

Using the Self-Controlled Risk Interval (SCRI) Method to Study Vaccine Safety

W. Katherine Yih, PhD, MPH Sentinel/PRISM **Epidemiology of Vaccine Safety** ICPE pre-conference course, Aug. 27, 2017

- Funding source: Food and Drug Administration
- I have no conflicts of interest

Each individual contributes person-time in prespecified risk and control intervals ("windows")

- Uses only vaccinated cases with the HOI in either pre-specified risk or control interval
- Each subject serves as own control—this adjusts for fixed confounders (e.g., sex, ethnicity, SES)
- Lengths of risk and control intervals are fixed but needn't be equal
- H₀: risk of outcome on average day in RW = risk of outcome on average day in CW

- Unadjusted RR point estimate is just as you'd expect
- Example 1:
 - Risk interval: Days 1-28
 - Control interval: Days 29-56
 - 13 events in risk interval, 9 in control interval
 - Unadjusted RR = 13/9 = 1.4
- Example 2:
 - Risk interval: Days 1-7
 - Control interval: Days 22-42
 - 13 events in risk interval, 9 in control interval
 - Unadjusted RR = (13*3)/9 = 4.3

- Advantages
 - Controls for fixed potential confounders
 - Uses only exposed cases, avoids bias affecting cohort studies when some exposed misclassified as unexposed
- Disadvantages
 - Less statistical power than cohort designs that use large amount of historical or concurrent data on unexposed
 - Any time-varying confounding must be explicitly controlled for

Two case studies

- Rotavirus vaccines (RV) and intussusception (IS)
- Quadrivalent HPV vaccine (Gardasil or "HPV4") and venous thromboembolism (VTE)

Data/surveillance system

- FDA-sponsored Sentinel Initiative (PRISM)
- Medical claims data from large health insurance companies
- 43 million people currently accruing new data (as of Jan. 2017)

Rotavirus vaccines & intussusception: Motivation

- RotaShield licensed in 1998 but withdrawn in 1999 due to risk of intussusception (1-2 excess cases/10,000)
- For RotaTeq (2006) and Rotarix (2008), no increased risk observed in clinical trials of >60,000 children each, but post-licensure studies in other countries suggested increased risk after both
- FDA requested PRISM study to determine risk among U.S. infants

Intussusception (intestinal folding)

Cross section of small intestine

Rotavirus vaccines & intussusception: Design

- Self-controlled risk interval (SCRI) (vaccinated infants only)—controls for fixed risk factors
 Risk intervals: Days 1-7 and 1-21
- Temporal scan statistics to look for clustering
- Confounding by age
- Explicitly controlled for age

Intussusception incidence by age (from

11 years of U.S. HCUP data when rotavirus vaccine not used)

J Tate et al. Trends in IS hospitalizations... Pediatrics 2008;121(5):e1125-1132.

Intussusception incidence by age

info@sentinelsystem.org

Adjustment for time-varying confounding

- Incorporate offset term into the logistic regression
- Offset adjusts for difference in background risk in RW and CW
- Each case has an offset term whose value depends on case's age at vaccination
- Offset = natural log (ln) of

Estimated cumulative baseline risk in RW Estimated cumulative baseline risk in CW

Background risk of intussusception in risk

and control intervals for typically timed Doses 1 & 3

Rotavirus vaccines & intussusception: RotaTeq results

- 507,874 Dose 1; 1,277,556 total doses
- Dose 1 associated with increased risk of intussusception in the 1-7 and 1-21 days after vaccination
- Statistically significant cluster found on Days 3-7 after
 vaccination (Dose 1 and all doses combined)

Critiques of our RV-IS age adjustment

- 1. HCUP **population different** from PRISM population, based on hospital discharge data, etc.
 - So HCUP age-specific incidence estimates could differ from true age-specific incidence in PRISM population

Response:

