning (including threshold probabilities) in the 
training set, we propose a scaled Brier score as the primary performance diagnostic.65 To test the 
performance of the final model, we will apply bootstrapping procedures. Specifically, we will calculate 
confidence intervals on the estimated positive predicted value (PPV); these confidence intervals capture 
statistical uncertainty induced by the testing set selection.  

The final model, or ensemble, will be evaluated in the testing set, using an expanded list of diagnostic 
measures (Table 5). The result of the claims-based signature (indicating rhabdomyolysis or no 
rhabdomyolysis) is compared with the rhabdomyolysis test results (case/noncase). The same set of 
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performance diagnostics are used between Scenarios 1 and 2 to assess generalization error on the 
testing set; specifically, we focus on positive predictive value for model performance. Sensitivity analysis 
to determine the suitability of Scenarios 1 and 2 is based on the false negative and false positive rates 
(which are the additive inverses of sensitivity and specificity, specifically).  

Table 5. Statistic Measure Definitions 

MEASURE/STATISTIC DEFINITION 

Prediction error Proportion of patients whose claims-based signature (positive or negative for 
rhabdomyolysis) does not agree with clinical determination (from lab test values) 

Positive predictive value  Proportion of patients with a claims-based signature indicating rhabdomyolysis who 
have rhabdomyolysis 

Negative predictive value Proportion of patients with a claims-based signature indicating that the case is not 
rhabdomyolysis who do not have rhabdomyolysis 

Sensitivity  Proportion of patients with rhabdomyolysis who have a claims-based signature 
indicating rhabdomyolysis 

Specificity Proportion of patients without rhabdomyolysis who have a claims-based signature 
indicating that the case is not rhabdomyolysis  

4. Hyperparameter Tuning 

We adopt grid search to optimize hyperparameter values and probability thresholds. In particular, the 
scaled Brier score and classification accuracy will be estimated over a multidimensional grid of 
hyperparameter values through cross-validation. Specifically, the training set first will be split into k-
folds (using class balancing techniques, described above), and then each model will be run through 
cross-validation using each unique combination of values defined by the model’s hyperparameter grid 
and probability threshold range. We will determine the hyperparameter values and probability 
thresholds that optimize the predictive performance of the individual models and eventual ensemble. 

D. Model Testing and Validation 
Over the testing set, we will calculate the performance diagnostics in the expanded list of Table 6. 
Splitting testing from training ensures independence between data that were used to estimate the 
candidate models and those that will be used to assess its performance. To understand how model 
performance is affected by hyperparameter values, we will analyze the association between diagnostics 
and the candidate values (i.e., specified by the hyperparameter grid). Although cross-validation can 
mitigate some concerns about overfitting, the final model’s performance on the testing set will reveal 
whether these concerns remain.   

1. Predictions in Testing Set  

Models are trained on 80 percent of the target cohort from the MarketScan Explorys Claims-EMR Data 
Set. Using the final model, we will calculate predicted class probabilities in the 20-percent testing set, 
which have been set aside for this purpose. Each episode in the testing set is assigned to an HOI class—
that is, rhabdomyolysis case or noncase—using the threshold probability. These predicted classes are 
compared against the true class determined by laboratory test values under each scenario.  

2. Overfitting 

One concern in model training is overfitting. In large part, we can preempt this concern by ensuring that 
final model performance is assessed on the holdout testing set and not on the training data that are 
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used to build the model. Overfitting also can be addressed by regularization methods that aim to 
stabilize model parameter estimates at the expense of some bias. To this end, we adopt LASSO 
regression in the final ensemble (Table 4).  

3.  Statistical Inference  

To test the performance of the final model, we will apply bootstrapping procedures. Specifically, we will 
calculate confidence intervals on the estimated PPV; these confidence intervals capture statistical 
uncertainty induced by the testing set selection using the 80/20 random split. Statistical power to assess 
model performance on the estimated PPV is an inherent property of the given sample size (the 20-
percent testing set), the underlying signal (true positive cases among estimated cases), and the 
significance level (control of Type I error). We will calculate the statistical power to detect model 
performance above a threshold PPV value using conventional tests of binomial proportions. 

