Methods for Examining Data Quality in Healthcare Integrated Data Repositories

Data Quality Checking and Validation in Distributed Health Data Networks

> **Pacific Symposium on Biocomputing Big Island of Hawaii**

> > January 4, 2018 Jeffrey Brown, PhD

DEPARTMENT OF POPULATION MEDICINE

Harvard Pilgrim Health Care Institute

Conflicts and Disclosures

I have no conflicts of interest related to this presentation.

I am currently funded by FDA, NIH, the Biologics and Biosimilars Collective Intelligence Consortium, Pfizer, PCORI, IBM, and Roche.

Outline

- Need for multisite studies and distributed networks
- FDA Sentinel project as worked example
- Q&A

Summary

- Advanced analytics need stable, well curated, and well characterized data
- Creating and maintaining stable, well curated, and well characterized data is hard and expensive
- Applying work across institutions makes it even harder
- But it can be done

Kaplan–Meier Estimates of the Cumulative Incidence of Confirmed Serious Thrombotic Events.

Bresalier RS, et al. <u>N Engl J Med.</u> 2005 Mar 17;352(11):1092-102.

We could have known earlier

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2007; **16**: 1275–1284 Published online 22 October 2007 in Wiley InterScience (www.interscience.wiley.com) **DOI**: 10.1002/pds.1509

ORIGINAL REPORT

Early detection of adverse drug events within population-based health networks: application of sequential testing methods^{\dagger , \ddagger}

Jeffrey S. Brown PhD^{1,2*}, Martin Kulldorff PhD¹, K. Arnold Chan MD, MPH, ScD^{3,4}, Robert L. Davis MD, MPH⁵, David Graham MD⁶, Parker T. Pettus MS^{1,2}, Susan E. Andrade ScD^{2,7}, Marsha A. Raebel PharmD^{2,8}, Lisa Herrinton PhD^{2,9}, Douglas Roblin PhD^{2,10}, Denise Boudreau PhD^{2,11}, David Smith PhD^{2,12}, Jerry H. Gurwitz MD^{2,7}, Margaret J. Gunter PhD^{2,13} and Richard Platt MD, MSc^{1,2}

DEPARTMENT OF POPULATION MEDICINE

HARVARD

Harvard Pilgrim Health Care Institute

We could have known earlier

Figure 3. Observed and expected outcomes for rofecoxib users compared to non-users: 2000–2005. Outcome: acute myocardial infarction. Adjusted for age, sex and health plan

We could have known earlier

FDA Sentinel System: Background

- **2007**: FDA Amendments Act
 - A mandate to create an active surveillance system
 - Access data from **25 million** individuals by July 2010
 - Access data from **100 million** individuals by July 2012
- 2008: FDA launched the Sentinel Initiative
- 2009: Mini-Sentinel funded under Sentinel Initiative
- 2010: PRISM incorporated into Mini-Sentinel
- 2014: Funding awarded for Sentinel System
- Operates under FDA's public health authority

DEPARTMENT OF POPULATION MEDICINE

HARVARD

👬 Harvard Pilgrim

Health Care Institute

DEPARTMENT OF POPULATION MEDICINE

Harvard Pilgrim Health Care Institute

- Active Risk Identification and Analysis System
- Ongoing ARIA Assessments
- Assessments of Drugs
- Assessments of Vaccines, Blood, & Biologics
- FDA-Catalyst

Latest Postings

SPOTLIGHT

 CDER Conversation: The FDA's Sentinel Initiative Mon, 11/27/2017

PUBLICATIONS AND PRESENTATIONS

- Development of Metrics to Assess Appropriate Prescribing of Opioids in the Mini-Sentinel Distributed Database (MSDD) Mon, 11/20/2017
- Prospective Postmarketing Surveillance of Acute Myocardial Infarction in New Users of Saxagliptin: A Population-Based Study
 Fri, 11/10/2017

https://www.sentinelinitiative.org/

Safety Assessment of Niacin in the U.S. Food and

Sentinel as a distributed data network

- Rare exposures
- Rare outcomes
- Sample size (speed)
- Sub-group analyses
- Analytic flexibility

What is a distributed data network?