- HCUP estimates based on 3,463 cases, stable
- As long as curve correct in *relative* sense (x times higher or lower than HCUP curve), offset terms correct
- Conducted post hoc robustness analysis using modeled risk of intussusception in unexposed person-time of study population (with 97 confirmed cases)

RotaTeq attributable risks for Days 1-7 RW, by dose and age adjustment method

Critiques of our RV-IS age adjustment

- 2. Uncertainty in estimating age-specific background incidence not taken into account, rather incidence treated as known without error
 - Variance of rotavirus-intussusception RRs and ARs underestimated, confidence intervals too narrow

PEDIATRICS Volume 121, Number 5, May 2008 e1129

Critiques of our RV-IS age adjustment

- 2. Uncertainty in estimating age-specific background incidence not taken into account, rather incidence treated as known without error
 - Variance of rotavirus-intussusception RRs and ARs underestimated, confidence intervals too narrow

<u>Response</u> (after rotavirus-intussusception study over):

- Random adjustment method developed by M. Kulldorff for PRISM study of influenza vaccine and febrile seizures; accounts for uncertainty in baseline risk estimates
- L. Li conducted simulation study comparing performance of fixed adjustment and newer random adjustment

Comparison of fixed adjustment and random adjustment (*Lingling Li, 2015 ms*.)

- (Random adjustment takes into account uncertainty in estimating age-specific background incidence)
- Random adjustment performs well in general
- Fixed adjustment has comparable performance if no. in baseline data $(n_b) \ge$ no. in study (n_s)
- Rotavirus study met this condition: $n_b = 97$, $n_s \le 30$

Gardasil & venous thromboembolism: Motivation

- Signal from VAERS, although 90% of the 31 had a known VTE risk factor (Slade et al., JAMA 2009)
- Signal from VSD, although all 5 had a known VTE risk factor (Gee et al., *Vaccine* 2011)
- FDA's Pediatric Advisory Committee requested PRISM study

Reprinted with permission of the Society of Interventional Radiology, ©2004, www.SIRweb.org.

Gardasil & venous thromboembolism: Design

- Self-controlled risk interval (SCRI) (vaccinated infants only)—controls for fixed risk factors
 Risk intervals: Days 1-7 and 1-28
- Temporal scan statistics to look for clustering
- Confounding by oral contraceptive (CHC) use
- Explicitly controlled for duration of CHC use

VTE risk by duration of combined hormonal contraceptive (CHC) use

Vlieg et al. BMJ 2009;339:b2921

VTE risk by duration of combined hormonal contraceptive (CHC) use

Vlieg et al. *BMJ* 2009;339:b2921.

To adjust HPV4-VTE SCRI analysis...

Need to characterize VTE risk with changing duration of CHC use, with greater granularity than this:

Vlieg et al. BMJ 2009;339:b2921

To adjust HPV4-VTE SCRI analysis...

- Use source population (in same time period plus from < 2006 if available)
- Identify CHC use
 - National Drug Codes in claims data
 - Generic names shared with Data Partners to add missing/homegrown codes
- Determine length of time on CHCs as of outcome
- Using Poisson regression, model risk of VTE by number of weeks on CHCs (adjusting for other relevant covariates, e.g., Data Partner, age, secular trends)

CHC-VTE modeling to adjust HPV4-VTE SCRI analysis

- Included in modeling: ~9,000 potential cases of VTE ~12 million person-years
- Model adjusted for Data Partner, age, whether and for how long on CHCs, estrogen dosage, and secular trends
- Point after CHC initiation at which VTE risk levels out:
 - Risk during 9-<12 mo. \approx risk at ≥ 12 mo.
 - So considered VTE risk to plateau after 9.0 mo. on CHCs

Predicted VTE incidence by week after CHC initiation

Adjustment for time-varying confounding

- Incorporate offset term into the logistic regression
- Offset adjusts for difference in background risk in RW and CW
- Each case has an offset term whose value depends on case's age duration of CHC use at vaccination
- Offset = natural log (ln) of

