Medication Error Pharmacovigilance and the FDA Sentinel System

Jo Wyeth, PharmD, Postmarket Safety Program Lead
LCDR Chi-Ming (Alice) Tu, PharmD, BCPS, Team Lead
Division of Medication Error Prevention and Analysis (DMEPA)
Office of Medication Error Prevention and Risk Management (OMEPRM)
Office of Surveillance and Epidemiology (OSE)
Center for Drug Evaluation and Research (CDER)
U.S. Food and Drug Administration (FDA)
Medication Errors - Headline News

EMA to Review Methotrexate Overdose and Dosin

Psychiatric patient given wrong medication due to misspelling

1 in 18 Canadian hospital patients experience Your Health Care May Kill You: We

Spanish medicines regulator, AEMPS

According to research by Désirée K. Medicine, in the 10-year period of 2016 errors has almost quintupled

Dutch hospitals pay out millions

To help son to m

Acute Care ISMP Medication Safety Alert!

Emerging risks with inhaled medications using the Ellipta device, the controversy with antidepressants, and loperamide abuse

NHS medication errors contribute to as many as 22,000 deaths a year, major report shows

S A F E T Y b r i e f s

Multivitamin injection label error. The vial label on the single dose INFUVITE Adult

FDA cautions medication error with

Bacterial drug Avycaz (ceftazidime and

Medical errors under the spotlight at key forum in Riyadh
Topics to Be Covered

1. How is a medication error defined?
2. What is the public health burden of medication errors?
3. Considerations for medication error pharmacovigilance.
4. How can large multisite electronic databases inform medication error analysis and prevention?
Medication Error Definition

• Literature review found 26 different definitions for medication error

• “A medication error is any preventable event that may cause or lead to inappropriate medication use or patient harm while the medication is in the control of the health care professional, patient, or consumer”

• Intentional or deliberate uses (e.g., abuse, misuse, off label use) are generally not considered medication errors
Public Health Burden of Medication Errors

• “A total of 0.7% of global total health expenditure (THE) or 42 [billion] USD worldwide, can be avoided if medication errors are prevented.”

• “Estimated that 237,396,371 medication errors occur at some point in the medication use process in England per annum.”

• Among adult outpatients...52% (95% CI: 42–62%) of adverse drug reactions were preventable. Among inpatients...45% (95% CI: 33–58%) of adverse drug reactions were preventable [errors].
WHO launches global effort to halve medication-related errors in 5 years

29 March 2017 | News Release | GENEVA/BONN

WHO today launched a global initiative to reduce severe, avoidable medication-associated harm in all countries by 50% over the next 5 years.

The Global Patient Safety Challenge on Medication Safety aims to address the weaknesses in health systems that lead to medication errors and the severe harm that results. It lays out ways to improve the way medicines are prescribed, distributed and consumed, and increase awareness among patients about the risks associated with the improper use of medication.

Medication errors cause at least one death every day and injure approximately 1.3 million people annually in the United States of America alone. While low- and middle-income countries are estimated to have similar rates of medication-related adverse events to high-income countries, the impact is about twice as much in terms of the number of years of healthy life lost. Many countries lack good data, which will be gathered as part of the initiative.

Globally, the cost associated with medication errors has been estimated at US$ 42 billion annually or almost 1% of total global health expenditure.

"We all expect to be helped, not harmed, when we take medication," said Dr Margaret Chan, WHO Director-General. "Apart from the human cost, medication errors place an enormous and unnecessary strain on health budgets. Preventing errors saves money and saves lives."

Every person around the world will at some point in their life take medicines to prevent or treat illness. However, medicines do sometimes cause serious harm if taken incorrectly, monitored insufficiently or as the result of an error, accident or communication problems.

Both health workers and patients can make mistakes that result in severe harm, such as ordering, prescribing, dispensing, preparing, administering or consuming the wrong medication or the wrong dose at the wrong time. But
CONSIDERATIONS FOR MEDICATION ERROR PHARMACOVIGILANCE
Underreporting of Medication Errors

- Regulatory reporting requirements
- Fear of punishment or litigation
- Embarrassment of having been involved a medication error
- Lack of reporting forms tailored for medication errors
- Workload; not knowing where, why, or what to report
% of U.S. Cases in the FDA Adverse Event Reporting System (FAERS) Coded with a Medication Error Term*

*Based on the MedDRA SMQ Medication errors (narrow), V21
Incomplete FAERS Reports

• Reports often lack information necessary to inform appropriate regulatory action:
 – What was the cause and contributing factors for the error?
 – Where did the error originate?
 – What does the reporter recommend to mitigate the error?
 – What population is at risk?