Coordinating Center

These institutions have no interest in sharing data with each other

What is a distributed data network?

These institutions have no interest in sharing data with each other

What is a distributed data network?

These institutions have no interest in sharing data with each other

Characteristics of distributed networks

- Data sits behind data partner's firewall
- Data remains under local control
- Only minimally necessary info is shared in a given analysis
- Preserve patient privacy & institutional proprietary interests
- Enables rapid creation of multiple networks that leverage the architecture
- Avoids complex contracting and institutional agreements

DEPARTMENT OF POPULATION MEDICINE

HARVARD

Harvard Pilgrim

Data networks have different goals

- Exchange of patient data for patient care at the point of care
- Public health surveillance
- Research
- Clinical trial planning and enrollment

Keep in mind: These goals have different data quality requirements

Data networks introduce complexity

- Data access approach
- Data standardization
- Data quality
- Query standardization
- Governance and policy
- Privacy and security
- Trust

FDA Sentinel's charge

Assess the use, safety, and effectiveness of regulated medical products by using electronic healthcare data plus other resources

Create data, informatics, and methodologic capabilities to support these activities

Sentinel partner organizations

Lead – HPHC Institute

Sentinel distributed database*

- Populations with well-defined person-time for which most medically-attended events are known
- 425 million person-years of observation time
- 43 million people currently accruing new data
- 5.9 billion pharmacy dispensings
- 7.2 billion unique medical encounters
- 42 million people with at least one laboratory test result

https://www.sentinelinitiative.org/sentinel/snapshot-database-statistics

^{*} As of January 2017

HARVARD Harvard Pilgrim Health Care Institute

Sentinel Common Data

Medical Encounters								
Enrollment	Demographic	Dispensing	Encounter	Diagnosis	Procedure			
Person ID	Person ID	Person ID	Person ID	Person ID	Person ID			
Enrollment start & end dates	Birth date	Dispensing date	Service date(s)	Service date(s)	Service date(s)			
Drug coverage	Sex	National drug code (NDC)	Encounter ID	Encounter ID	Encounter ID			
Medical coverage	ZIP code	Days supply	Encounter type & provider	Encounter type & provider	Encounter type & provider			
Medical record availability	Etc.	Amount dispensed	Facility	Diagnosis code & type	Procedure code & type			
			Etc.	Principal discharge diagnosis	Etc.			

Clinical		Registry			Inpatient	
Lab Result	Vital Signs	Death	Cause of Death	State Vaccine	Inpatient Pharmacy	Inpatient Transfusion
Person ID	Person ID	Person ID	Person ID	Person ID	Person ID	Person ID
Result and specimen collection dates	Measurement date and time	Death date	Cause of death	Vaccination date	Administration date and time	Administration start and end date and time
Test type, immediacy & location	Height and weight	Source	Source	Admission Type	Encounter ID	Encounter ID
Logical Observation	Diastolic & systolic BP	Confidence	Confidence	Vaccine code & type	National Drug Code (NDC)	Transfusion administration ID
Identifiers Names and Codes (LOINC ®)		Etc.	Etc.	Provider	Route	Transfusion product code
Test result & unit	Tobacco use & type			Etc.	Dose	Blood Type
Etc.	Etc.				Etc.	Etc.

Data Validation within Research Networks:

From Ad Hoc Practice to System Practice

Study-specific versus network data validation approaches

Study	Network		
"As needed / as you go"	"Always Ready / Semper Paratus"		
Burden on study team	Burden on quality assurance team		
Ad hoc	Repeatable, Systematic, Learning		
Cost is included in the cost of a study	Cost of 0 studies = cost of 1000+ studies		
Variable amount of data cleaning	1400+ checks to pass a site's QA		

Sentinel quality assurance avoids the costs and delays of having individual projects devote significant resources to data investigation and cleaning

DEPARTMENT OF POPULATION MEDICINE

Data quality assurance process

Jeff_Brown@harvardpilgrim.org

DEPARTMENT OF POPULATION MEDICINE

The data validation process

Compliance Checks

Level 1: Completeness, validity, accuracy Level 2: Cross-variable and cross-table integrity

