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Demand for health information exchange
• Goodbye “meaningful use”, hello “promoting interoperability”
o Centers for Medicare & Medicaid Services (CMS) renamed EHR incentive program
o To advance integration and sharing of healthcare data

https://www.healthcare-informatics.com/article/value-based-care/breaking-cms-finalizes-promoting-interoperability-rule
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Semantic interoperability: EHRs do not talk to each other

• 786.2 Cough (ICD-9) 
• 780.61 Fever (ICD-9) 
• 71010 Chest X-ray (CPT)

lab_type result units normlower normupper

HEMOGRAM PLATELET COUNT 154 x10 3/uL 150 400

HEMOGRAM RED BLOOD CELL COUNT 4.59 x10 6 /uL 4.6 6.2

HEMOGRAM RED CELL DISTRIBUTION WIDTH 20.4 % 11.5 14.5

HEMOGRAM WHITE BLOOD CELL COUNT 6.6 x10 3 /uL 4.5 11

structured and unstructured data

lab_type result units normlower normupper

HEMOGRAM PLATELET COUNT 154 x10 3/uL 150 400

HEMOGRAM RED BLOOD CELL COUNT 4.59 x10 6 /uL 4.6 6.2

HEMOGRAM RED CELL DISTRIBUTION WIDTH 20.4 % 11.5 14.5

HEMOGRAM WHITE BLOOD CELL COUNT 6.6 x10 3 /uL 4.5 11

• Cough (ICD-9 786.2) 
• Fever (ICD-9 780.61) 
• X-ray, chest (CPT 71010)

• Standardized medical code for billing !
o Common language across healthcare providers and insurers

• Inconsistent coding in practice "
o System A use 786.05: shortness of breath
o System B use 786.09: other dyspnea and respiratory abnormality
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What are potential challenges?

System A

System B

5



What are potential challenges?

System ASystem A
Common Data Model

System B System B

5



What are potential challenges?

System ASystem A
Common Data Model Phenotyping Algorithm  

Or Causal Inference

786.05:  
shortness of breath

System B System B

Anaphylaxis

5



What are potential challenges?

System ASystem A
Common Data Model Phenotyping Algorithm  

Or Causal Inference

Transport

786.05:  
shortness of breath

System B System B Anaphylaxis

Anaphylaxis

5



What are potential challenges?

System ASystem A
Common Data Model Phenotyping Algorithm  

Or Causal Inference

Transport

786.05:  
shortness of breath

System B System B

786.09: dyspnea and 
respiratory abnormality

Anaphylaxis

Anaphylaxis

5



What are potential challenges?

System ASystem A
Common Data Model Phenotyping Algorithm  

Or Causal Inference

Transport

786.05:  
shortness of breath

System B System B

786.09: dyspnea and 
respiratory abnormality

Anaphylaxis

Anaphylaxis

?
• Performance of phenotyping algorithm can dramatically drop
• Causal inference can fail due to incorrect confounding adjustment
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Manual mapping is imprecise
• General equivalence mapping (GEM): ICD-9 (10k) ! ICD-10 (60k)
o Approximate mappings with multiple scenarios: data merged with adhoc decisions
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Data Driven Mapping of Medical Codes
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The Back pain Outcomes using Longitudinal Data study

• The elderly with back pain
o 5000 patients ≥ 65 years old
o Cost-effectiveness of early diagnostic imaging

• EHR data from three sites:
o Henry Ford Health System in Detroit
o Kaiser Permanente Northern California
o Harvard Vanguard in Boston

Jarvik JG, et. al. (2012), Jarvik JG, et. al. (2015)
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Data quality check before pulling EHR data from study sites
• Compare use of CPT codes between study sites

Physical Therapy

X−ray

CT scan

MRI

% Total Procedures

28.9

0.0

5.3

22.3

4.2

14.5

3.6

9.4 Henry Ford
Kaiser Permanente

• Question: can we scan for variation in the endorsement of all medical
codes to identify such data quality issue?
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Detect and quantify coding differences under a hierarchical structure
• Code grouping e.g. PheWAS (phenome-wide association studies)
Code grouping e.g. CCS (Clinical Classifications Software)

CPT-SCAN: ?iiTb,fftm@`Bi�@b?BXb?BMv�TTbXBQf*Shna*�Lf
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Burden test
SKAT

Significance level for code
Significance level for group

Testing:  
Group-wise association test

⇔

Overall Regression Structure for Rate Ratio (RR) Estimation
✞✝ ☎✆log(RRcode) = α1 + βb1 + γc1

..

α+β 

α 

α+β+γ 

Cohort 
effect


Block

effect


Code

effect


19

Estimation: 

genetic variants

in a region

codes

in a group

hierarchical shrinkage 

post-regularization inference

Code-group

Shi et. al. (2017)
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Further investigation into observed differences in code endorsement
• Compare use of CPT codes between study sites

• Henry Ford uses a generic code “HF0PT” for physical therapy

Physical Therapy

X−ray

CT scan

MRI

% Total Procedures

28.9

14.6

5.3

22.3

4.2

14.5

3.6

9.4 Henry Ford
Kaiser Permanente
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Can data tell me “HF0PT” = “physical therapy”?

• Co-occurrence: semantic information from the context
o “HF0PT” is surrounded by codes for pain-related diseases or treatments
o “Physical therapy” often appears in such a context

�≈

Co-occurrence 
Matrix Singular Value Decomposition

Patient Timeline Bins

Pt bin 1

. 

. 

. 

. 

.

Co-occurrence Count

Pt bin 2

Pt bin n
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Computers learn the meaning of a word from its context
From language translation to code mapping

man
king

woman
queen

• Word2vec
o Represent the meaning of a

word as a vector
o Words with similar meanings

have similar directions

250.00 (Diabetes-non insulin dependent)
790.29 (Other abnormal glucose)

714.0 (Rheumatoid arthritis)
710.0 (Systemic lupus erythematosus)

443.0 (Raynaud's syndrome)

• Code2vec
o Code <–> word; Healthcare

system <–> language
o Data-driven interpretation of

codes in clinical practice

Mikolov et. al. (2013), Levy & Goldberg (2014), Choi et. al. (2016), Beam et. al. (2018)

2

• rQ`/kp2+: represent a word as a vector
o Learn semantic relationship from co-occurrence
o Words with similar meanings are close

250.00 (Diabetes-non insulin dependent)
790.29 (Other abnormal glucose)

714.0 (Rheumatoid arthritis)
710.0 (Systemic lupus erythematosus)

443.0 (Raynaud's syndrome)

• +Q/2kp2+: represent a code as a vector
o Code ⇔ word; Healthcare system ⇔ language
o Interpret meaning of codes in clinical practice setting

Question: can we infer a mapping between two sets of code-vectors learned
from two healthcare systems, respectively?

Mikolov et. al. (2013), Levy & Goldberg (2014), Choi et. al. (2016), Beam et. al. (2018)
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From language translation to code mapping
• Inconsistent objectives in language translation with rQ`/kp2+

Published as a conference paper at ICLR 2018

Figure 1: Toy illustration of the method. (A) There are two distributions of word embeddings, English words
in red denoted by X and Italian words in blue denoted by Y , which we want to align/translate. Each dot
represents a word in that space. The size of the dot is proportional to the frequency of the words in the training
corpus of that language. (B) Using adversarial learning, we learn a rotation matrix W which roughly aligns the
two distributions. The green stars are randomly selected words that are fed to the discriminator to determine
whether the two word embeddings come from the same distribution. (C) The mapping W is further refined via
Procrustes. This method uses frequent words aligned by the previous step as anchor points, and minimizes an
energy function that corresponds to a spring system between anchor points. The refined mapping is then used
to map all words in the dictionary. (D) Finally, we translate by using the mapping W and a distance metric,
dubbed CSLS, that expands the space where there is high density of points (like the area around the word
“cat”), so that “hubs” (like the word “cat”) become less close to other word vectors than they would otherwise
(compare to the same region in panel (A)).

In practice, Mikolov et al. (2013b) obtained better results on the word translation task using a sim-
ple linear mapping, and did not observe any improvement when using more advanced strategies like
multilayer neural networks. Xing et al. (2015) showed that these results are improved by enforc-
ing an orthogonality constraint on W . In that case, the equation (1) boils down to the Procrustes
problem, which advantageously offers a closed form solution obtained from the singular value de-
composition (SVD) of Y XT :

W ? = argmin
W2Od(R)

kWX � Y kF = UV T ,with U⌃V T = SVD(Y XT ). (2)

In this paper, we show how to learn this mapping W without cross-lingual supervision; an illustration
of the approach is given in Fig. 1. First, we learn an initial proxy of W by using an adversarial
criterion. Then, we use the words that match the best as anchor points for Procrustes. Finally, we
improve performance over less frequent words by changing the metric of the space, which leads to
spread more of those points in dense regions. Next, we describe the details of each of these steps.

2.1 DOMAIN-ADVERSARIAL SETTING

In this section, we present our domain-adversarial approach for learning W without cross-lingual
supervision. Let X = {x1, ..., xn} and Y = {y1, ..., ym} be two sets of n and m word embeddings
coming from a source and a target language respectively. A model is trained to discriminate between
elements randomly sampled from WX = {Wx1, ...,Wxn} and Y . We call this model the discrim-
inator. W is trained to prevent the discriminator from making accurate predictions. As a result, this
is a two-player game, where the discriminator aims at maximizing its ability to identify the origin of
an embedding, and W aims at preventing the discriminator from doing so by making WX and Y as
similar as possible. This approach is in line with the work of Ganin et al. (2016), who proposed to
learn latent representations invariant to the input domain, where in our case, a domain is represented
by a language (source or target).