• U.S. Medwatch and E2B reporting forms are designed to primarily capture adverse event information, not medication errors

• Risk: Revisions to labeling, packaging, drug names, or product design can introduce new types of errors
Effectiveness of Regulatory Recommendations to Prevent Errors

• Effectiveness of regulatory actions often determined by postmarket spontaneous reports submitted to FAERS

• As part of the drug product approval process, FDA performs premarket reviews of proposed labeling, packaging, drug names, and product design to minimize errors

• FDA monitors postmarket medication error reports to identify safety signals

• Safety signals may result in labeling revisions or other regulatory actions, and also inform FDA’s overall premarket review process
Case Example-Container Label

<table>
<thead>
<tr>
<th>Initial label</th>
<th>Revised label</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wrong dose error</td>
<td>Peel-off label and barcode relocated</td>
</tr>
<tr>
<td>reported</td>
<td>Potential wrong drug errors reported</td>
</tr>
<tr>
<td>Cause: confusion with</td>
<td>Cause: scanners unable to read horizontal barcode</td>
</tr>
<tr>
<td>the total amount in the</td>
<td></td>
</tr>
<tr>
<td>vial</td>
<td></td>
</tr>
</tbody>
</table>

USE OF FDA’S SENTINEL SYSTEM FOR MEDICATION ERROR ANALYSIS AND PREVENTION
FDA Sentinel System

• Sentinel is a large multisite electronic database comprised of 18 data partners
• Data partners maintain physical control of their data, and analytic programs are delivered and executed behind each data partner’s firewall to protect privacy
• Sentinel has access to laboratory, pharmacy and medical records
• Sentinel contains 292 million cumulative unique patient identifiers between 2000 and 2017
Growth of the Sentinel Distributed Database

The area above depicts the cumulative number of unique patient identifiers in the Sentinel Distributed Database from 2010 to present. If patients move health plans, they may have more than one patient identifier.
Use of Sentinel for Medication Error Analysis and Prevention

• Sentinel provides real-world evidence from a large population dataset

• Depending on the type of medication error:
 – May address limitations of medication error underreporting and incomplete reports seen with spontaneous postmarket reports submitted to FAERS
 – Potentially able to assess trends for the impact of labeling revisions and other regulatory actions
 – Potentially useful to determine incidence, patient populations at risk, outcomes, stage (e.g., prescribing, dispensing, administration) in the medication use system where an error originated, and causes or contributing factors for the error (may require chart review)

• Currently being used for follow up investigations of signals and descriptive analysis
Case Example-Methotrexate

• Request from the Institute for Safe Medication Practices “to prevent methotrexate wrong frequency errors”

• Taking methotrexate daily instead of the intended weekly administration for rheumatoid arthritis can result in serious adverse events leading to death

• Methotrexate was FDA-approved in 1953; widely used

• FAERS contained 12 U.S. methotrexate wrong frequency reports between 2010 and 2017, including 2 deaths; most of the reports were incomplete

• We consulted the Sentinel System to characterize the incidence, cause, outcomes, and stage (e.g., dispensing, prescribing) where the error was occurring so we could target appropriate regulatory action
Conclusion

• Medication errors are a global public health burden

• Recent advances in large multisite electronic databases such as Sentinel have created opportunities to better characterize and mitigate the risks of medication errors
Methotrexate Wrong Frequency Error: Detection and Confirmation of Daily Instead of Weekly Dosing

Kaiser Permanente
Harvard Pilgrim Healthcare Inst
U.S. FDA
Researchers

- Kaiser Permanente
 - Lisa J Herrinton
 - Laura Amsden
 - Liyan Liu
 - Robert Goldfien

- Harvard Pilgrim
 - Andrew Petrone
 - Talia J. Menzin

- Harvard Pilgrim
 - Tiffany S. Woodworth
 - James Williams

- FDA
 - Efe Eworuke,
 - Jo Wyeth
 - Michael Nguyen
Disclosure

- Funding source: U.S. Food and Drug Administration
- Potentially conflicting relationships: No relationships to disclose.
Methotrexate

- Abbreviation: MTX
- Recommended dose for rheumatoid arthritis is 7.5 to 25 mg per week.
- Dispensed in 2.5 mg pills.
- Side effects are common.
Methotrexate prescription label

- 7.5 mg (three tablets) to be taken WEEKLY on Monday.