Table 6. Positive Predictive Value Calculation 

CLAIMS ALGORITHM 
ELECTRONIC HEALTH RECORDS CASES 

ROW TOTAL 
POSITIVE NEGATIVE 

Positive 𝑦+  𝑦− 𝑛𝑡𝑒𝑠𝑡
+  

Negative 𝑧+  𝑧− 𝑛𝑡𝑒𝑠𝑡
−  

Column total 𝑛𝑟𝑒𝑓
+  𝑛𝑟𝑒𝑓

−  𝑛 

Table 6 reflects the underlying data to calculate the estimated PPV from the predicted and true classes 
across episodes in the testing set. Specifically, estimated PPV is calculated as follows: 

𝑃𝑃�̂� =
𝑦+

𝑦+ + 𝑦−
 

We obtain a bootstrap sample of the testing set using random sampling with replacement, whereby the 
probability of selection is the inverse of the testing set size (i.e., if there are N episodes in the testing set, 
the probability is 1/N). Five hundred (B=500) bootstrap samples will be created. In each bootstrap 
sample, we will apply the final model to determine the predicted class for each episode and compare 
the prediction with the true class from the EMR laboratory values. A positive rhabdomyolysis case that is 
assigned to positive predicted HOI class will contribute to the count 𝑦+, whereas those with a negative 
predicted class will contribute to 𝑧+. Rhabdomyolysis noncases assigned to a negative predicted class 
will contribute to 𝑧−, whereas those assigned to a positive predicted class will contribute to 𝑦−. The PPV 
will be estimated in each bootstrap sample; over the 500 bootstrap iterations, the 2.5th and 97.5th 
percentile values of the estimated PPVs will be used to calculate the 95-percent confidence interval 
around the estimated PPV in the testing set.   

IV. Reporting of Results 

Results are reported in tables and figures. This section includes sample table shells (Tables 7–10) and 
figure descriptions for reporting. 
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A. Table Shells 

Table 7. Sample Table for Bivariate Analysis, Scenario X (X=1 or 2) 

VARIABLE RHABDOMYOLYSIS NO RHABDOMYOLYSIS p-VALUE 

Number    

Female, percent    

Age, years, average (std)    

Age categories, years, percent    

18–34    

35–44    

45–54    

55–64    

65–74    

75-84    

85+    

ICD-10-CM diagnosis of rhabdomyolysis, 
percent 

   

Symptom of muscle pain, percent    

Dialysis procedures, percent    

Additional variables created in file build    

Table 8. Model Comparisons, Performance Metrics 

MODEL* PPV NPV SENSITIVITY SPECIFICITY AUC 

Logistic regression      

LASSO logistic regression      

Random forest      

Support vector machines      

Artificial neural networks      

Super Learner      

Abbreviations: AUC, area under the curve; LASSO, Least Absolute Shrinkage and Selection Operator; NPV, negative predictive 
value; PPV, positive predictive value. 

*Models will be estimated as is feasible. 

Table 9. Sample Output of Model Estimation, by Machine Learning Model 

PARAMETER ESTIMATE S.E. Z-VALUE Pr(>|Z|) 

    

    

    

Table 10. Feature Importance by Machine Learning Model, Example 
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MACHINE LEARNING MODEL  
(E.G., LASSO LOGISTIC REGRESSION) 

FEATURES, RANKED BY IMPORTANCE 

  

  

  

  

  

Abbreviation: LASSO, Least Absolute Shrinkage and Selection Operator. 

B. Figure Descriptions 

Figures—Model Calibration Plots for Each Machine Learning Method 

Model calibration plots divide predicted probabilities into 10 bins (e.g., 0–0.1) and plot the mean actual 
probability of rhabdomyolysis for each bin on the y-axis. The 45-degree line depicts perfect prediction. 

Figures—Receiver Operating Characteristic Curves for Each Machine Learning Method 

V. Next Steps and Timeline 

After the protocol, next steps include execution of the machine learning analysis. Manuscript and 
project completion are set for July 2020.  
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Appendix A. LOINC Reference 

LABORATORY TEST LOINC CODE LOINC CODE DEFINITION 

Creatine kinase 50757-4 Creatine kinase.total/Creatine kinase.MB [Enzymatic activity ratio] in 
Blood 

Creatine kinase 2157-6 Creatine kinase [Enzymatic activity/volume] in Serum or Plasma 

Serum creatinine 2160-0 Creatinine [Mass/volume] in Serum or Plasma 

Troponin 10839-9 Troponin I.cardiac [Mass/volume] in Serum or Plasma 

Troponin 6598-7 Troponin T.cardiac [Mass/volume] in Serum or Plasma 

Troponin 67151-1 Troponin T.cardiac [Mass/volume] in Serum or Plasma by High sensitivity 
method 

