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e Algorithms exist along a
continuum between fully
human-guided versus fully
machine-guided data analysis.

* The degree to which an
algorithm can be considered
an instance of machine
learning depends on how
much of the algorithm’s
structure or parameters are
predetermined by humans.

Figure. The Axes of Machine Learning and Big Data
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Multi-database studies

* Access to larger and more diverse study populations
* More precise and generalizable findings
* Greater capture of rare exposures and outcomes
* Better suited to investigate heterogenous treatment effects
* More data for machine learning algorithms



Distributed data networks (DDNs)

* Network of data partners whose databases are not pooled centrally,
and data partners maintain full control over the physical storage and
use of their data

Analysis center
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* Network of data partners whose databases are not pooled centrally,
and data partners maintain full control over the physical storage and
use of their data

Analysis center

AR
LEEEEERR
.- .- L L]
ooog oooo oooQg
oooo oooo oooo
oooo oooo oooo

S 8 B B E



N

AsPEN

J CNODES

Asian Pharmacoepidemiology Network (AsPEN)
@ EHDEN

DDNSs in pharmacoepidemiology

Canadian Network for Observational Drug Effect Studies (CNODES) \ T
European Health Data & Evidence Network (EHDEN) N
Health Care Systems Research Network (HCSRN) Fesoarch nemon
National Patient-Centered Clinical Research Network (PCORnet) é%ﬂ pcornetm

Observational Health Data Sciences and Informatics (OHDSI) collaborative

Sentinel System V OH DS'
Vaccine Safety Data Link
Sentinel’



The FDA Sentinel System, 2000-2022

* Number of data-contributing sites: 13
* Number of individuals currently accruing new data: 64 million
* Total person-years of data: 874 million
* Unique medical encounters: 16 billion
* Pharmacy dispensings: 17 billion

* Types of electronic health data
* Administrative data

Registry data

Inpatient data

Clinical data

Patient-reported measures

Member Distribution of the Sentinel Distributed Database by GeographicRegion

Source: https://www.sentinelinitiative.org/about/key-database-statistics#member-distribution-of-the-
sentinel-distributed-database-by-geographical-region
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Key activities of distributed data networks
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(Hypothesis generation)
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How can the use of machine learning
enhance these activities?



1. Computable phenotyping

* Phenotyping definition
* Determine mapping from inputs (e.g., biological, behavioral, or clinical
features) to phenotype status using machine-guided process
* Information extraction

* Extract potentially relevant phenotypic information from unstructured data
(e.g., text, images, etc.) via an automated process



2. Safety signal detection

* Disproportionality measures

* Information Component estimated using Bayesian Confidence Propagation Neural
Networks

* Reduce potential confounding

. Estimat? general propensity scores (e.g., propensity score-matched tree-based scan
statistic

* Other innovative approaches with longitudinal observational data

* E.g., random forest classifier trained to signal adverse drug reactions from features
derived from various cohort designs addressing Bradford Hill’s causality
considerations

* Information extraction

e Extract adverse events and drug-adverse event pairs from unstructured text via an
automated process

Bate A et al. A Bayesian neural network method for adverse drug reaction signal generation. Eur J Clin Pharmacol. 1998;54:315-21.
Wang et al. A General Propensity Score for Signal Identification Using Tree-Based Scan Statistics. Am J Epidemiol. 2021 Jul 1;190(7):1424-1433.
Reps et al. A supervised adverse drug reaction signalling framework imitating Bradford Hill's causality considerations. J Biomed Inform. 2015 Aug;56:356-68.



3. Causal inference

* Automate the high-dimensional confounding adjustment process

* Properly specified “nuisance functions”
* Reduce dimensionality of candidate covariates
* Prioritize candidate covariates
* Obtain correct functional form of covariates
* Simultaneously consider multiple covariate sets

* Information extraction
e Extract candidate covariates for nuisance functions from unstructured data

Weberpals J et al. Deep Learning-based Propensity Scores for Confounding Control in Comparative Effectiveness Research: A Large-scale, Real-world Data Study. Epidemiology. 2021 May 1;32(3):378-388.
Wyss R et al. Using super learner prediction modeling to improve high-dimensional propensity score estimation. Epidemiology. 2018;29:96-106.

Ju C et al. Propensity score prediction for electronic healthcare databases using Super Learner and High-dimensional Propensity Score Methods. J Appl Stat. 2019;46(12):2216-2236.

Zivich PN, Breskin A. Machine learning for causal inference: on the use of cross-fit estimators. Epidemiology. 2021;32:393-401.

Wyss R et al. Machine learning for improving high-dimensional proxy confounder adjustment in healthcare database studies: An overview of the current literature. Pharmacoepidemiol Drug Saf. 2022

Sep;31(9):932-943.