- Take as directed.

- Take 2.5 mg (1 pill) of methotrexate on Monday and folate on Tuesday of the first week. Then increase to 5 mg (2 pills) of methotrexate on Monday and folate on Tuesday of the second week.
Wrong Frequency Error

- MTX is taken daily instead of weekly
- Prescribing
 - Physician writes “daily” instead of “weekly”
- Dispensing
 - Pharmacist fills incorrectly
- Administering
 - Patient misunderstands instructions
 - Patient mixes up her pills
 - Caregiver doesn’t understand the regimen
Side effects and adverse effects

- Mouth sores, mucositis
 - Mild mucositis is a common side effect
 - Severe mucositis and inability to eat lead to cessation of therapy and hospitalization

- Acute renal failure

- Myelosuppression
Objective

- **Long-term**
 - Estimate the incidence of MTX wrong frequency errors in the United States through use of the FDA’s Sentinel System.

- **Immediate**
 - Prototype: Develop and confirm an algorithm that can be implemented in the Sentinel System.
 - Estimate the incidence rate of frequency error at our setting.
Kaiser Permanente Northern California

- 4 million members
- Capitated, comprehensive care
- Electronic medical record
- Dropdown menus to write prescription orders
- Large, established research department
Study cohort

- Eligibility criteria:
 - Rheumatoid arthritis with or without psoriasis
 - ≥1 dispensing of oral MTX during 2010-15
 - Excluded cancer patients
 - New MTX users: no earlier dispensing in the preceding year
 - Prevalent MTX users: ≥1 dispensing in the preceding year

- Data used to identify the cohort:
 - KPNC electronic medical record data formatted into Sentinel
 Common Data Model
Identifying potential wrong frequency errors using Sentinel Common Data Model

1. Number of pills divided by the days to next dispensing

 \[56 \text{ mg/week} = 2.5 \text{ mg/pill} \times (96 \text{ pills} / 30 \text{ days}) \times 7 \text{ days/week} \]

2. Emergency department or inpatient diagnostic code for serious adverse drug event (ICD-9 995.20)

 995.20 Unspecified adverse effect of unspecified drug, medicinal and biological
Identifying potential wrong frequency errors using Kaiser Permanente EMR

- Rescue therapy using injected leucovorin (in/out patient)
 - Identifiable in KPNC using text search of medication orders.
 - Not feasible in Sentinel CDM.
 - Identifiable in Sentinel CDM using specific HCPCS code J0640 (leucovorin injection)
 - Identified 1 of 5 KPNC potential cases, 1 or 3 true cases.
Confirmation of potential wrong frequency errors

- Chart review
 - Reviewed prescription label written by the prescriber
 - Read prescriber’s notes to understand the patient’s circumstances
 - Read all notes of utilization recorded into the EMR to gain insight
Potential and Confirmed Frequency Errors

New MTX user, N=722
- Flagged with potential frequency error, N=46
- Chart review, N=46
- Confirmed with frequency error, N=3

Existing MTX user, N=23,807
- Flagged with potential frequency error, N=607
- Chart review, N=48
- Confirmed with frequency error, N=0
Confirmation of potential wrong frequency errors using chart review

- Number of pills, days to next dispensing
 \[56 \text{ mg/week} = 2.5 \text{ mg/pill} \times (96 \text{ pills} / 30 \text{ days}) \times 7 \text{ days/week}\]
 - 0 of 34 confirmed

- Emergency department or inpatient diagnostic code for serious adverse drug event (ICD-9 995.20)
 995.20 Unspecified adverse effect of unspecified drug, medicinal and biological
 - 0 of 4 confirmed

- Rescue therapy using leucovorin
 - 3 of 5 confirmed (PPV, 60%)
Underlying reasons for frequency errors

Advanced age
(2 patients)

Limited English
(1 patient)
Incidence rate of frequency error in our setting

- New MTX users, 3 confirmed among 722 users = 0.4%

- Existing MTX users, 0 confirmed among 23,807 users.
Learnings

- Needle in a haystack
 - Content experts were very helpful.
 - Exploratory data analysis was essential.

- All frequency errors occurred among new MTX users.

- The Days Supply variable was wrong only 1.5% of the time, but the adverse event rate was even lower.