Discriminator objective We refer to the discriminator parameters as ✓D. We consider the prob-
ability P✓D

�
source = 1

��z
�

that a vector z is the mapping of a source embedding (as opposed to a
target embedding) according to the discriminator. The discriminator loss can be written as:

LD(✓D|W ) = � 1

n

nX

i=1

logP✓D

�
source = 1

��Wxi

�
� 1

m

mX

i=1

logP✓D

�
source = 0

��yi
�
. (3)

Mapping objective In the unsupervised setting, W is now trained so that the discriminator is
unable to accurately predict the embedding origins:

LW (W |✓D) = � 1

n

nX

i=1

logP✓D

�
source = 0

��Wxi

�
� 1

m

mX

i=1

logP✓D

�
source = 1

��yi
�
. (4)

3

Generate word vectors Space alignment Infer a mapping
max inner product min       distanceℓ2 max cosine

• Length normalization: semantic information is in the direction

Xing et. al. (2015), Conneau et. al. (2018), Shi et. al. (2018)
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Generate word vectors Space alignment Infer a mapping
max inner product min       distanceℓ2 max cosine

• Length normalization: semantic information is in the direction

573.9 Unspecified disorder of liver
573.8 Other specified disorders of liver

388.9 Unspecified disorder of ear
388.8 Other disorders of ear

573.4 Hepatic infarction

388.11 Acoustic trauma (explosive) to ear
V41.3 Other ear problems

388.8 Other disorders of ear
388.9 Unspecified disorder of ear

388.11 Acoustic trauma (explosive) to ear

V41.3 Other ear problems

573.8 Other specified disorders of liver
573.9 Unspecified disorder of liver

573.4 Hepatic infarction

ICD-9 code TranslationICD-9 code Translation

Partners HealthCare Veterans Health Administration
Xing et. al. (2015), Conneau et. al. (2018), Shi et. al. (2018)
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How do statisticians think about language translation?

X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors, each Xi,Yi ∈ R
p

• n: number of codes
• p: dimension of code-vectors

1 1
2 2
3 3
4 4
5 5

1 1
2 2
3 3
4 4
5 5

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Y1

Y2

Y3

Y4

Y5

X1

X2

X3

X4

X5

Introduce a mapping matrix Π
no mismatch if Π = I is an identity matrix
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How do statisticians think about language translation?
✄

✂

#

✁
• Classical regression

Yn×p =Πn×nXn×pWp×p+Un×p

Yi ∼ Xi correctly linked

Shuffled regression
Yn×p =Πn×nXn×pWp×p+Un×p

Yi ∼ Xi do not correspond

1 1
2 2
3 3
4 4
5 5

1 1
2 2
3 3
4 4
5 5

Yn×p Xn×p Wp×p Πn×n Un×p

30

+Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Introduce a mapping matrix Π
no mismatch if Π = I is an identity matrix
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✄
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2 2
3 3
4 4
5 5

1 1
2 2
3 3
4 4
5 5

Yn×p Xn×p Wp×p Πn×n Un×p
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+Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Introduce a mapping matrix Π (the “dictionary”)
no mismatch if Π = I is an identity matrix
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How do statisticians think about language translation?
✄

✂

#

✁
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#

✁
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2 2
3 3
4 4
5 5
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1 1
3 3
4 4
5 5

Yn×p Xn×p Wp×p Πn×n Un×p
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+Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Each row of Π is like a pointer:
match: Πi· = Ii· ⇒ Yi ∼ Xi; mismatch: Πi· = Ij· ⇒ Yi ∼ Xj
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Each row of Π is like a pointer:
match: Πi· = Ii· ⇒ Yi ∼ Xi; mismatch: Πi· = Ij· ⇒ Yi ∼ Xj
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Formulating the problem: mismatched spherical data

• Π encodes 1-to-1 and 1-to-many mapping
Assume Π is block diagonal
W is an orthogonal matrix WWh = I
Goal: estimate (Π,W) using mismatched spherical data

1 1
2 2
3 3
4 4
5 5

2 2
1 1
3 3
4 4
5 5

Yn×p Xn×p Wp×p Πn×n Un×p

30

+Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Allow for 1-to-many mapping
weight vector: Πi· = ω
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The statistical problem: mismatched spherical data

• Π encodes 1-to-1 and 1-to-many mapping
• Assume Π is block diagonal
W is an orthogonal matrix WWh = I
Goal: estimate (Π,W) using mismatched spherical data

1 1
2 2
3 3
4 4
5 5

2 2
1 1
3 3
4 4
5 5

Yn×p Xn×p Wp×p Πn×n Un×p

30

+Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Yn×p Xn×p Wp×p Πn×n Un×p

30

Incorporate code-group information
mismatch only occurs within group
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The statistical problem: mismatched spherical data

• Π encodes 1-to-1 and 1-to-many mapping
• Assume Π is block diagonal
• W is an orthogonal matrix s.t. ∥WXi∥=∥Yi∥=1

Goal: estimate (Π,W) using mismatched spherical data

W rotates X on the sphere
Align spherical language spaces
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The statistical problem: mismatched spherical data
• Π encodes 1-to-1 and 1-to-many mapping
• Assume Π is block diagonal
• W is an orthogonal matrix s.t. ∥WXi∥=∥Yi∥=1

Goal: estimate (Π,W) using mismatched spherical data

573.9 Unspecified disorder of liver
573.8 Other specified disorders of liver

388.9 Unspecified disorder of ear
388.8 Other disorders of ear

573.4 Hepatic infarction

388.11 Acoustic trauma (explosive) to ear
V41.3 Other ear problems

388.8 Other disorders of ear
388.9 Unspecified disorder of ear

388.11 Acoustic trauma (explosive) to ear

V41.3 Other ear problems

573.8 Other specified disorders of liver
573.9 Unspecified disorder of liver

573.4 Hepatic infarction

ICD-9 code TranslationICD-9 code Translation

Partners HealthCare Veterans Health Administration

ICD-9 code 
Translation

573.9 Unspecified disorder of liver
573.8 Other specified disorders of liver

388.9 Unspecified disorder of ear
388.8 Other disorders of ear

573.4 Hepatic infarction
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V41.3 Other ear problems

388.8 Other disorders of ear
388.9 Unspecified disorder of ear

388.11 Acoustic trauma (explosive) to ear

V41.3 Other ear problems

573.8 Other specified disorders of liver
573.9 Unspecified disorder of liver

573.4 Hepatic infarction

Partners HealthCare Veterans Health Administration

Goal: estimate (Π,W) using mismatched spherical data
placeholder
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iSphereMAP: iterative Spherical regression MAPping
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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Initialize              

large number of parameters. In addition to ⇧ being block diagonal, we assume that only a

small fraction of mismatch occurs and hence nmis = o(n). However, we do not constrain ⇧ to

be a permutation matrix and accommodate more complex mismatch patterns. For example,

if X and Y represent ICD-10 and ICD-9 codes respectively, Yi may not be mapped to any

single ICD-10 code but rather needs to be represented by a combination of multiple ICD-10

codes in X. We also allow some columns of ⇧ to be zero vectors, indicating that the cor-

responding unit of X does not link to any response in Y. In the presence of mismatch, we

assume that Yi | X are independent and follows

fvMF(Yi|X; ) = Cp() exp(µ
T
⇧,iYi) with µ⇧,i = WT(⇧i·X)T , WWT = Ip (4)

and k(⇧i·X)Tk2 = 1 to ensure that the mapped vector (⇧i·X)T remains on Sp�1. A necessary

condition for k(⇧i·X)Tk2 = 1 is 1p
nk

 k⇧i·k2  1
�nk (X[Gk,:])

, for all i 2 Gk, which is shown in

Lemma C.4. We further assume that n > p > max1kK nk and  6= 0.

2.3 Iterative spherical regression mapping (iSphereMAP)

We propose an iterative spherical regression mapping (iSphereMAP) method to estimate the

translation matrix W and the mapping matrix ⇧. Although the iSphereMAP procedure can

iterate until convergence, we find that the estimators stabilize after three steps and hence

focus on the three-step procedure. In step I, we simply estimate ⇧ as b⇧[1] = In and obtain

an initial estimator for W as

cW[1] = argmin
W:WWT=Ip

kY[S( b⇧[1]),:] � X[S( b⇧[1]),:]Wk2F = argmin
W:WWT=Ip

kY� XWk2F = argmin
W:WWT=Ip

b̀
0(W).

(5)

The degree of mismatch between b⇧[1] and the true ⇧ is of size nmis = n � |S(⇧)| with

D(I,⇧) = S(⇧)c. Solving for W in the optimization problem (5) is a well-known orthogonal

Procrustes problem (Schönemann 1966, Gower et al. 2004, e.g.), the solution to which is the

polar decomposition of XTY (Higham 1986, e.g.):

cW[1] = U(XTY), where for any nonsingular matrix Ap⇥p, U(A) = A(ATA)� 1
2 .
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Align language spaces

Rotate
In step II, we obtain an improved estimator of ⇧ by mapping the translated data, Y and

XcW[1]. Recall that ⇧ = diag{⇧1
, . . . ,⇧

k}, where the mapping matrix for the kth group, ⇧k,

is an nk ⇥ nk matrix. We estimate each ⇧
k using a hard-thresholding procedure as follows.

First, we compute an initial estimate e⇧k by the ordinary least squares (OLS) as

e⇧k = Y[Gk,:](X[Gk,:]
cW[1])T(X[Gk,:]XT

[Gk,:]
)�1

.

Then to obtain a sparse estimate of ⇧, we apply hard-thresholding to e⇧ = diag{e⇧1
, ..., e⇧K}

allowing for one-to-many correspondence within group. Specifically, for each i 2 [n], let

�i = 1�max
j:j⇠i

cos(⇧i·, Ij·), e�i = 1�max
j:j⇠i

cos(e⇧i·, Ij·), and eji = argmaxj:j⇠i cos(e⇧i·, Ij·).

Intuitively, �i measures how ⇧i· is distinguishable from a one-to-one mapping, which is

estimated by the distance between the largest element in e⇧i· (length-normalized) and one

within group. We can see that �i = 0 if ⇧i· = Ij· for some j ⇠ i, and �i 6= 0 when ⇧i·

represents a one-to-many mapping. Thus, the support C = {i 2 [n] : �i 6= 0} indexes

the rows where ⇧i· corresponds to one-to-many mapping. To recover the support C and

construct a sparse estimate of ⇧, denoted as b⇧[2], we threshold e�i with a properly chosen �n

and obtain the i
th row of b⇧[2] as

b⇧[2]

i· = Ieji· (e�i  �n) +
e⇧i·

k(e⇧i·X)Tk2
(e�i > �n) (6)

where we suppressed �n in b⇧[2] for ease of notation. Thus, we set b⇧[2]

i· to Ieji· when e�i is

small; but estimate ⇧i· as e⇧i·/k(e⇧i·X)Tk2 when e�i is large. The `2-normalized estimator

e⇧i·/k(e⇧i·X)Tk2 preserves unit length for the translated vector (e⇧i·X)T and in fact is the

solution to minimizing the constrained OLS problem under the spherical constraint.