Abbreviation: LOINC, Logical Observation Identifiers Names and Codes.  
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Appendix B. Common Data Model Predictors 

ADMINISTRATIVE 

Demographic 

Age 

Sex  

Male, female 

Encounter  

Encounter type  

Inpatient  

Emergency Department 

Diagnosis 

Description ICD-10 Code 

Acidosis   ICD-10 E87.2 

Acute kidney injury ICD-10 N17.9 

Asthenia ICD-10 R53.1 

Fever ICD-10 R50.9 

Hyperkalemia  ICD-10 E87.5 

Hyperphosphatemia  ICD-10 E83.39 

Hypocalcemia  ICD-10 E83.51 

Hypovolemia  ICD-10 E86.1 

Malignant hyperthermia due to anesthesia ICD-10 T88.3XXX 

Malignant neuroleptic syndrome  ICD-10 G21.0 

Muscle weakness (generalized)  ICD-10 M62.81 

Myalgia  ICD-10 M79.1X 

Myoglobinuria ICD-10 R82.1 

Nausea ICD-10 R11.XX 

Rhabdomyolysis  ICD- 10 M62.82 

Tachycardia ICD-10 R00.0 

Unspecified adverse effect of drug or medicament ICD-10 T88.7XXX 

Vomiting ICD-10 R11.XX 

Procedures 

Description CPT Code 

Creatine kinase (CK), (CPK); total CPT 82550 

Creatine kinase (CK), (CPK); isoenzymes CPT 82552 

Creatine kinase (CK), (CPK); isoforms CPT82554 

Calcium; total CPT 82310 

Calcium; ionized CPT 82330 

Creatine kinase (CK), (CPK); MB fraction only CPT 82553 
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Creatinine; blood CPT 82565 

Myoglobin CPT 83874 

Phosphorus inorganic (phosphate); CPT 84100 

Potassium; serum, plasma or whole blood CPT 84132 

Transferase; aspartate amino (AST) (SGOT) CPT 84450 

Transferase; alanine amino (ALT) (SGPT) CPT 84460 

Urea nitrogen; quantitative CPT 84520 

Uric acid; blood CPT 84550 

Urinalysis, by dip stick or tablet reagent for bilirubin, glucose, 
hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific 
gravity, urobilinogen, any number of these constituents; non-
automated, with microscopy 

CPT 81000 

Urinalysis, by dip stick or tablet reagent for bilirubin, glucose, 
hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific 
gravity, urobilinogen, any number of these constituents; automated, 
with microscopy 

CPT 81001 

Urinalysis, by dip stick or tablet reagent for bilirubin, glucose, 
hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific 
gravity, urobilinogen, any number of these constituents; non-
automated, without microscopy 

CPT 81002 

Urinalysis, by dip stick or tablet reagent for bilirubin, glucose, 
hemoglobin, ketones, leukocytes, nitrite, pH, protein, specific 
gravity, urobilinogen, any number of these constituents; automated, 
without microscopy 

CPT 81003 

Hemodialysis CPT 90935–90999 

Intravenous infusion, for therapy, prophylaxis, or diagnosis (specify 
substance or drug); initial, up to 1 hour 

CPT 96365 

Intravenous infusion, for therapy, prophylaxis, or diagnosis (specify 
substance or drug); each additional hour (List separately in addition 
to code for primary procedure) 

CPT 96366 

Critical care, evaluation and management CPT 99291, 99292 

Office or other outpatient visit, new patient CPT 99201 - 99205 

Office or other outpatient visit, established CPT 99211 - 99215 

Medications1 

amiodarone 

aprepitant 

atazanavir 

ceritinib 

cimetidine 

clarithromycin 

 