Judgment Call Checks

Level 3: Trends: consistency Level 4: Logical: plausibility, convergence

What do the checks look like

ENC1.0.0	Table does not exist
ENC1.1.1	PatID variable is not character type
ENC1.1.2	PatID variable has missing values
ENC1.1.3	PatID variable has non-missing values that are not left-justified
ENC1.1.4	PatID variable contains special characters
ENC1.2.1	EncounterID variable is not character type
ENC1.2.2	EncounterID variable has missing values
ENC1.2.3	EncounterID variable has non-missing values that are not left-justified
ENC1.2.4	EncounterID variable contains special characters
ENC1.3.1	ADate variable is not SAS date value of numeric data type
ENC1.3.2	ADate variable is not of length 4
ENC1.3.3	ADate variable has missing values

Standardized check codes

Check code: <u>Table, Level</u>, <u>Variable Number</u>, and <u>Check Number</u> Check code "DEM1.3.2" denotes the second level 1 check performed on the variable SEX in the Demographic table

Jeff_Brown@harvardpilgrim.org

DEPARTMENT OF POPULATION MEDICINE

HARVARD MEDICAL SCHOOL Harvard Pilgrim Health Care Institute

Why check after every refresh?

- Analytic tools depend on data model compliance
- Underlying data sources are dynamic
- Identify changes in trends, others issues or difference across sites
- Ongoing studies expect consistency in data refreshes

Communicate data validity findings with stakeholders

Visits per month, 2 refreshes

Brown JS, Kahn M, Toh S. Data quality assessment for comparative effectiveness research in distributed data networks. Med Care 2013 Aug;51(8 Suppl 3):S22-9.

Why check after every refresh?

Analytic tools depend on data model compliance

Your really cool analytics won't work within your site, and especially across sites, unless the data are stable and well curated

Communicate data validity findings with stakeholders

Admission and discharge date

Check distributions and patterns for significant changes

- Problem with distribution of ADate (e.g., records per year) within the FTI
- Problem with distribution of ADate (e.g., records per yearmonth) within the ETL
- Problem with distribution of ADate across ETLs
- Significant change in records per ADate (year) across ETLs
- Significant change in records per ADate (year-month) across ETLs
- Problem with distribution of DDate variable by encounter type per year-month
- Problem with distribution of length of stay (DDate-ADate + 1) by encounter type per year

DEPARTMENT OF POPULATION MEDICINE

HARVARD

Harvard Pilgrim

Health Care Institute

DEPARTMENT OF POPULATION MEDICINE

Data visualization: After 8th refresh, partner A

Jeff_Brown@harvardpilgrim.org

DEPARTMENT OF POPULATION MEDICINE

HARVARD

Harvard Pilgrim Health Care Institute

Data visualization: After 8th refresh, fixed

Harvard Pilgrim Health Care Institute

Consistency checks

Incorrect Data Load

Reclassification of Encounter Type

Review identifies an anomaly

Jeff_Brown@harvardpilgrim.org

Platelet count units of measure across Sentinel

Platelet count original result units[‡]

Blank	FL	TH/UL	X10(3)
%	K/CMM	THOU/CMM	1000/UL
/100 W	k/cmm	thou/cmm	X10(3)/MCL
/CMM	K/CU MM	thou/mm3	X10(3)/UL
CMM	K/CUMM	THOU/UL	X10(6)/MCL
10 3L	K/MCL	THOUS/CU.MM	X10*9/L
10X3UL	K/mcL	THOUS/MCL	X10E3/UL
10^3/UL	K/UL	THOU/mcL	X1000
10*3/uL	k/uL	THOUS/UL	X10X3
10?3/uL	KU/L	Thou/uL	X10^3/UL
10E3/uL	K/MM3	THOUSA	x10
10e3/uL	K/mm3	THOUSAND	X10?3/ul
10e9/L	LB	THOUSAND/UL	X10E3/UL
E9/L	PLATELET CO	U	X10E3
BIL/L	T/CMM	X 10-3/UL	K/A?L
bil/L	TH/MM3	X 10(3)/UL	K/B5L
CU MM	th/mm3	X10 3	

Raebel MA, Haynes K, Woodworth TS, Saylor G, Cavagnaro E, Coughlin KO, Curtis LH, Weiner MG, Archdeacon P, and Brown JS. Electronic Clinical Laboratory Test Results Data Tables: Lessons from Mini-Sentinel. Pharmacoepidemiol Drug Saf. 2014 Feb;23(6):609-18.