With a properly chosen �n, b⇧[2] consistently recovers ⇧ as detailed in Section 3.2. In-

tuitively, to correctly classify ⇧i· as a one-to-one or one-to-many mapping, �n should be

chosen to be both below the smallest non-zero signal of �i and above the estimation error

for the zero-signals. In practice, �n is selected among a series of values in (0, 1 � 1p
2
) by

cross-validation, where the upper bound was chosen because there is at most one j that

gives cos(e⇧i·, Ij·) >
1p
2
. Specifically, we use cross-validation optimizing the mean squared
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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X,Y

[R] UAAV⇒ Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV

9

+!

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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X,Y

[R] UAAV⇒ Π̂
[k]
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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Estimate mismatch pattern

Refine 

The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate

1 1
2 2
3 3
4 4

1 1
2 2
3 3
4 4
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6 = lo⊤- r?2`2 Y⊤X = l.o⊤

• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
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, . . . , Π̃

E
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Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)
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}
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h`�MbH�iBQM mbBM; p2+iQ` `2T`2b2Mi�iBQMb Q7 A*. +Q/2b
250.00%(Diabetes.non%insulin%dependent)%
790.29%(Other%abnormal%glucose)%

Me?ormin%

714.0%(Rheumatoid%arthriCs)%
710.0%(Systemic%lupus%erythematosus)%

X1%

X2%

Insulin%

Hydroxychloroquine%Sulfate%
Methrotrexate%

443.0%(Raynaud’s%syndrome)%

Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤

• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
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No mismatch if Π = I is an identity matrix Ŵ
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Use matched rows

• Find rotation via spherical regression
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Xu Shi
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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large number of parameters. In addition to ⇧ being block diagonal, we assume that only a

small fraction of mismatch occurs and hence nmis = o(n). However, we do not constrain ⇧ to

be a permutation matrix and accommodate more complex mismatch patterns. For example,

if X and Y represent ICD-10 and ICD-9 codes respectively, Yi may not be mapped to any

single ICD-10 code but rather needs to be represented by a combination of multiple ICD-10

codes in X. We also allow some columns of ⇧ to be zero vectors, indicating that the cor-

responding unit of X does not link to any response in Y. In the presence of mismatch, we

assume that Yi | X are independent and follows

fvMF(Yi|X; ) = Cp() exp(µ
T
⇧,iYi) with µ⇧,i = WT(⇧i·X)T , WWT = Ip (4)

and k(⇧i·X)Tk2 = 1 to ensure that the mapped vector (⇧i·X)T remains on Sp�1. A necessary

condition for k(⇧i·X)Tk2 = 1 is 1p
nk

 k⇧i·k2  1
�nk (X[Gk,:])

, for all i 2 Gk, which is shown in

Lemma C.4. We further assume that n > p > max1kK nk and  6= 0.

2.3 Iterative spherical regression mapping (iSphereMAP)

We propose an iterative spherical regression mapping (iSphereMAP) method to estimate the

translation matrix W and the mapping matrix ⇧. Although the iSphereMAP procedure can

iterate until convergence, we find that the estimators stabilize after three steps and hence

focus on the three-step procedure. In step I, we simply estimate ⇧ as b⇧[1] = In and obtain

an initial estimator for W as

cW[1] = argmin
W:WWT=Ip

kY[S( b⇧[1]),:] � X[S( b⇧[1]),:]Wk2F = argmin
W:WWT=Ip

kY� XWk2F = argmin
W:WWT=Ip

b̀
0(W).

(5)

The degree of mismatch between b⇧[1] and the true ⇧ is of size nmis = n � |S(⇧)| with

D(I,⇧) = S(⇧)c. Solving for W in the optimization problem (5) is a well-known orthogonal

Procrustes problem (Schönemann 1966, Gower et al. 2004, e.g.), the solution to which is the

polar decomposition of XTY (Higham 1986, e.g.):

cW[1] = U(XTY), where for any nonsingular matrix Ap⇥p, U(A) = A(ATA)� 1
2 .
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Align language spaces

Rotate
In step II, we obtain an improved estimator of ⇧ by mapping the translated data, Y and

XcW[1]. Recall that ⇧ = diag{⇧1
, . . . ,⇧

k}, where the mapping matrix for the kth group, ⇧k,

is an nk ⇥ nk matrix. We estimate each ⇧
k using a hard-thresholding procedure as follows.

First, we compute an initial estimate e⇧k by the ordinary least squares (OLS) as

e⇧k = Y[Gk,:](X[Gk,:]
cW[1])T(X[Gk,:]XT

[Gk,:]
)�1

.

Then to obtain a sparse estimate of ⇧, we apply hard-thresholding to e⇧ = diag{e⇧1
, ..., e⇧K}

allowing for one-to-many correspondence within group. Specifically, for each i 2 [n], let

�i = 1�max
j:j⇠i

cos(⇧i·, Ij·), e�i = 1�max
j:j⇠i

cos(e⇧i·, Ij·), and eji = argmaxj:j⇠i cos(e⇧i·, Ij·).

Intuitively, �i measures how ⇧i· is distinguishable from a one-to-one mapping, which is

estimated by the distance between the largest element in e⇧i· (length-normalized) and one

within group. We can see that �i = 0 if ⇧i· = Ij· for some j ⇠ i, and �i 6= 0 when ⇧i·

represents a one-to-many mapping. Thus, the support C = {i 2 [n] : �i 6= 0} indexes

the rows where ⇧i· corresponds to one-to-many mapping. To recover the support C and

construct a sparse estimate of ⇧, denoted as b⇧[2], we threshold e�i with a properly chosen �n

and obtain the i
th row of b⇧[2] as

b⇧[2]

i· = Ieji· (e�i  �n) +
e⇧i·

k(e⇧i·X)Tk2
(e�i > �n) (6)

where we suppressed �n in b⇧[2] for ease of notation. Thus, we set b⇧[2]

i· to Ieji· when e�i is

small; but estimate ⇧i· as e⇧i·/k(e⇧i·X)Tk2 when e�i is large. The `2-normalized estimator

e⇧i·/k(e⇧i·X)Tk2 preserves unit length for the translated vector (e⇧i·X)T and in fact is the

solution to minimizing the constrained OLS problem under the spherical constraint.

With a properly chosen �n, b⇧[2] consistently recovers ⇧ as detailed in Section 3.2. In-

tuitively, to correctly classify ⇧i· as a one-to-one or one-to-many mapping, �n should be

chosen to be both below the smallest non-zero signal of �i and above the estimation error

for the zero-signals. In practice, �n is selected among a series of values in (0, 1 � 1p
2
) by

cross-validation, where the upper bound was chosen because there is at most one j that

gives cos(e⇧i·, Ij·) >
1p
2
. Specifically, we use cross-validation optimizing the mean squared
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h`�MbH�iBQM mbBM; p2+iQ` `2T`2b2Mi�iBQMb Q7 A*. +Q/2b
250.00%(Diabetes.non%insulin%dependent)%
790.29%(Other%abnormal%glucose)%

Me?ormin%

714.0%(Rheumatoid%arthriCs)%
710.0%(Systemic%lupus%erythematosus)%

X1%

X2%

Insulin%

Hydroxychloroquine%Sulfate%
Methrotrexate%

443.0%(Raynaud’s%syndrome)%

Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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X,Y

[R] UAAV⇒ Π̂
[k]
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate

1 1
2 2
3 3
4 4

1 1
2 2
3 3
4 4

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV

9

+!
Estimate mismatch pattern

Refine 

The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate

1 1
2 2
3 3
4 4

1 1
2 2
3 3
4 4

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
Xu Shi
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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XŴ[R],Y

UAAAV⇒ Ŵ[k]
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Use matched rows

• Find rotation via spherical regression
Ŵ[R]= argmin
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where XhY = UDV h

• Match a code to its nearest neighbor(s)
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
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Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)
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Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
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jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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6

N

Initialize              

large number of parameters. In addition to ⇧ being block diagonal, we assume that only a

small fraction of mismatch occurs and hence nmis = o(n). However, we do not constrain ⇧ to

be a permutation matrix and accommodate more complex mismatch patterns. For example,

if X and Y represent ICD-10 and ICD-9 codes respectively, Yi may not be mapped to any

single ICD-10 code but rather needs to be represented by a combination of multiple ICD-10

codes in X. We also allow some columns of ⇧ to be zero vectors, indicating that the cor-

responding unit of X does not link to any response in Y. In the presence of mismatch, we

assume that Yi | X are independent and follows

fvMF(Yi|X; ) = Cp() exp(µ
T
⇧,iYi) with µ⇧,i = WT(⇧i·X)T , WWT = Ip (4)

and k(⇧i·X)Tk2 = 1 to ensure that the mapped vector (⇧i·X)T remains on Sp�1. A necessary

condition for k(⇧i·X)Tk2 = 1 is 1p
nk

 k⇧i·k2  1
�nk (X[Gk,:])

, for all i 2 Gk, which is shown in

Lemma C.4. We further assume that n > p > max1kK nk and  6= 0.

2.3 Iterative spherical regression mapping (iSphereMAP)

We propose an iterative spherical regression mapping (iSphereMAP) method to estimate the

translation matrix W and the mapping matrix ⇧. Although the iSphereMAP procedure can

iterate until convergence, we find that the estimators stabilize after three steps and hence

focus on the three-step procedure. In step I, we simply estimate ⇧ as b⇧[1] = In and obtain

an initial estimator for W as

cW[1] = argmin
W:WWT=Ip

kY[S( b⇧[1]),:] � X[S( b⇧[1]),:]Wk2F = argmin
W:WWT=Ip

kY� XWk2F = argmin
W:WWT=Ip

b̀
0(W).

(5)

The degree of mismatch between b⇧[1] and the true ⇧ is of size nmis = n � |S(⇧)| with

D(I,⇧) = S(⇧)c. Solving for W in the optimization problem (5) is a well-known orthogonal

Procrustes problem (Schönemann 1966, Gower et al. 2004, e.g.), the solution to which is the

polar decomposition of XTY (Higham 1986, e.g.):

cW[1] = U(XTY), where for any nonsingular matrix Ap⇥p, U(A) = A(ATA)� 1
2 .
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Align language spaces

Rotate
In step II, we obtain an improved estimator of ⇧ by mapping the translated data, Y and

XcW[1]. Recall that ⇧ = diag{⇧1
, . . . ,⇧

k}, where the mapping matrix for the kth group, ⇧k,

is an nk ⇥ nk matrix. We estimate each ⇧
k using a hard-thresholding procedure as follows.

First, we compute an initial estimate e⇧k by the ordinary least squares (OLS) as

e⇧k = Y[Gk,:](X[Gk,:]
cW[1])T(X[Gk,:]XT

[Gk,:]
)�1

.