1 Medications listed for completeness, not all medications are marketed in the US. 
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cobicistat and cobicistat-containing coformulations 

colchicine 

conivaptan 

crizotinib 

cyclosporine 

darunavir 

diltiazem 

duvelisib 

dronedarone 

erythromycin 

fedratinib 

fluconazole 

fosamprenavir 

fosaprepitant 

fusidic acid 

gemfibrozil 

idelalisib 

imatinib 

indinavir 

itraconazole 

isavuconazole (isavuconazonium sulfate) 

ketoconazole 

lefamulin 

letermovir 

lopinavir 

mifepristone 

nefazodone 

nelfinavir 

netupitant 

niacin 

nilotinib 

ombitasvir-paritaprevir-ritonavir 

ombitasvir-paritaprevir-ritonavir plus dasabuvir 

posaconazole 

ribociclib 

ritonavir and ritonavir-containing coformulations 

saquinavir 

schisandra 
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telithromycin 

verapamil 

voriconazole 

CLINICAL 

Laboratory Results 

Laboratory Test LOINC Result 

Creatine Kinase, Total 2157-6 Abnormally high 

Creatine Kinase MM   

CK-MM 15049-0 Abnormally high 

CK-MM 15049-0 Abnormally high 

Urine Color   

Urine-Color 5778-6 Abnormal 

Color Ur Auto 50553-7 Abnormal 

Urine, Protein   

Urine Protein 20454-5 Abnormally high 

Prot Ur-mCnc 2888-6 Abnormally high 

Prot Ur Strip. Auto-mCnc 50561-0 Abnormally high 

Prot Ur Strip-mCnc 5804-0 Abnormally high 

Prot Ur Ql strip. Auto 57735-3 Abnormally high 

Urine, Microscopic Examination 12235-8 Abnormal 

Urine, Blood Dip   

RBC # Ur Strip 20409-9 Abnormally high 

Occult Blood 5794-3 Abnormally high 

Hgb Ur Ql Strip. Auto 57751-0 Abnormally high 

Urine, RBC Micro   

RBC UrnS Ql Micro 32776-7 Normal 

RBC # UrnS HPF 5808-1 Normal 

Calcium 17861-6 Abnormally low 

Calcium, ionized   

Calcium, Ionized, Serum 17864-0 Abnormally low 

Ca-I SerPl-mCnc 17863-2 Abnormally low 

Ca-I SerPl-sCnc 1995-0 Abnormally low 

Ca-I SerPl ISE-sCnc 12180-6 Abnormally low 

Ca-I SerPl Calc-sCnc 13959-2 Abnormally low 

Creatine Kinase, MB   

Creatine Kinase (CK), MB 13969-1 Normal 

CK MB CFr SerPl Elph 12187-1 Normal 

CK MB CFr SerPl Calc 12189-7 Normal 
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Creatinine 2160-0 Abnormally high 

Myoglobin, Serum 2639-3 Abnormally high 

Phosphorous 2777-1 Abnormally high 

Potassium 2823-3 Abnormally high 

Aspartate aminotransferase (AST) (serum glutamic-oxaloacetic 
transaminase [SGOT])  

 

AST SerPl w P-5'-P-cCnc 30239-8 Abnormally high 

AST (SGOT) 1920-8 Abnormally high 

Alanine aminotransferase (ALT) (serum glutamic pyruvic 
transaminase [SGPT])  

 

ALT SerPl w P-5'-P-cCnc 1743-4 Abnormally high 

ALT SerPl w/o P-5'-P-cCnc 1744-2 Abnormally high 

ALT (SGPT) 1742-6 Abnormally high 

Blood Urea Nitrogen (BUN)   

BUN SerPl-sCnc 14937-7 Abnormally high 

BUN 3094-0 Abnormally high 

Uric Acid 3084-1 Abnormally high 

OTHER NOT INCLUDED IN SENTINEL COMMON DATA MODEL 

Provider Type 

Nephrologist  

Hospitalist  

Critical Care/Intensive Care 

Pulmonologist 

Emergency Medicine 

Abbreviations: CK, creatine kinase; CPT, Current Procedural Terminology; ICD-10, International Classification of Diseases, Tenth 
Revision; LOINC, Logical Observation Identifiers Names and Codes; RBC, red blood cell. 
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Appendix C. Machine Learning Definitions 
This appendix provides definitions of key machine learning and statistical terms used throughout the 

protocol.  