- Rescue therapy with injected leucovorin was specific to overdose.

- Low-dose oral leucovorin was used to manage side effects.

- Future research could assess
 - E980.5 (poisonings by unspec drug or medicine)
 - 963.1 (poisoning by antineoplastic/immunosuppressive drug)
Thank you
Medication Errors: Confused Drug Names

Noelle Cocoros¹, Kevin Haynes², LCDR Chi-Ming (Alice) Tu³, Jo Wyeth³, Yulan Ding³, Qoua Her¹, Elizabeth Dee¹, Michael Nguyen³, Darren Toh¹

1. Harvard Pilgrim Health Care Institute
2. HealthCore
3. U.S. Food and Drug Administration

August 24th 2018
Disclosures

- The authors have no conflicts of interest to disclose
- This work was supported by the U.S. Food and Drug Administration (FDA) through the Department of Health and Human Services (HHS) Contract number HHSF223201400030I
- This presentation reflects the views of the authors and not necessarily those of the U.S. FDA
About Sentinel

- The U.S. Food and Drug Administration's (FDA) Sentinel Initiative is a long term effort to improve the FDA’s ability to identify and assess medical product safety issues.
- The Sentinel System is an active surveillance system that uses routine querying tools and pre-existing electronic healthcare data from multiple sources to monitor the safety of regulated medical products.
Background: Confused Drug Names

- Healthcare providers rely on a product’s name as a critical identifier when prescribing, dispensing, and administering a drug product.
- Product names that look or sound-alike can cause or contribute to patients receiving the wrong drug product.
- As part of the preapproval process for new drug products, FDA reviews, and determines the acceptability of proposed proprietary names to minimize medication errors associated with product name confusion. FDA will revise proprietary names post-approval to prevent name confusion if warranted.
- July 2015: FDA drug safety communication regarding medication errors in prescribing or dispensing due to brand name confusion with the antidepressant Brintellix (vortioxetine) and the antiplatelet Brilinta (ticagrelor)

1 July 2015: https://www.fda.gov/Drugs/DrugSafety/ucm456341.htm
Brintellix (vortioxetine) and Brilinta (ticagrelor): Drug Safety Communication - Name Confusion

[Posted 07/30/2015]

AUDIENCE: Pharmacy, Cardiology, Psychiatry

ISSUE: FDA is warning health care professionals and patients that reports of confusion between the antidepressant Brintellix and anti-blood clotting medication Brilinta have resulted in the wrong medication being prescribed or dispensed. FDA determined that the main reason for the confusion between these two medications is the similarity of their brand (proprietary) names. None of the reports indicates that a patient ingested the wrong medication, however, reports of prescribing and dispensing errors continue.

BACKGROUND: Brintellix (vortioxetine) is used to treat a certain type of depression called major depressive disorder (MDD) in adults. It is in a class of antidepressants called selective serotonin reuptake inhibitors (SSRIs). Brilinta (ticagrelor) is an antiplatelet, anti-blood clotting medication used to lower the risk of having another heart attack, or dying from a heart problem after a heart attack or severe chest pain.

RECOMMENDATION: Health care professionals can reduce the risk of name confusion by including the generic (established) name of the medication, in addition to the brand name, and the indication for use when prescribing these medications. Patients should check their prescriptions to ensure that the correct medication was dispensed. See the FDA Drug Safety Communication for more detailed recommendations.

Healthcare professionals and patients are encouraged to report adverse events or side effects related to the use of these products to the FDA’s MedWatch Safety Information and Adverse Event Reporting Program:

- Complete and submit the report Online: [www.fda.gov/medwatch/report]
- Download form or call 1-800-332-1068 to request a reporting form, then complete and return to the address on the pre-addressed form, or submit by fax to 1-800-FDA-0178

[07/30/2015 - Drug Safety Communication - FDA]
May 2016: Brintellix renamed Trintellix

https://www.fda.gov/Drugs/DrugSafety/ucm497942.htm
Objective

▪ To assess whether name confusion medication errors could be identified in the U.S. FDA’s Sentinel System by assessing the presence and absence of on- and off-label indications in claims data

Methods

▪ Identified new users of Brintellix, and separately of Brilinta, 183 day washout; 9/30/2013 – 9/30/2015
▪ Members from 16 health plans enrolled with medical and pharmacy coverage for ≥365 days prior to dispensing date
▪ Post-exposure enrollment of 30 days
Assess on- and off-label indications in -365 through +30 days