Then to obtain a sparse estimate of ⇧, we apply hard-thresholding to e⇧ = diag{e⇧1
, ..., e⇧K}

allowing for one-to-many correspondence within group. Specifically, for each i 2 [n], let

�i = 1�max
j:j⇠i

cos(⇧i·, Ij·), e�i = 1�max
j:j⇠i

cos(e⇧i·, Ij·), and eji = argmaxj:j⇠i cos(e⇧i·, Ij·).

Intuitively, �i measures how ⇧i· is distinguishable from a one-to-one mapping, which is

estimated by the distance between the largest element in e⇧i· (length-normalized) and one

within group. We can see that �i = 0 if ⇧i· = Ij· for some j ⇠ i, and �i 6= 0 when ⇧i·

represents a one-to-many mapping. Thus, the support C = {i 2 [n] : �i 6= 0} indexes

the rows where ⇧i· corresponds to one-to-many mapping. To recover the support C and

construct a sparse estimate of ⇧, denoted as b⇧[2], we threshold e�i with a properly chosen �n

and obtain the i
th row of b⇧[2] as

b⇧[2]

i· = Ieji· (e�i  �n) +
e⇧i·

k(e⇧i·X)Tk2
(e�i > �n) (6)

where we suppressed �n in b⇧[2] for ease of notation. Thus, we set b⇧[2]

i· to Ieji· when e�i is

small; but estimate ⇧i· as e⇧i·/k(e⇧i·X)Tk2 when e�i is large. The `2-normalized estimator

e⇧i·/k(e⇧i·X)Tk2 preserves unit length for the translated vector (e⇧i·X)T and in fact is the

solution to minimizing the constrained OLS problem under the spherical constraint.

With a properly chosen �n, b⇧[2] consistently recovers ⇧ as detailed in Section 3.2. In-

tuitively, to correctly classify ⇧i· as a one-to-one or one-to-many mapping, �n should be

chosen to be both below the smallest non-zero signal of �i and above the estimation error

for the zero-signals. In practice, �n is selected among a series of values in (0, 1 � 1p
2
) by

cross-validation, where the upper bound was chosen because there is at most one j that

gives cos(e⇧i·, Ij·) >
1p
2
. Specifically, we use cross-validation optimizing the mean squared
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate

1 1
2 2
3 3
4 4

1 1
2 2
3 3
4 4
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Π̂
[k]
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• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
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h`�MbH�iBQM mbBM; p2+iQ` `2T`2b2Mi�iBQMb Q7 A*. +Q/2b
250.00%(Diabetes.non%insulin%dependent)%
790.29%(Other%abnormal%glucose)%

Me?ormin%

714.0%(Rheumatoid%arthriCs)%
710.0%(Systemic%lupus%erythematosus)%

X1%

X2%

Insulin%

Hydroxychloroquine%Sulfate%
Methrotrexate%

443.0%(Raynaud’s%syndrome)%

Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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No mismatch if Π = I is an identity matrix (Y,X) Π̂final
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

No mismatch if Π = I is an identity matrix Ŵ

14

1 1
2 2
3 3
4 4

2 2
1 1
3 3
4 4

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h`�MbH�iBQM mbBM; p2+iQ` `2T`2b2Mi�iBQMb Q7 A*. +Q/2b
250.00%(Diabetes.non%insulin%dependent)%
790.29%(Other%abnormal%glucose)%

Me?ormin%

714.0%(Rheumatoid%arthriCs)%
710.0%(Systemic%lupus%erythematosus)%

X1%

X2%

Insulin%

Hydroxychloroquine%Sulfate%
Methrotrexate%

443.0%(Raynaud’s%syndrome)%

Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Π̂
[k]
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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Π̂
[k]
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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Use matched rows

• Find rotation via spherical regression
Ŵ[R]= argmin

W:WWh=Ip
∥Y−XW∥2F =UV h

where XhY = UDV h

• Match a code to its nearest neighbor(s)
Π̃

k
=argmin ∥Ỹk−X̃kΠ

h∥2F
where Ỹk = Yh

k, X̃k = (XkŴ[R])h

• Refine rotation using matched data
Ŵ= argmin

W:WWh=Ip
∥YK�i+?−XK�i+?W∥2F
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Π̂
[k]
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Initialize              

large number of parameters. In addition to ⇧ being block diagonal, we assume that only a

small fraction of mismatch occurs and hence nmis = o(n). However, we do not constrain ⇧ to

be a permutation matrix and accommodate more complex mismatch patterns. For example,

if X and Y represent ICD-10 and ICD-9 codes respectively, Yi may not be mapped to any

single ICD-10 code but rather needs to be represented by a combination of multiple ICD-10

codes in X. We also allow some columns of ⇧ to be zero vectors, indicating that the cor-

responding unit of X does not link to any response in Y. In the presence of mismatch, we

assume that Yi | X are independent and follows

fvMF(Yi|X; ) = Cp() exp(µ
T
⇧,iYi) with µ⇧,i = WT(⇧i·X)T , WWT = Ip (4)

and k(⇧i·X)Tk2 = 1 to ensure that the mapped vector (⇧i·X)T remains on Sp�1. A necessary

condition for k(⇧i·X)Tk2 = 1 is 1p
nk

 k⇧i·k2  1
�nk (X[Gk,:])

, for all i 2 Gk, which is shown in

Lemma C.4. We further assume that n > p > max1kK nk and  6= 0.

2.3 Iterative spherical regression mapping (iSphereMAP)

We propose an iterative spherical regression mapping (iSphereMAP) method to estimate the

translation matrix W and the mapping matrix ⇧. Although the iSphereMAP procedure can

iterate until convergence, we find that the estimators stabilize after three steps and hence

focus on the three-step procedure. In step I, we simply estimate ⇧ as b⇧[1] = In and obtain

an initial estimator for W as

cW[1] = argmin
W:WWT=Ip

kY[S( b⇧[1]),:] � X[S( b⇧[1]),:]Wk2F = argmin
W:WWT=Ip

kY� XWk2F = argmin
W:WWT=Ip

b̀
0(W).

(5)

The degree of mismatch between b⇧[1] and the true ⇧ is of size nmis = n � |S(⇧)| with

D(I,⇧) = S(⇧)c. Solving for W in the optimization problem (5) is a well-known orthogonal

Procrustes problem (Schönemann 1966, Gower et al. 2004, e.g.), the solution to which is the

polar decomposition of XTY (Higham 1986, e.g.):

cW[1] = U(XTY), where for any nonsingular matrix Ap⇥p, U(A) = A(ATA)� 1
2 .
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Align language spaces

Rotate
In step II, we obtain an improved estimator of ⇧ by mapping the translated data, Y and

XcW[1]. Recall that ⇧ = diag{⇧1
, . . . ,⇧

k}, where the mapping matrix for the kth group, ⇧k,

is an nk ⇥ nk matrix. We estimate each ⇧
k using a hard-thresholding procedure as follows.

First, we compute an initial estimate e⇧k by the ordinary least squares (OLS) as

e⇧k = Y[Gk,:](X[Gk,:]
cW[1])T(X[Gk,:]XT

[Gk,:]
)�1

.

Then to obtain a sparse estimate of ⇧, we apply hard-thresholding to e⇧ = diag{e⇧1
, ..., e⇧K}

allowing for one-to-many correspondence within group. Specifically, for each i 2 [n], let

�i = 1�max
j:j⇠i

cos(⇧i·, Ij·), e�i = 1�max
j:j⇠i

cos(e⇧i·, Ij·), and eji = argmaxj:j⇠i cos(e⇧i·, Ij·).

Intuitively, �i measures how ⇧i· is distinguishable from a one-to-one mapping, which is

estimated by the distance between the largest element in e⇧i· (length-normalized) and one

within group. We can see that �i = 0 if ⇧i· = Ij· for some j ⇠ i, and �i 6= 0 when ⇧i·

represents a one-to-many mapping. Thus, the support C = {i 2 [n] : �i 6= 0} indexes

the rows where ⇧i· corresponds to one-to-many mapping. To recover the support C and

construct a sparse estimate of ⇧, denoted as b⇧[2], we threshold e�i with a properly chosen �n

and obtain the i
th row of b⇧[2] as

b⇧[2]

i· = Ieji· (e�i  �n) +
e⇧i·

k(e⇧i·X)Tk2
(e�i > �n) (6)

where we suppressed �n in b⇧[2] for ease of notation. Thus, we set b⇧[2]

i· to Ieji· when e�i is

small; but estimate ⇧i· as e⇧i·/k(e⇧i·X)Tk2 when e�i is large. The `2-normalized estimator

e⇧i·/k(e⇧i·X)Tk2 preserves unit length for the translated vector (e⇧i·X)T and in fact is the

solution to minimizing the constrained OLS problem under the spherical constraint.

With a properly chosen �n, b⇧[2] consistently recovers ⇧ as detailed in Section 3.2. In-

tuitively, to correctly classify ⇧i· as a one-to-one or one-to-many mapping, �n should be

chosen to be both below the smallest non-zero signal of �i and above the estimation error

for the zero-signals. In practice, �n is selected among a series of values in (0, 1 � 1p
2
) by

cross-validation, where the upper bound was chosen because there is at most one j that

gives cos(e⇧i·, Ij·) >
1p
2
. Specifically, we use cross-validation optimizing the mean squared
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate

1 1
2 2
3 3
4 4

1 1
2 2
3 3
4 4
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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• AMBiB�H PGa rBi?BM@;`QmT, Π̃ = /B�;{Π̃R
, . . . , Π̃

E
}

• >�`/@i?`2b?QH/BM;, Π̂
[k]

B· = IC̃B· (β̃B ≤ λM) +
Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)

@ β̃B K2�bm`2b ?Qr /Bz2`2Mi Bb Π̃B· 7`QK IC̃B·X β̃B ≈ y K2�Mb Π̃B· ≈ IC̃B·
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
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P
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✓
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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XŴ[R],Y

UAAAV⇒ Ŵ[k]
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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Π̂
[k]
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,XŴ[R],Y
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Estimate mismatch pattern

Refine 

The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`
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Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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X,Y

[R] UAAV⇒ Π̂
[k]
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,XŴ[R],Y
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.
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Use matched rows

• Find rotation via spherical regression
Ŵ[R]= argmin

W:WWh=Ip
∥Y−XW∥2F =UV h

where XhY = UDV h

• Match a code to its nearest neighbor(s)
Π̃

k
=argmin ∥Ỹk−X̃kΠ

h∥2F
where Ỹk = Yh

k, X̃k = (XkŴ[R])h

• Refine rotation using matched data
Ŵ= argmin

W:WWh=Ip
∥YK�i+?−XK�i+?W∥2F
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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Π̂
[k]
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Initialize              

large number of parameters. In addition to ⇧ being block diagonal, we assume that only a

small fraction of mismatch occurs and hence nmis = o(n). However, we do not constrain ⇧ to

be a permutation matrix and accommodate more complex mismatch patterns. For example,

if X and Y represent ICD-10 and ICD-9 codes respectively, Yi may not be mapped to any

single ICD-10 code but rather needs to be represented by a combination of multiple ICD-10

codes in X. We also allow some columns of ⇧ to be zero vectors, indicating that the cor-

responding unit of X does not link to any response in Y. In the presence of mismatch, we

assume that Yi | X are independent and follows

fvMF(Yi|X; ) = Cp() exp(µ
T
⇧,iYi) with µ⇧,i = WT(⇧i·X)T , WWT = Ip (4)

and k(⇧i·X)Tk2 = 1 to ensure that the mapped vector (⇧i·X)T remains on Sp�1. A necessary

condition for k(⇧i·X)Tk2 = 1 is 1p
nk

 k⇧i·k2  1
�nk (X[Gk,:])

, for all i 2 Gk, which is shown in

Lemma C.4. We further assume that n > p > max1kK nk and  6= 0.