Estimated cumulative baseline risk in RW Estimated cumulative baseline risk in CW

HPV4-VTE SCRI analyses without and with adjustment for CHC duration

A. Analyses with all definite VTE cases, with no adjustment for CHC use						
					95% CI	95% CI
	Days in	Cases in	Cases in		lower	upper
Dose	RW	RW	CW	RR	bound	bound
1	1-28	4	5	0.60	0.15	2.27
2	1-28	4	8	0.50	0.13	1.59
3	1-28	5	4	1.25	0.33	5.05
All	1-28	13	17	0.70	0.33	1.44
1	1-7	0	5	0		
2	1-7	1	8	0.50	0.03	2.73
3	1-7	1	4	1.00	0.05	6.76
All	1-7	2	17	0.43	0.07	1.51

B. Analyses with all	definite VTF cases.	with adjustment for CHC use

					95% CI	95% CI
	Days in	Cases in	Cases in		lower	upper
Dose	RW	RW	CW	RR	bound	bound
1	1-28	4	5	0.61	0.15	2.32
2	1-28	4	8	0.47	0.13	1.50
3	1-28	5	4	1.29	0.34	5.21
All	1-28	13	17	0.70	0.33	1.43
1	1-7	0	5	0		
2	1-7	1	8	0.47	0.03	2.55
3	1-7	1	4	1.09	0.06	7.38
All	1-7	2	17	0.43	0.07	1.50

Gardasil & venous thromboembolism: Results

- 1,423,399 total doses
- No evidence of increased risk of VTE after Gardasil
 - SCRI analyses
 - Temporal scan analyses

Dose 1 (thru Day 56) Dose 2 (thru Day 63) Dose 3 (thru Day 63)

Summary of the two case studies

	RV5 (RotaTeq) & intus- susception (IS) (> 1.2 M doses)	HPV4 (Gardasil) & venous thromboembolism (VTE) (> 1.4 M doses)
Design	SCRI	SCRI
Risk intervals	Days 1-7, 1-21	Days 1-7, 1-28
Control intervals	Days 22-42	Days 36-56 (Dose 1) Days 36-63 (Doses 2 & 3)
Time-varying confounder	Age	Duration of CHC (contraceptive) use
Method(s) of adjustment	Multiple, including using curve from <i>external</i> data treated as known with certainty	1) none, 2) using curve from <i>internal</i> data treated as known with certainty
Findings	Slightly increased risk of IS	No increased risk of VTE
Policy implications	Label change, no change in ACIP rec's	No change in label or ACIP rec's
Conclusions re. time- varying confounding	Adjustment crucial, but method didn't matter	Adjustment didn't matter

Conclusions

- Self-controlled risk interval design often a good choice for vaccine safety studies
 - Controls for fixed potential confounding
 - But power can be an issue when outcome is rare and/or effect size modest
- Control for time-varying confounding can be implemented in several ways
 - Random adjustment appropriate where internal data reasonably plentiful and individual-level data available
 - Otherwise, fixed adjustment (using either internal or comparable external data) is fine, as long as no. in baseline sample ≥ no. in SCRI sample (RW+CW)

Papers about the two PRISM studies

- Yih WK, Lieu TA, Kulldorff M, Martin D, McMahill-Walraven CN, Platt R, Selvam N, Selvan M, Lee GM, Nguyen M. Intussusception risk after rotavirus vaccination in U.S. infants. *N Engl J Med*. 2014;370:503-12.
- Yih WK, Greene SK, Zichittella L, Kulldorff M, Baker MA, de Jong JLO, Gil-Prieto R, Griffin MR, Jin R, Lin ND, McMahill-Walraven CN, Reidy M, Selvam N, Selvan MS, Nguyen MD. Evaluation of the risk of venous thromboembolism after quadrivalent human papillomavirus vaccination among US females. *Vaccine*. 2016;34:172-8.