- **No** Brintellix indication (diagnosis codes)
- **Yes** Brilinta indication (diagnosis codes)

Incident **Brintellix** dispensing

No prior Brintellix dispensing in -183 days

Assess on- and off-label indications in Patient Episode Profile Review (PEPR) **claims profile review** -365 days through +90 days
Assess on- and off-label indications in -365 through +30 days
• **No** Brilinta indication (diagnosis codes)
• **Yes** Brintellix indication (diagnosis codes)

Incident **Brilinta** dispensing

No prior Brilinta dispensing in -183 days

Assess on- and off-label indications in PEPR **claims profile review**
-365 days through +90 days
Methods

Brintellix
- Indication:
 - Depression
- Off-label indications:
 - Schizophrenia
 - Episodic mood disorders
 - Anxiety disorders
 - Personality disorders
 - Bipolar depression
 - Post Traumatic Stress Disorder (PTSD)
 - Chronic pain

Brilinta
- Indications:
 - Acute coronary syndrome
 - Myocardial infarction
- Off-label indications:
 - Peripheral arterial disease
 - Unstable angina
 - Stroke
 - Stent
Patient Episode Profile Review (PEPR)

- An individual patient claims profile with code look ups merged to build a readable profile

- A way to retrieve a patient level dataset that provides a “claims line list” for some period surrounding an index date
 - Dataset can remain at the Data Partner

- Ability to further investigate an “alert” from aggregate data
 - “Poor Man’s Chart Review” with a case definition— Was the outcome associated with exposure or are there alternative explanations?
 - Can save time and resources with respect to medical chart retrieval
Data Partner Clinical Review of PEPR claims line list

- **Goal:** Review patient claims profile for potential appropriate, potential error, or inconclusive
- Find the index day and determine what was dispensed. What else was dispensed that day? Lots of cardiac drugs?
- Look back over the whole profile to get a sense of what types of drugs have been dispensed? Was the index drug dispensed prior? What about drugs in the classes of interest?
- Review the month prior. Any recent cardiac hospitalizations?
- Review pre-index date for diagnoses of interest
- Review post-index for refills of index medication
- Review post-index for diagnoses of interest
Example PEPR - A “Claims Line List”

<table>
<thead>
<tr>
<th>day</th>
<th>EncType</th>
<th>CodeCat</th>
<th>CodeType</th>
<th>ClinCode</th>
<th>First</th>
<th>RxAmt</th>
<th>RxSup</th>
<th>CodeShortDescr</th>
</tr>
</thead>
<tbody>
<tr>
<td>-18</td>
<td>AV</td>
<td>DX</td>
<td>9</td>
<td>7212</td>
<td></td>
<td></td>
<td></td>
<td>THORACIC SPONDYLOSIS</td>
</tr>
<tr>
<td>-18</td>
<td>AV</td>
<td>DX</td>
<td>9</td>
<td>72283</td>
<td></td>
<td></td>
<td></td>
<td>POSTLAMINECTOMY SYND LUMBAR</td>
</tr>
<tr>
<td>-18</td>
<td>AV</td>
<td>DX</td>
<td>9</td>
<td>7244</td>
<td></td>
<td></td>
<td></td>
<td>LUMBOSACRAL NEURITIS UNSPEC</td>
</tr>
<tr>
<td>-18</td>
<td>AV</td>
<td>PX</td>
<td>C4</td>
<td>99213</td>
<td></td>
<td></td>
<td></td>
<td>OFFICE/OUTPATIENT VISIT EST</td>
</tr>
<tr>
<td>-18</td>
<td>RX</td>
<td>RX</td>
<td>11</td>
<td>50458082004</td>
<td>F</td>
<td>90</td>
<td>30</td>
<td>Tapentadol HCl Tab 50 MG</td>
</tr>
<tr>
<td>-10</td>
<td>RX</td>
<td>RX</td>
<td>11</td>
<td>591530710</td>
<td>F</td>
<td>12</td>
<td>3</td>
<td>Promethazine HCl Tab 25 MG</td>
</tr>
<tr>
<td>-5</td>
<td>RX</td>
<td>RX</td>
<td>11</td>
<td>55111046805</td>
<td>14</td>
<td>14</td>
<td></td>
<td>Metoprolol Succinate Tab ER 24HR 100 MG</td>
</tr>
<tr>
<td>0</td>
<td>RX</td>
<td>RX</td>
<td>11</td>
<td>186077760</td>
<td>F</td>
<td>60</td>
<td>30</td>
<td>Ticagrelor Tab 90 MG</td>
</tr>
<tr>
<td>12</td>
<td>RX</td>
<td>RX</td>
<td>11</td>
<td>50458082004</td>
<td>90</td>
<td>30</td>
<td></td>
<td>Tapentadol HCl Tab 50 MG</td>
</tr>
<tr>
<td>16</td>
<td>RX</td>
<td>RX</td>
<td>11</td>
<td>93738698</td>
<td>60</td>
<td>30</td>
<td></td>
<td>Venlafaxine HCl Cap ER 24HR 150 MG</td>
</tr>
<tr>
<td>16</td>
<td>RX</td>
<td>RX</td>
<td>11</td>
<td>60505006502</td>
<td>30</td>
<td>30</td>
<td></td>
<td>Omeprazole Cap Delayed Release 20 MG</td>
</tr>
<tr>
<td>26</td>
<td>AV</td>
<td>DX</td>
<td>9</td>
<td>29622</td>
<td></td>
<td></td>
<td></td>
<td>MAJOR DEPRESSIVE DIS MOD</td>
</tr>
<tr>
<td>26</td>
<td>AV</td>
<td>PX</td>
<td>C4</td>
<td>99214</td>
<td></td>
<td></td>
<td></td>
<td>OFFICE/OUTPATIENT VISIT EST</td>
</tr>
<tr>
<td>38</td>
<td>RX</td>
<td>RX</td>
<td>11</td>
<td>186077760</td>
<td>60</td>
<td>30</td>
<td></td>
<td>Ticagrelor Tab 90 MG</td>
</tr>
</tbody>
</table>
PEPR Profile Review