2.3 Iterative spherical regression mapping (iSphereMAP)

We propose an iterative spherical regression mapping (iSphereMAP) method to estimate the

translation matrix W and the mapping matrix ⇧. Although the iSphereMAP procedure can

iterate until convergence, we find that the estimators stabilize after three steps and hence

focus on the three-step procedure. In step I, we simply estimate ⇧ as b⇧[1] = In and obtain

an initial estimator for W as

cW[1] = argmin
W:WWT=Ip

kY[S( b⇧[1]),:] � X[S( b⇧[1]),:]Wk2F = argmin
W:WWT=Ip

kY� XWk2F = argmin
W:WWT=Ip

b̀
0(W).

(5)

The degree of mismatch between b⇧[1] and the true ⇧ is of size nmis = n � |S(⇧)| with

D(I,⇧) = S(⇧)c. Solving for W in the optimization problem (5) is a well-known orthogonal

Procrustes problem (Schönemann 1966, Gower et al. 2004, e.g.), the solution to which is the

polar decomposition of XTY (Higham 1986, e.g.):

cW[1] = U(XTY), where for any nonsingular matrix Ap⇥p, U(A) = A(ATA)� 1
2 .
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Align language spaces

Rotate
In step II, we obtain an improved estimator of ⇧ by mapping the translated data, Y and

XcW[1]. Recall that ⇧ = diag{⇧1
, . . . ,⇧

k}, where the mapping matrix for the kth group, ⇧k,

is an nk ⇥ nk matrix. We estimate each ⇧
k using a hard-thresholding procedure as follows.

First, we compute an initial estimate e⇧k by the ordinary least squares (OLS) as

e⇧k = Y[Gk,:](X[Gk,:]
cW[1])T(X[Gk,:]XT

[Gk,:]
)�1

.

Then to obtain a sparse estimate of ⇧, we apply hard-thresholding to e⇧ = diag{e⇧1
, ..., e⇧K}

allowing for one-to-many correspondence within group. Specifically, for each i 2 [n], let

�i = 1�max
j:j⇠i

cos(⇧i·, Ij·), e�i = 1�max
j:j⇠i

cos(e⇧i·, Ij·), and eji = argmaxj:j⇠i cos(e⇧i·, Ij·).

Intuitively, �i measures how ⇧i· is distinguishable from a one-to-one mapping, which is

estimated by the distance between the largest element in e⇧i· (length-normalized) and one

within group. We can see that �i = 0 if ⇧i· = Ij· for some j ⇠ i, and �i 6= 0 when ⇧i·

represents a one-to-many mapping. Thus, the support C = {i 2 [n] : �i 6= 0} indexes

the rows where ⇧i· corresponds to one-to-many mapping. To recover the support C and

construct a sparse estimate of ⇧, denoted as b⇧[2], we threshold e�i with a properly chosen �n

and obtain the i
th row of b⇧[2] as

b⇧[2]

i· = Ieji· (e�i  �n) +
e⇧i·

k(e⇧i·X)Tk2
(e�i > �n) (6)

where we suppressed �n in b⇧[2] for ease of notation. Thus, we set b⇧[2]

i· to Ieji· when e�i is

small; but estimate ⇧i· as e⇧i·/k(e⇧i·X)Tk2 when e�i is large. The `2-normalized estimator

e⇧i·/k(e⇧i·X)Tk2 preserves unit length for the translated vector (e⇧i·X)T and in fact is the

solution to minimizing the constrained OLS problem under the spherical constraint.

With a properly chosen �n, b⇧[2] consistently recovers ⇧ as detailed in Section 3.2. In-

tuitively, to correctly classify ⇧i· as a one-to-one or one-to-many mapping, �n should be

chosen to be both below the smallest non-zero signal of �i and above the estimation error

for the zero-signals. In practice, �n is selected among a series of values in (0, 1 � 1p
2
) by

cross-validation, where the upper bound was chosen because there is at most one j that

gives cos(e⇧i·, Ij·) >
1p
2
. Specifically, we use cross-validation optimizing the mean squared
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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4 4
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X,Y

[R] UAAV⇒ Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV

9

+!

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
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◆

P
k2V exp

✓
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◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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• AMBiB�H PGa rBi?BM@;`QmT, Π̃ = /B�;{Π̃R
, . . . , Π̃

E
}

• >�`/@i?`2b?QH/BM;, Π̂
[k]

B· = IC̃B· (β̃B ≤ λM) +
Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)

@ β̃B K2�bm`2b ?Qr /Bz2`2Mi Bb Π̃B· 7`QK IC̃B·X β̃B ≈ y K2�Mb Π̃B· ≈ IC̃B·
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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,XŴ[R],Y
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• AMBiB�H PGa rBi?BM@;`QmT, Π̃ = /B�;{Π̃R
, . . . , Π̃

E
}

• >�`/@i?`2b?QH/BM;, Π̂
[k]

B· = IC̃B· (β̃B ≤ λM) +
Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)

@ β̃B K2�bm`2b ?Qr /Bz2`2Mi Bb Π̃B· 7`QK IC̃B·X β̃B ≈ y K2�Mb Π̃B· ≈ IC̃B·
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV

9

+!

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
X,Y

[R] UAAV⇒ Π̂
[k]

XŴ[R],Y

UAAAV⇒ Ŵ[k]

Π̂
[k]

,XŴ[R],Y

UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I

Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤

• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2

• AMBiB�H PGa rBi?BM@;`QmT, Π̃ = /B�;{Π̃R
, . . . , Π̃

E
}

• >�`/@i?`2b?QH/BM;, Π̂
[k]

B· = IC̃B· (β̃B ≤ λM) +
Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)

@ β̃B K2�bm`2b ?Qr /Bz2`2Mi Bb Π̃B· 7`QK IC̃B·X β̃B ≈ y K2�Mb Π̃B· ≈ IC̃B·

UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]

Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

No mismatch if Π = I is an identity matrix Ŵ
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XŴ[R],Y

UAAAV⇒ Ŵ[k]
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XŴ[R],Y

UAAAV⇒ Ŵ[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)
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Estimate mismatch pattern

Refine 

The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Π̂
[k]
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• AMBiB�H PGa rBi?BM@;`QmT, Π̃ = /B�;{Π̃R
, . . . , Π̃

E
}

• >�`/@i?`2b?QH/BM;, Π̂
[k]

B· = IC̃B· (β̃B ≤ λM) +
Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)

@ β̃B K2�bm`2b ?Qr /Bz2`2Mi Bb Π̃B· 7`QK IC̃B·X β̃B ≈ y K2�Mb Π̃B· ≈ IC̃B·
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV

9

+!

Use matched rows

• Is alignment insensitive to mismatch?
∥Ŵ[R]−W∥F = Op(inherent noise+mismatch)
Consistency requires sparse mismatch

• Is code mapping correct?
Correctly map Yi to Xj if one-to-one;
Consistently estimate the weight if one-to-many

• Can we better estimate W?
∥Ŵ−W∥F = Op(inherent noise)
As good as if no mismatch is present

21



Theoretical guarantees

1 1
2 2
3 3
4 4

2 2
1 1
3 3
4 4

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
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Initialize              

large number of parameters. In addition to ⇧ being block diagonal, we assume that only a

small fraction of mismatch occurs and hence nmis = o(n). However, we do not constrain ⇧ to

be a permutation matrix and accommodate more complex mismatch patterns. For example,

if X and Y represent ICD-10 and ICD-9 codes respectively, Yi may not be mapped to any

single ICD-10 code but rather needs to be represented by a combination of multiple ICD-10

codes in X. We also allow some columns of ⇧ to be zero vectors, indicating that the cor-

responding unit of X does not link to any response in Y. In the presence of mismatch, we

assume that Yi | X are independent and follows

fvMF(Yi|X; ) = Cp() exp(µ
T
⇧,iYi) with µ⇧,i = WT(⇧i·X)T , WWT = Ip (4)

and k(⇧i·X)Tk2 = 1 to ensure that the mapped vector (⇧i·X)T remains on Sp�1. A necessary

condition for k(⇧i·X)Tk2 = 1 is 1p
nk

 k⇧i·k2  1
�nk (X[Gk,:])

, for all i 2 Gk, which is shown in

Lemma C.4. We further assume that n > p > max1kK nk and  6= 0.

2.3 Iterative spherical regression mapping (iSphereMAP)

We propose an iterative spherical regression mapping (iSphereMAP) method to estimate the

translation matrix W and the mapping matrix ⇧. Although the iSphereMAP procedure can

iterate until convergence, we find that the estimators stabilize after three steps and hence

focus on the three-step procedure. In step I, we simply estimate ⇧ as b⇧[1] = In and obtain

an initial estimator for W as

cW[1] = argmin
W:WWT=Ip

kY[S( b⇧[1]),:] � X[S( b⇧[1]),:]Wk2F = argmin
W:WWT=Ip

kY� XWk2F = argmin
W:WWT=Ip

b̀
0(W).