TERM DEFINITION 

Bootstrap clustering A method of unsupervised machine learning method. This common method 
groups data together into similar subgroups.a 

Decision tree Decision tree is a machine learning method that follows a tree-structured 
classification scheme. Nodes represent the input variables, and the leaves 
correspond to decision outcomes. Decision tree is one of the earliest and most 
prominent machine learning methods that has been widely applied for 
classification purposes. The decisions resulting from its specific architecture 
allow for adequate reasoning, which makes it an appealing technique.c 

Feature Features are the input variables to a machine learning model. For example, 
when a model is being developed to predict stroke risk, a feature would be a 
patient’s height or weight. Features can be processed before they are entered 
into a model—for example, height and weight can be combined into a body 
mass index.a 

k-fold cross-validation A method to minimize overfitting when making modeling decisions. This 
technique uses multiple splits within the development data set to reduce the 
effects of randomness of the split. For example, if k=2, the development set is 
split evenly into A and B. Two models are developed: one trained using A and 
tuned on B and one trained using B and tuned on A. The cross-validated 
evaluation is usually the average of the two performance estimates using A 
and B. This approach attempts to use the training set to estimate the 
generalization error. An independent validation set should be used to evaluate 
the performance of the final model trained on the entire development set. A 
leave-one-out cross-validation occurs when k is the total number of data points 
in the data set.a 

LASSO Least Absolute Shrinkage and Selection Operator (LASSO) is a type of 
penalization regression helps to prevent parameters from becoming too large 
(shrinkage) and thus overfitting. LASSO has the advantage of incorporating 
feature selection into the model fitting process, which is helpful in determining 
the most important input features.a 

Logistic regression  Logistic regression is a classical statistical method often used in classification 
models for a dichotomous outcome (HOI/No HOI). For each risk factor, logistic 
regression determines the relationship between parameters, which are 
numerical values and binary clinical outcomes such as the presence or absence 
of a disease entity.a 

Machine learning Machine learning refers to the process of developing systems with the ability 
to learn from and make predictions using data. For example, a machine 
learning model can process an input (such as a retinal fundus photograph) and 
produce an output (such as the classification of the image showing that 
proliferative diabetic retinopathy is present).a 

Positive predictive value  Positive predictive value is the probability that subjects with a positive model 
prediction truly have the condition of interest.e 
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TERM DEFINITION 

Predictors  Predictors are variables that are studied for their potential value in explaining 
the distribution of the outcome in the population. Predictors can include any 
information that precedes the outcome of interest in time and is believed to 
predict the outcome of interest. Examples include demographic variables, 
clinical history, physical examination findings, type and severity of disease, 
comorbid conditions, and laboratory or imaging results.b 

Negative predictive value Negative predictive value is the probability that subjects with a negative model 
prediction do not have the condition of interest.e 

Sensitivity  Sensitivity is a model prediction’s probability of correctly identifying, solely 
from among people who are known to have a condition, all those who do 
indeed have that condition and, at the same time, not categorizing other 
people as not having the condition when in fact they do have it (i.e., avoiding 
false negatives).d 

Separating hyperplanes (support 
vector machines) 

Support vector machines is a form of machine learning that recognizes 
patterns within data sets to build classifiers. It aims to create a decision 
boundary between two classes that enables the prediction of labels from one 
or more feature vectors. This decision boundary, known as the hyperplane, is 
orientated in such a way that it is as far as possible from the closest data points 
from each of the classes. These closest points are called support vectors.e 

Specificity Specificity is a model prediction’s probability of correctly identifying, solely 
from among people who are known not to have a condition, all those who do 
not have that condition (i.e., identifying true negatives), and, at the same time, 
not categorizing some people as having the condition when in fact they do not 
have it (i.e., avoiding false positives). d 

Supervised learning Supervised learning is a type of machine learning in which labeled data 
(case/noncase assignment from the EMR in this study) are used for machine 
learning model development.a 

Training data set A training data set uses machine learning to learn parameters. It is the learning 
model to best match the model output with the reference.a 

Validation data set  The validation data set is a subset of the development set that is used to tune 
the hyperparameters of a model. In medical research, a model must be 
validated using a data set that is completely independent of the training set.a 

Abbreviation: EMR, electronic medical record; HOI, health outcome of interest. 

a Liu Y, Chen P, Krause J, Peng L. How to read articles that use machine learning users’ guides to the medical literature. JAMA. 

2019;322(18):1806-1816. 
b Shipe ME, Deppen SA, Farjah F, Grogan EL. Developing prediction models for clinical use using logistic regression: an overview. 
J Thorac Dis. 2019;11(Suppl 4):S574-S584.  
c Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and 
prediction. Comput Struct Biotechnol J. 2014;13:8-17.  
d Trevethan R. Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front 
Public Health. 2017;5:307.  
e Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer 
genomics. Cancer Genomics Proteomics. 2018;15(1):41-51.  
 