Observed result units for HbA1c across Sentinel

Glycosylated hemoglobin (HbA1c) original result units*

%	%T.HGB	% TL HGB	% HGB
HEMOGLOBIN	%T.Hgb	% OF TOTAL	PERCENT
U	%T.Hgb	% of Hgb	Percent
%HB	% NGSP	% of total	HbA1c%
% OF T	%NGSP	%THb	%HbA1c
%AIC	% TOTAL HGB	%NGSP	% A1C
MG/DL	G/DL	mmol/mol [†]	Blank
% A1C	% A1c	%Hb	g/dL
NULL	%THb		

Raebel MA, Haynes K, Woodworth TS, Saylor G, Cavagnaro E, Coughlin KO, Curtis LH, Weiner MG, Archdeacon P, and Brown JS. Electronic Clinical Laboratory Test Results Data Tables: Lessons from Mini-Sentinel. Pharmacoepidemiol Drug Saf. 2014 Feb;23(6):609-18.

DEPARTMENT OF POPULATION MEDICINE

Harvard Pilgrim Health Care Institute

HARVARD MEDICAL SCHOOL

DEPARTMENT	OF	POPULATION	MEDICINE
HARVAI		Harvard	l Pilgrim
MEDICAL SCH		Health (Care Institute

NFGATIVF POSITIVE 820 UNDFTFRMINFD 840 BORDERLINE 1615 BORDFRLI ABNORMAL 252.3 BOARDFRL 278 BODERLIN 28 CANCELLE 3178.2 DUPLICAT 5 Int EQIVOCAL DFTFCTFD EQUIVOCA INDETERM NF-CHFCK Ν NEAGTIVE NOT DETE **NEG** (-) Neg NFGA Negative NFGA T I Negatvie **NEGA TIV NEGAT IV** Ρ Positive NEGATAIV SPRCS NEGATIAV TNP NFGATIBE Ν NEGATIE NEGATRIV Neg Negative

NFGATTVF NEGATVIE NFGAVTIV NFGITIVE NFGTIVF NFTGATIV NORM NORMAL POA POPSITIV POSIITIV POSITIEV POSITTVE POSITVE POSOTIVE POSTIVE **PSOITIVE** REPEAT STAT URINF

Examples of variations in qualitative pregnancy result units in source data across Sentinel

(I removed some rows...)

Standardizing clinical lab data

Percent of INR Results by Data Partner

42

DEPARTMENT OF POPULATION MEDICINE

HARVARD MEDICAL SCHOOL Harvard Pilgrim Health Care Institute

Data validation statistics

- Annually, the data quality assurance (QA) team reviews for over 50 data deliveries across the network
- Since 1/1/2016, a site has had to re-run the QA package in 16 instances to fix an issue
- In <u>recent data deliveries from the 5 largest sites</u>, 25 checks were reported in QA that required follow-up from the DP
 - 22 of the 25 were Level 3 checks

Distributed Querying Framework

Rapid analysis querying sequence

Increasing complexity and time

Every query includes detailed data quality assurance steps and output

Guillain Barre Syndrome in Pregnancy?

http://www.unilim.fr/neurolim/Images/GuillainBarre01.jpg

Jeff_Brown@harvardpilgrim.org

48

There's more than one kind of GBS

http://www.unilim.fr/neurolim/Images/GuillainBarre01.jpg http://www.syracusemedicalmalpracticelawyerblog.com/2011/03/new-york-group-b-strep-infecti.html

49

doveryai, no proveryai

(Trust, but verify)

Use the data, but be humble

The right data The right study design The right method The right implementation

And always include sensitivity analysis

Thank You