(5)

The degree of mismatch between b⇧[1] and the true ⇧ is of size nmis = n � |S(⇧)| with

D(I,⇧) = S(⇧)c. Solving for W in the optimization problem (5) is a well-known orthogonal

Procrustes problem (Schönemann 1966, Gower et al. 2004, e.g.), the solution to which is the

polar decomposition of XTY (Higham 1986, e.g.):

cW[1] = U(XTY), where for any nonsingular matrix Ap⇥p, U(A) = A(ATA)� 1
2 .
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Align language spaces

Rotate
In step II, we obtain an improved estimator of ⇧ by mapping the translated data, Y and

XcW[1]. Recall that ⇧ = diag{⇧1
, . . . ,⇧

k}, where the mapping matrix for the kth group, ⇧k,

is an nk ⇥ nk matrix. We estimate each ⇧
k using a hard-thresholding procedure as follows.

First, we compute an initial estimate e⇧k by the ordinary least squares (OLS) as

e⇧k = Y[Gk,:](X[Gk,:]
cW[1])T(X[Gk,:]XT

[Gk,:]
)�1

.

Then to obtain a sparse estimate of ⇧, we apply hard-thresholding to e⇧ = diag{e⇧1
, ..., e⇧K}

allowing for one-to-many correspondence within group. Specifically, for each i 2 [n], let

�i = 1�max
j:j⇠i

cos(⇧i·, Ij·), e�i = 1�max
j:j⇠i

cos(e⇧i·, Ij·), and eji = argmaxj:j⇠i cos(e⇧i·, Ij·).

Intuitively, �i measures how ⇧i· is distinguishable from a one-to-one mapping, which is

estimated by the distance between the largest element in e⇧i· (length-normalized) and one

within group. We can see that �i = 0 if ⇧i· = Ij· for some j ⇠ i, and �i 6= 0 when ⇧i·

represents a one-to-many mapping. Thus, the support C = {i 2 [n] : �i 6= 0} indexes

the rows where ⇧i· corresponds to one-to-many mapping. To recover the support C and

construct a sparse estimate of ⇧, denoted as b⇧[2], we threshold e�i with a properly chosen �n

and obtain the i
th row of b⇧[2] as

b⇧[2]

i· = Ieji· (e�i  �n) +
e⇧i·

k(e⇧i·X)Tk2
(e�i > �n) (6)

where we suppressed �n in b⇧[2] for ease of notation. Thus, we set b⇧[2]

i· to Ieji· when e�i is

small; but estimate ⇧i· as e⇧i·/k(e⇧i·X)Tk2 when e�i is large. The `2-normalized estimator

e⇧i·/k(e⇧i·X)Tk2 preserves unit length for the translated vector (e⇧i·X)T and in fact is the

solution to minimizing the constrained OLS problem under the spherical constraint.

With a properly chosen �n, b⇧[2] consistently recovers ⇧ as detailed in Section 3.2. In-

tuitively, to correctly classify ⇧i· as a one-to-one or one-to-many mapping, �n should be

chosen to be both below the smallest non-zero signal of �i and above the estimation error

for the zero-signals. In practice, �n is selected among a series of values in (0, 1 � 1p
2
) by

cross-validation, where the upper bound was chosen because there is at most one j that

gives cos(e⇧i·, Ij·) >
1p
2
. Specifically, we use cross-validation optimizing the mean squared

9

The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate

1 1
2 2
3 3
4 4

1 1
2 2
3 3
4 4
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]

Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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P
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Π̂
[k]
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• P`i?Q;QM�H S`Q+`mbi2b T`Q#H2K, Ŵ[R] Bb �M Q`i?Q;QM�H K�i`Bt +HQb2bi iQ Y⊤X
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,XŴ[R],Y
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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• AMBiB�H PGa rBi?BM@;`QmT, Π̃ = /B�;{Π̃R
, . . . , Π̃

E
}

• >�`/@i?`2b?QH/BM;, Π̂
[k]

B· = IC̃B· (β̃B ≤ λM) +
Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)

@ β̃B K2�bm`2b ?Qr /Bz2`2Mi Bb Π̃B· 7`QK IC̃B·X β̃B ≈ y K2�Mb Π̃B· ≈ IC̃B·
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
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◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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+!

Use matched rows

• Is alignment insensitive to mismatch?
∥Ŵ[R]−W∥F = Op(inherent noise+mismatch)
Consistency requires sparse mismatch

• Is code mapping correct?
Correctly map Yi to Xj if one-to-one;
Consistently estimate the weight if one-to-many

• Can we better estimate W?
∥Ŵ−W∥F = Op(inherent noise)
As good as if no mismatch is present
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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,XŴ[R],Y
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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Initialize              

large number of parameters. In addition to ⇧ being block diagonal, we assume that only a

small fraction of mismatch occurs and hence nmis = o(n). However, we do not constrain ⇧ to

be a permutation matrix and accommodate more complex mismatch patterns. For example,

if X and Y represent ICD-10 and ICD-9 codes respectively, Yi may not be mapped to any

single ICD-10 code but rather needs to be represented by a combination of multiple ICD-10

codes in X. We also allow some columns of ⇧ to be zero vectors, indicating that the cor-

responding unit of X does not link to any response in Y. In the presence of mismatch, we

assume that Yi | X are independent and follows

fvMF(Yi|X; ) = Cp() exp(µ
T
⇧,iYi) with µ⇧,i = WT(⇧i·X)T , WWT = Ip (4)

and k(⇧i·X)Tk2 = 1 to ensure that the mapped vector (⇧i·X)T remains on Sp�1. A necessary

condition for k(⇧i·X)Tk2 = 1 is 1p
nk

 k⇧i·k2  1
�nk (X[Gk,:])

, for all i 2 Gk, which is shown in

Lemma C.4. We further assume that n > p > max1kK nk and  6= 0.

2.3 Iterative spherical regression mapping (iSphereMAP)

We propose an iterative spherical regression mapping (iSphereMAP) method to estimate the

translation matrix W and the mapping matrix ⇧. Although the iSphereMAP procedure can

iterate until convergence, we find that the estimators stabilize after three steps and hence

focus on the three-step procedure. In step I, we simply estimate ⇧ as b⇧[1] = In and obtain

an initial estimator for W as

cW[1] = argmin
W:WWT=Ip

kY[S( b⇧[1]),:] � X[S( b⇧[1]),:]Wk2F = argmin
W:WWT=Ip

kY� XWk2F = argmin
W:WWT=Ip

b̀
0(W).

(5)

The degree of mismatch between b⇧[1] and the true ⇧ is of size nmis = n � |S(⇧)| with

D(I,⇧) = S(⇧)c. Solving for W in the optimization problem (5) is a well-known orthogonal

Procrustes problem (Schönemann 1966, Gower et al. 2004, e.g.), the solution to which is the

polar decomposition of XTY (Higham 1986, e.g.):

cW[1] = U(XTY), where for any nonsingular matrix Ap⇥p, U(A) = A(ATA)� 1
2 .
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Align language spaces

Rotate
In step II, we obtain an improved estimator of ⇧ by mapping the translated data, Y and

XcW[1]. Recall that ⇧ = diag{⇧1
, . . . ,⇧

k}, where the mapping matrix for the kth group, ⇧k,

is an nk ⇥ nk matrix. We estimate each ⇧
k using a hard-thresholding procedure as follows.

First, we compute an initial estimate e⇧k by the ordinary least squares (OLS) as

e⇧k = Y[Gk,:](X[Gk,:]
cW[1])T(X[Gk,:]XT

[Gk,:]
)�1

.

Then to obtain a sparse estimate of ⇧, we apply hard-thresholding to e⇧ = diag{e⇧1
, ..., e⇧K}

allowing for one-to-many correspondence within group. Specifically, for each i 2 [n], let

�i = 1�max
j:j⇠i

cos(⇧i·, Ij·), e�i = 1�max
j:j⇠i

cos(e⇧i·, Ij·), and eji = argmaxj:j⇠i cos(e⇧i·, Ij·).

Intuitively, �i measures how ⇧i· is distinguishable from a one-to-one mapping, which is

estimated by the distance between the largest element in e⇧i· (length-normalized) and one

within group. We can see that �i = 0 if ⇧i· = Ij· for some j ⇠ i, and �i 6= 0 when ⇧i·

represents a one-to-many mapping. Thus, the support C = {i 2 [n] : �i 6= 0} indexes

the rows where ⇧i· corresponds to one-to-many mapping. To recover the support C and

construct a sparse estimate of ⇧, denoted as b⇧[2], we threshold e�i with a properly chosen �n

and obtain the i
th row of b⇧[2] as

b⇧[2]

i· = Ieji· (e�i  �n) +
e⇧i·

k(e⇧i·X)Tk2
(e�i > �n) (6)

where we suppressed �n in b⇧[2] for ease of notation. Thus, we set b⇧[2]

i· to Ieji· when e�i is

small; but estimate ⇧i· as e⇧i·/k(e⇧i·X)Tk2 when e�i is large. The `2-normalized estimator

e⇧i·/k(e⇧i·X)Tk2 preserves unit length for the translated vector (e⇧i·X)T and in fact is the

solution to minimizing the constrained OLS problem under the spherical constraint.