4. Forecasting

Diaghostic modeling

Prognostic modeling

* Phenotyping algorithm

e Use inputs (e.g., biological,
behavioral, or clinical features)
to determine phenotype status
using machine-guided process

* Information extraction

e Extract potentially relevant
phenotypic information from
unstructured data (e.g., text,
images, etc.) via an automated
process

* Prognostic algorithm

e Use inputs (e.g., biological,
behavioral, or clinical features)
to predict future health events
using machine-guided process

* Information extraction

e Extract potentially relevant
prognostic information from
unstructured data (e.g., text,
images, etc.) via an automated
process
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3. Practical data-related factors of
distributed data networks



Data-related factors Spectrum of possibilities
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. Overview

4. Four scenarios of distributed
data networks
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e Simplest and most straightforward setting for machine learning
 Structured data only = facilitates creation of a common data model (CDM)
* CDM-derived inputs only = facilitates curation of analytic dataset

 Sharing of individual-level data = enables modeling to proceed with same
flexibility as in single database setting

e Although it is technically possible to apply machine learning to a
centralized dataset, should it be done?
 What is the purpose of the machine learning model?
 What is the extent of heterogeneity between data partners?
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Scenario 2. Less standardized data available

* Creates challenges for the feature engineering process

* Information of interest exists outside the CDM in the native (and thus
unstandardized) structured data within data partners’ source systems

* Relevant for data-adaptive machine learning models because often of
interest to consider more features
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Scenario 2. Less standardized data available

e Approach 1: Standardize the unstandardized information
* Resource-intensive, but may be warranted if information is easily obtained,

will be frequently used, or is urgently required

* E.g., Additions to latest Sentinel CDM (8.1.0)
* Patient-Reported Measures Table
e SARS-CoV-2 lab test results

e Approach 2: Do a site-specific analysis

* May be preferred when
* Additional information is available in select sites only
* Added value of unstandardized information is uncertain
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Scenario 3: More complex data modalities

* Creates challenges for the feature engineering process

* Information of interest is unstructured data that exists outside the
CDM in the data partners’ source systems
e Essentially an extension of challenges in Scenario 2

* Relevant because many opportunities for machine learning involve
extraction and use of information from unstructured data
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Scenario 3: More complex data modalities

* Approach 1: Do a site-specific analysis

» All data processing and information extraction on the unstructured data done
outside CDM according to a pre-defined protocol
 Completed Sentinel Project: “Validation of Anaphylaxis using Machine Learning”

e Approach 2: Incorporate the unstructured data into the CDM

e Store raw text as a single field in the CDM

* Perform information extract upfront and encode output into the CDM
* Ongoing Sentinel Project: “Representation of Unstructured Data Across Common Data

Models”
T R
Modality of 5585 s ‘ 'o__l_E
source data mees Iﬁ'_?|§-|
Structured data Unstructured data
Degree of data o0 o
standardization % I:II zéﬂ 7 |:| %ID %
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Carrell et al. Improving Methods of Identifying Anaphylaxis for Medical Product Safety Surveillance Using Natural Language Processing and shared data ) .

Machine Learning, American Journal of Epidemiology, 2022. Individual-level Sumn;aryAIeveI
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Scenario 4: Less granular data shared

* Create challenges for the machine learning model fitting process

* Possible analytic options are constrained by the inability of data
partners to share individual-level data with the analysis center
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Scenario 4: Less granular data shared

* Approach 1: Fit site-specific machine learning models

e Each site fits a custom model
* Fit model in one site, apply model in other site(s)

* Sentinel Methods Project: “Validation of Anaphylaxis Using Machine Learning”

* Approach 2: Collaboratively learn a global model

* Has been successfully demonstrated for regression analyses
* Emerging and actively developing area of research for more complex machine

learning models

Carrell et al. Improving Methods of Identifying Anaphylaxis for Medical Product Safety Surveillance Using Natural Language Processing and
Machine Learning, American Journal of Epidemiology, 2022.

Her et al. Distributed Regression Analysis Application in Large Distributed Data Networks: Analysis of Precision and Operational Performance
JMIR Med Inform 2020;8(6):e15073
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. Overview

e Additional considerations




Choice of approach is a balancing act

Performance
(Accuracy, generalizability, precision of the results)

Privacy Price

(Protection of identifiable and sensitive data) (Cost, resource, effort involved)



Additional opportunities

Issues for Single database Distributed data
machine learning | settings network settings

Generalizability External model validation  External model validation can be
is rare and slow done quickly and easily
Transparency Lower impetus to provide High transparency required to enable
finer details data partners to replicate process
Interpretability Lower impetus to interpret Unusual or discrepant results across

and explain model outputs data partners may create need to
interpret and explain model outputs



Conclusions

* There are many opportunities to use machine learning in distributed
data networks

e Distributed data networks face unique challenges over and above
those encountered in single-database settings

* Various approaches may be considered to address these challenges

 Utility of machine learning in distributed data networks will likely
continue to increase in the coming years
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