- PEPR is a tool to help refine Cohort Identification and Descriptive Analysis (CIDA) requirements and evaluate potential medication errors.
- Need chart review to be conclusive.

<table>
<thead>
<tr>
<th></th>
<th>CIDA</th>
<th>After PEPR review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brilinta</td>
<td>potential Brilinta error</td>
<td>likely error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inconclusive</td>
</tr>
<tr>
<td></td>
<td>Brilinta error</td>
<td>not an error</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>41</td>
</tr>
<tr>
<td>Brintellix</td>
<td>potential Brintellix error</td>
<td>likely error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>inconclusive</td>
</tr>
<tr>
<td></td>
<td>Brintellix error</td>
<td>not an error</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>

https://www.sentinelinitiative.org/sentinel/surveillance-tools/routine-querying-tools/routine-querying-system
Discussion

- Sentinel query tools can be used to identify and describe potential medication errors in administrative data
- Tools exist to review claims profiles to refine query specifications
- Profile reviews offer an opportunity to potentially assess medication error
 - Chart review is needed to be conclusive
- Further application of the tools to assess medication errors will further refine available tools
- Limitation: multiple reviewers
Acknowledgements

- Many thanks are due to Data Partners who provided data used in the analysis
- Special thanks to the Data Partner reviewers

Look-a-Like

Sound-a-Like
Medication errors
European perspective and analyses

34th International Conference on Pharmacoepidemiology & Therapeutic Risk Management

Presented by:
Rodrigo Postigo - Pharmacovigilance and Epidemiology Department
European Medicines Agency
The European Union (EU) pharmacovigilance legislation has put an increased emphasis on medication errors:

- Explicitly considered in the Adverse Drug Reaction (ADR) definition of Directive 2001/83/EC
- Requirements for the collection and submission of information related to medication errors (EudraVigilance)
- Information available to patient safety organisations
- Regulatory tools for risk assessment and management (Periodic Safety Update Reports and EU Risk Management Plans)

For the sake of clarity, the definition of the term ‘adverse reaction’ should be amended to ensure that it covers noxious and unintended effects resulting not only from the authorised use of a medicinal product at normal doses, but also from medication errors and uses outside the terms of the marketing authorisation, including the misuse and abuse of the medicinal product.
In 2015 the EU regulatory network published two Good Practice Guides (GPG) on medication errors

- Intended to support the implementation of the legal provisions amongst the stakeholders involved in the reporting, evaluation and prevention of medication errors
- Improve quality of reporting and learning from medication errors for the benefit of public health
- Complementary to other EU and International guidelines as applicable (Good Pharmacovigilance Practice, ICH, MedDRA)
‘A medication error is an unintended failure in the drug treatment process that leads to, or has the potential to lead to, harm to the patient.’
Medication errors – Classification