With a properly chosen �n, b⇧[2] consistently recovers ⇧ as detailed in Section 3.2. In-

tuitively, to correctly classify ⇧i· as a one-to-one or one-to-many mapping, �n should be

chosen to be both below the smallest non-zero signal of �i and above the estimation error

for the zero-signals. In practice, �n is selected among a series of values in (0, 1 � 1p
2
) by

cross-validation, where the upper bound was chosen because there is at most one j that

gives cos(e⇧i·, Ij·) >
1p
2
. Specifically, we use cross-validation optimizing the mean squared
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Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h`�MbH�iBQM mbBM; p2+iQ` `2T`2b2Mi�iBQMb Q7 A*. +Q/2b
250.00%(Diabetes.non%insulin%dependent)%
790.29%(Other%abnormal%glucose)%

Me?ormin%

714.0%(Rheumatoid%arthriCs)%
710.0%(Systemic%lupus%erythematosus)%

X1%

X2%

Insulin%

Hydroxychloroquine%Sulfate%
Methrotrexate%

443.0%(Raynaud’s%syndrome)%

Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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X,Y

[R] UAAV⇒ Π̂
[k]
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h`�MbH�iBQM mbBM; p2+iQ` `2T`2b2Mi�iBQMb Q7 A*. +Q/2b
250.00%(Diabetes.non%insulin%dependent)%
790.29%(Other%abnormal%glucose)%

Me?ormin%

714.0%(Rheumatoid%arthriCs)%
710.0%(Systemic%lupus%erythematosus)%

X1%

X2%

Insulin%

Hydroxychloroquine%Sulfate%
Methrotrexate%

443.0%(Raynaud’s%syndrome)%

Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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Estimate mismatch pattern

Refine 

The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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X,Y

[R] UAAV⇒ Π̂
[k]
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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h`�MbH�iBQM mbBM; p2+iQ` `2T`2b2Mi�iBQMb Q7 A*. +Q/2b
250.00%(Diabetes.non%insulin%dependent)%
790.29%(Other%abnormal%glucose)%

Me?ormin%

714.0%(Rheumatoid%arthriCs)%
710.0%(Systemic%lupus%erythematosus)%

X1%

X2%

Insulin%
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Methrotrexate%

443.0%(Raynaud’s%syndrome)%

Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

No mismatch if Π = I is an identity matrix Ŵ
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XŴ[R],Y

UAAAV⇒ Ŵ[k]

Π̂
[k]
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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Use matched rows

• Is alignment insensitive to mismatch?
∥Ŵ[R]−W∥F = Op(inherent noise+mismatch)
Consistency requires sparse mismatch

• Is code mapping correct?
Correctly map Yi to Xj if one-to-one;
Consistently estimate the weight if one-to-many

• Can we better estimate W?
∥Ŵ−W∥F = Op(inherent noise)
As good as if no mismatch is present
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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X,Y

[R] UAAV⇒ Π̂
[k]
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large number of parameters. In addition to ⇧ being block diagonal, we assume that only a

small fraction of mismatch occurs and hence nmis = o(n). However, we do not constrain ⇧ to

be a permutation matrix and accommodate more complex mismatch patterns. For example,

if X and Y represent ICD-10 and ICD-9 codes respectively, Yi may not be mapped to any

single ICD-10 code but rather needs to be represented by a combination of multiple ICD-10

codes in X. We also allow some columns of ⇧ to be zero vectors, indicating that the cor-

responding unit of X does not link to any response in Y. In the presence of mismatch, we

assume that Yi | X are independent and follows

fvMF(Yi|X; ) = Cp() exp(µ
T
⇧,iYi) with µ⇧,i = WT(⇧i·X)T , WWT = Ip (4)

and k(⇧i·X)Tk2 = 1 to ensure that the mapped vector (⇧i·X)T remains on Sp�1. A necessary

condition for k(⇧i·X)Tk2 = 1 is 1p
nk

 k⇧i·k2  1
�nk (X[Gk,:])

, for all i 2 Gk, which is shown in

Lemma C.4. We further assume that n > p > max1kK nk and  6= 0.

2.3 Iterative spherical regression mapping (iSphereMAP)

We propose an iterative spherical regression mapping (iSphereMAP) method to estimate the

translation matrix W and the mapping matrix ⇧. Although the iSphereMAP procedure can

iterate until convergence, we find that the estimators stabilize after three steps and hence

focus on the three-step procedure. In step I, we simply estimate ⇧ as b⇧[1] = In and obtain

an initial estimator for W as

cW[1] = argmin
W:WWT=Ip

kY[S( b⇧[1]),:] � X[S( b⇧[1]),:]Wk2F = argmin
W:WWT=Ip

kY� XWk2F = argmin
W:WWT=Ip

b̀
0(W).

(5)

The degree of mismatch between b⇧[1] and the true ⇧ is of size nmis = n � |S(⇧)| with

D(I,⇧) = S(⇧)c. Solving for W in the optimization problem (5) is a well-known orthogonal

Procrustes problem (Schönemann 1966, Gower et al. 2004, e.g.), the solution to which is the

polar decomposition of XTY (Higham 1986, e.g.):

cW[1] = U(XTY), where for any nonsingular matrix Ap⇥p, U(A) = A(ATA)� 1
2 .
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Align language spaces

Rotate
In step II, we obtain an improved estimator of ⇧ by mapping the translated data, Y and

XcW[1]. Recall that ⇧ = diag{⇧1
, . . . ,⇧

k}, where the mapping matrix for the kth group, ⇧k,

is an nk ⇥ nk matrix. We estimate each ⇧
k using a hard-thresholding procedure as follows.

First, we compute an initial estimate e⇧k by the ordinary least squares (OLS) as

e⇧k = Y[Gk,:](X[Gk,:]
cW[1])T(X[Gk,:]XT

[Gk,:]
)�1

.

Then to obtain a sparse estimate of ⇧, we apply hard-thresholding to e⇧ = diag{e⇧1
, ..., e⇧K}

allowing for one-to-many correspondence within group. Specifically, for each i 2 [n], let

�i = 1�max
j:j⇠i

cos(⇧i·, Ij·), e�i = 1�max
j:j⇠i

cos(e⇧i·, Ij·), and eji = argmaxj:j⇠i cos(e⇧i·, Ij·).

Intuitively, �i measures how ⇧i· is distinguishable from a one-to-one mapping, which is

estimated by the distance between the largest element in e⇧i· (length-normalized) and one

within group. We can see that �i = 0 if ⇧i· = Ij· for some j ⇠ i, and �i 6= 0 when ⇧i·

represents a one-to-many mapping. Thus, the support C = {i 2 [n] : �i 6= 0} indexes

the rows where ⇧i· corresponds to one-to-many mapping. To recover the support C and

construct a sparse estimate of ⇧, denoted as b⇧[2], we threshold e�i with a properly chosen �n

and obtain the i
th row of b⇧[2] as

b⇧[2]

i· = Ieji· (e�i  �n) +
e⇧i·

k(e⇧i·X)Tk2
(e�i > �n) (6)

where we suppressed �n in b⇧[2] for ease of notation. Thus, we set b⇧[2]

i· to Ieji· when e�i is

small; but estimate ⇧i· as e⇧i·/k(e⇧i·X)Tk2 when e�i is large. The `2-normalized estimator

e⇧i·/k(e⇧i·X)Tk2 preserves unit length for the translated vector (e⇧i·X)T and in fact is the

solution to minimizing the constrained OLS problem under the spherical constraint.

With a properly chosen �n, b⇧[2] consistently recovers ⇧ as detailed in Section 3.2. In-

tuitively, to correctly classify ⇧i· as a one-to-one or one-to-many mapping, �n should be

chosen to be both below the smallest non-zero signal of �i and above the estimation error

for the zero-signals. In practice, �n is selected among a series of values in (0, 1 � 1p
2
) by

cross-validation, where the upper bound was chosen because there is at most one j that

gives cos(e⇧i·, Ij·) >
1p
2
. Specifically, we use cross-validation optimizing the mean squared
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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,XŴ[R],Y
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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UAV Ŵ[R], bT?2`B+�H `2;`2bbBQM �bbmKBM; 7mHHv K�i+?2/ Π̂
[R]
= I

Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp
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P
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

No mismatch if Π = I is an identity matrix Π̂

14

The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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Π̂
[k]
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• Ŵ[R] =�`;K�t∑ +Qb(uB,W⊤sB)=�`;K�t∑u⊤

B · (W⊤sB)=�`;K�t∑ 7pJ6(uB|W⊤sB; κ)

UAAV Π̂
[k], irQ@bi2T ?�`/@i?`2b?QH/BM; mbBM; Ŵ[R] �bbmKBM; ;`QmT bi`m+im`2
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford
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Π̂
[k]
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]
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The statistical problem: spherical regression with mismatch
Let X = [X1, . . . ,Xn]hn×p, Y = [Y1, . . . ,Yn]hn×p: n vectors of dimension p

• Classical multivariate regression
Yn×p =Πn×nXn×pWp×p+Un×p

o (Xi,Yi) correctly linked
o unrestricted space
o W scale and shift

• Spherical regression w/ mismatch
Yn×p =Πn×nXn×pWp×p+Un×p

o ((ΠiX)h,Yi) correctly linked
o on the sphere ∥Xi∥=∥Yi∥=1
o W rotate
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UAAAV Ŵ[k], `2}M2 W mbBM; 2biBK�i2/ K�i+?2/ /�i� Y
Π̂
[k] ,X

Π̂
[k]

Ŵ[k] = argmin
W:WW⊤=IT

∥Y
Π̂[k] − X

Π̂[k]W∥k
6

N

h?`22@bi2T �H;Q`Bi?K
P`/2` Q7 2biBK�iBQMb, Π̂

[R] UAV⇒ Ŵ
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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• AMBiB�H PGa rBi?BM@;`QmT, Π̃ = /B�;{Π̃R
, . . . , Π̃

E
}

• >�`/@i?`2b?QH/BM;, Π̂
[k]

B· = IC̃B· (β̃B ≤ λM) +
Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)

@ β̃B K2�bm`2b ?Qr /Bz2`2Mi Bb Π̃B· 7`QK IC̃B·X β̃B ≈ y K2�Mb Π̃B· ≈ IC̃B·
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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exp
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
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Ŵ[R] = argmin
W:WW⊤=IT

∥Y− XW∥k
6 = lo⊤- r?2`2 Y⊤X = l.o⊤
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• AMBiB�H PGa rBi?BM@;`QmT, Π̃ = /B�;{Π̃R
, . . . , Π̃

E
}

• >�`/@i?`2b?QH/BM;, Π̂
[k]

B· = IC̃B· (β̃B ≤ λM) +
Π̃B·

∥Π̃B·X∥k
(β̃B > λM)

@ r?2`2 β̃B = R −maxD:D∼B +Qb(Π̃B·, ID·)- �M/ C̃B = �`;K�tD:D∼B +Qb(Π̃B·, ID·)

@ β̃B K2�bm`2b ?Qr /Bz2`2Mi Bb Π̃B· 7`QK IC̃B·X β̃B ≈ y K2�Mb Π̃B· ≈ IC̃B·
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.
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Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×
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X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)
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Figure 1: Illustration a low-dimensional representation (in this case, 2 dimensions) of medical concepts. Similar concepts are close to each
other in Euclidean space.

extraction. Although many models have been proposed for learning distributed representations, the most popular
is the skip-gram model of Mikolov et al. [5], implemented in the word2vec system. The key idea is that words with
similar contexts should have similar meanings. For example, if we see the two sentences “the patient complained
of flu-like symptoms” and “the patient reported flu-like symptoms”, we might infer that “complained” means the
same thing as “reported”. As a result, these two words should be close in the representation space.

With the success of using distributed representations in the natural language processing domain, there has been
a surge of interest in learning representations of concepts in medical domains. For example, Minarro-Gimenez
et al. [6] learn embeddings from unstructured medical copora crawled from PubMed, Merck Manuals, Medscape
and Wikipedia. The corpora are processed by removing the punctuations and forming medically related multi-
words terms. De Vine et al. [7] learn embeddings of concepts by first extracting UMLS concepts from two sets
of free text, clinical patient records and medical journal abstracts, then learning the embeddings using documents
obtained by concatenating all of the extracted concepts.

In this paper, we take this line of work further by showing how to learn medical concept embeddings from
health care claims. Specifically, we show how to use a claims dataset consisting of the ICD9 diagnosis codes,
CPT procedure codes, medication and laboratory records of over 4 million patients longitudinally for 2-4 years
per patient. Similar data is widely available both to providers such as health systems and to payers such as health
insurance companies or the Center for Medicare and Medicaid services. We show that with simple algorithmic
adjustments, it is possible to use the word2vec algorithm to learn embeddings on this type of longitudinal non-
textual data. We also demonstrate how to learn medical concept embeddings in a privacy preserving manner from
co-occurrence counts derived from clinical narratives, learning embeddings of UMLS concepts using the publicly
available “graph of medicine” published by Finlayson et al. [8]. Finally, we create several benchmark tasks from
standard medical resources such as the UMLS, the National Drug File Reference Terminology (NDF-RT), and the
Agency for Healthcare Research and Quality’s clinical classification software (CCS), and use these to evaluate
the embeddings and characterize their properties. We find that the embeddings derived from the claims dataset
are substantially better than those learned by De Vine et al. [7] on these benchmarks. Both our embeddings and
open-source code to reproduce the benchmark results are available at http://clinicalml.org.

2 Methods

2.1 Background

Neural probabilistic language models are widely used in natural language processing to learn distributed represen-
tations or embeddings of words. Our learning algorithms are based on recent work on log-bilinear language mod-
els [9], and in particular makes use of the skip-gram architecture and training strategy implemented in word2vec
[5, 10].

Let V denote the set of all concepts. We associate every concept v 2 V with a concept embedding �v 2 Rd

and a context embedding �̃v 2 Rd, where d is the dimension of the embedding. The context embeddings are used
within the learning algorithm, but are then typically discarded, whereas the concept embeddings �v are the final
output. Given the context j (e.g., a neighboring concept), the log-bilinear skip-gram model defines a distribution
over concepts given by the softmax function, i.e.

Pr(i | j) =
exp

✓
�i · �̃j

◆

P
k2V exp

✓
�k · �̃j

◆ . (1)

Word2vec in Medical Coding
Xu Shi
8/29/2017
This is a first attempt applying word2vec to representation and translation of icd9 codes. I am using data from the Back pain Outcomes using
Longitudinal Data (BOLD) study as a toy example, which enrolled 5239 patients with a new episode of back pain from three healthcare systems:
Kaiser Permanente, Henry Ford, and Harvard Vanguard (Jarvik JG et. al., 2012). We are going to use data from Kaiser and Henry Ford to apply the
translation of icd9 codes between two sites using word2vec representation.

Step 1: Define corpus per site: diagnoses history (icd9 codes) from multiple domains in EHR.
From each site, I combine data from multiple domains including hospitalization, imaging, provider visit, index visit, and procedures. The final
data consists of patient id, site, day, year, and icd9 codes. Note that icd9 codes are recorded per patient per visit, and at each visit, there
might be both primary and secondary icd9 codes recorded.

Step 2: Define a sentence/item: icd9 codes per patient per visit by primary and then secondary icd9 order.
The intuition for defining a sentence in our setting is the question of “what is the context of a particular diagnostic code?”. A reasonable context
would be the diagnoses of one patient over time, with the ordinal ordering that a primary diagnosis should be followed by a set of
secondary diagnosis at each visit.

Questions: (1) should codes be more similar within the same time e.g. codes at each visit, or more similar within the same medical domain
e.g. codes within imaging. (2) window size is very tricky to pick.

Step 3: Build word2vec representation for icd9 codes, one model per site.
We now apply the “wordVectors” package and use the corpus from each site to train the corresponding model for this site. The key component is
the n p representation matrix, where n is #vocabulary (i.e. #icd 9 codes), and p is #feature, which we set to 300. That is, for each icd9 code
within a site, we represent it using a vector of 300 elements, and therefore the set of code vectors in each site belongs to a corresponding vector
space.

Questions: some packages read in all sentences and ignore the period, so the last word in a sentence is a neighbor of the first word in the next
sentence. I have not figured out whether this is the case for this R package.

For site 1 (Henry Ford), we have

## [1] "1286  codes (vocabularies)"

For site 2 (Kaiser Permanente), we have

## [1] "1392  codes (vocabularies)"

Explore a few vectors
One thing I noticed is that an outlier vector could substantially change the estimated principle components (linear combination of 300 features) for
all vectors. Therefore, when the vectors do not match up visually between sites, further investigation of the original 300-dimensional vectors
should be considered.

Translation from Kaiser to Henry Ford

×

• G�M;m�;2 i`�MbH�iBQM rBi? rQ`/kp2+j Up2+iQ` `2T`2b2Mi�iBQM Q7 rQ`/V
Q qQ`/@p2+iQ`b i`�BM2/ 7`QK � +QHH2+iBQM Q7 i2ti 7Q`K � H�M;m�;2 bT�+2
Q qQ`/b rBi? bBKBH�` K2�MBM;b �`2 +HQb2 iQ 2�+? Qi?2`

• �HB;M irQ bT�+2b #v � HBM2�` i`�Mb7Q`K�iBQM i?2M K�i+? rQ`/@p2+iQ`b9

Q Y = XW+ U- r?2`2 W Bb � T × T i`�MbH�iBQM K�i`Bt
X = [sR, . . . ,sM]⊤M×T- Y = [uR, . . . ,uM]M×T, M p2+iQ`b Q7 /BK2MbBQM T

Q 6Q` 2�+? uB- }M/ i?2 +HQb2bi sD pB� argmaxD +Qb(uB,sDŴ)

• J2/B+�H +Q/2 i`�MbH�iBQM, rQ`/4A*. +Q/2- b2Mi2M+24T�iB2Mi `2+Q`/
Q h`�BM irQ b2ib Q7 +Q/2@p2+iQ`b rBi? 1>_b 7`QK irQ bvbi2Kb
Q "BHBM;m�H i`�MbH�iBQM Q7 +Q/2@p2+iQ`b BM irQ ?2�Hi? ǳH�M;m�;2bǴ

jJBFQHQp- amibF2p2`- *?2M- *Q``�/Q � .2�M UkyRjV
9h?2 JBFQHQp K2i?Q/, JBFQHQp- hX- G2- ZX oX � amibF2p2`- AX UkyRjV

9

+!

Use matched rows

• Is alignment insensitive to mismatch?
∥Ŵ[R]−W∥F = Op(inherent noise+mismatch)
Consistency requires sparse mismatch

• Is code mapping correct?
Correctly map Yi to Xj if one-to-one;
Consistently estimate the weight if one-to-many

• Can we better estimate W?
∥Ŵ−W∥F = Op(inherent noise)
As good as if no mismatch is present
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Simulation: iSphereMAP vs Mikolov et. al. 2013 (Google)

Mapping: 1-to-1 match error 1-to-many weight error

Spherical regression error
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Example: ICD-9 code translation between two systems
=

Co-occurrence 
Matrix Singular Value Decomposition

Patient Timeline Bins

Pt bin 1

. 

. 

. 

. 

.

Co-occurrence Count

Pt bin 2

Pt bin n

Code Translation 
= 

Space alignment 
+ 

Mapping

Partners HealthCare Veterans Health Administration

●

●

●

●

●

●

●

519.0
786.05
786.07
786.09
786.2
786.52
786.7

Tracheostomy complications
Shortness of breath

Wheezing

Cough
Painful respiration

Abnormal chest sounds

Other dyspnea andrespiratory abnormality

●

●

●

●

●

●

●

519.0
786.05
786.07
786.09
786.2
786.52
786.7

Tracheostomy complications
Shortness of breath
Wheezing

Cough
Painful respiration
Abnormal chest sounds

Other dyspnea andrespiratory abnormality
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Example: ICD9-to-10 mapping for suicide and self-inflicted injuries (SSI)
●

●

●

●

E957.0

E957.1

E957.2

E957.9

SSI by jumping from residential premises

SSI by jumping from other man−made structures

SSI by jumping from natural sites

SSI by jumping from unspecified site

●

●

●

●

●

●

X80XXXA

Y92009

Y9289
Y92828
Y92838
Y929

Intentional self−harm by jumping
 from a high place, initial encounter

Unspecified place in unspecified
 non−institutional (private) residence

Other specified places
Other wilderness area
Other recreation area
Unspecified place or not applicable
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●

●
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SSI by jumping from residential premises

SSI by jumping from other man−made structures

SSI by jumping from natural sites

SSI by jumping from unspecified site
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●

●

●

●

X80XXXA

Y92009

Y9289
Y92828
Y92838
Y929

Intentional self−harm by jumping
 from a high place, initial encounter

Unspecified place in unspecified
 non−institutional (private) residence

Other specified places
Other wilderness area
Other recreation area
Unspecified place or not applicable

●

●

●

●
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E957.1

E957.2

E957.9

SSI by jumping from residential premises

SSI by jumping from other man−made structures

SSI by jumping from natural sites

SSI by jumping from unspecified site

●

●

●

●

●

●

X80XXXA

Y92009

Y9289
Y92828
Y92838
Y929

Intentional self−harm by jumping
 from a high place, initial encounter

Unspecified place in unspecified
 non−institutional (private) residence

Other specified places
Other wilderness area
Other recreation area
Unspecified place or not applicable

●

●

●

●

E957.0

E957.1

E957.2

E957.9

SSI by jumping from residential premises

SSI by jumping from other man−made structures

SSI by jumping from natural sites

SSI by jumping from unspecified site

●

●

●

●

●

●

X80XXXA

Y92009

Y9289
Y92828
Y92838
Y929

Intentional self−harm by jumping
 from a high place, initial encounter

Unspecified place in unspecified
 non−institutional (private) residence

Other specified places
Other wilderness area
Other recreation area
Unspecified place or not applicable

Manual mapping (GEM)

Data driven (iSphereMAP)
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Take home messages

• EHRs need to be “semantically” translated before being fed into a
phenotyping algorithm or statistical model

• Manually curated mappings are imprecise and error prone
• Data driven mappings are scalable and automated
o Based on summary of co-occurrence: does not require individual level data
o Unsupervised: does not rely on training labels
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Thank you!
Questions?
shixu@umich.edu
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