Diagram showing the classification of medication errors.
Characterisation of spontaneously reported cases in EudraVigilance

- Characterise spontaneously reported cases of medication errors to EudraVigilance (centralised European database for reporting and evaluating suspected ADRs to medicines authorised in the EEA)
 - Study period: Jan 2002 – Dec 2015
 - Spontaneous reports
 - MedDRA SMQ for medications errors (Broad and Narrow) (MedDRA version 19.0)
 - Categorisation by MedDRA Terms, geographical region, patient age group and Anatomical Therapeutic Chemical (ATC) classification system of suspect medicinal products
Study results: Number of cases and cumulative figures

- Total of 147,824 case reports retrieved (Broad SMQ)
- 41,355 occurred in the EEA (Broad SMQ)
- The absolute number of medication errors case reports has been increasing over time
Study results: Proportion of cases EEA, non-EEA
In the EEA, the proportion of medication errors to total number of ADR reports increased with peaks seen around 2005 (electronic reporting mandatory) using the Broad SMQ and 2012 (EU pharmacovigilance legislation) using the narrow SMQ.
Study results: MedDRA Preferred Terms (PT) in the EEA
Study results: Ranking of ATC codes

- The most commonly reported MedDRA PT for vaccines is ‘inappropriate schedule of drug administration’
- ‘Accidental overdose’ occurred most frequently with paracetamol, opiates and benzodiazepines
- ‘Drug administration errors’ were most frequently reported with cisapride, insulin, fluticasone/salmeterol, fentanyl and salbutamol
2018 - Study in EudraVigilance

- Describe medication errors reporting trends in EudraVigilance **before and after** the publication of the EU Good Practice Guide (GPG)
- Use time series analysis to evaluate trend changes following the publication of the GPG
- Qualitative analysis to further investigate whether root cause analysis is possible with the information provided in the cases (based on selected products)

- **Study period:** January 2002 – December 2017
- **Time series analysis:** January 2013 - December 2017
 - Sufficient pre and post intervention time points for the time series analysis and covers the date of the publication of the Guide (30th Nov 2015)
- **Spontaneous reports**
- **MedDRA SMQ medication errors narrow**
- **Categorisation by region of occurrence, primary source of report, seriousness criterion, age group and ATC code**
Time series analysis

- Quarterly proportion of medication errors to the total number of cases

- Interrupted time series analysis with linear regression model to assess whether the underlying reporting trend has been affected by the intervention

- Concluded that the publication of the GPG in Nov 2015 was not associated with an immediate change in medication error reporting and was not associated with a significant change in post-intervention trend compared to the baseline

<table>
<thead>
<tr>
<th></th>
<th>Monthly Change (%)</th>
<th>95% CI</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEA reporting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>1.898</td>
<td>1.657 to 2.139</td>
<td></td>
</tr>
<tr>
<td>Baseline trend</td>
<td>0.015</td>
<td>0.004 to 0.027</td>
<td>0.011</td>
</tr>
<tr>
<td>Immediate effect</td>
<td>0.080</td>
<td>-0.288 to 0.449</td>
<td>0.664</td>
</tr>
<tr>
<td>Post-intervention trend</td>
<td>-0.008</td>
<td>-0.030 to 0.015</td>
<td>0.490</td>
</tr>
<tr>
<td>Non-EEA reporting</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>3.376</td>
<td>3.186 to 3.567</td>
<td></td>
</tr>
<tr>
<td>Baseline trend</td>
<td>0.020</td>
<td>0.011 to 0.029</td>
<td><0.001</td>
</tr>
<tr>
<td>Immediate effect</td>
<td>-0.044</td>
<td>-0.336 to 0.248</td>
<td>0.764</td>
</tr>
<tr>
<td>Post-intervention trend</td>
<td>-0.011</td>
<td>-0.029 to 0.007</td>
<td>0.236</td>
</tr>
</tbody>
</table>
Some preliminary results on number of cases

- 128,392 cases were retrieved
- 2.59% of the total number of cases in EudraVigilance
- 29.05% originated within the EEA and 70.95% outside the EEA
Variation of reporting rates per EU Member State

- National variations within the EU Member States
- Different legal requirements
- Differences in patient safety incidents reporting
For patient reports the proportion of cases of medication errors is higher compared to all cases.
Age distribution

Age distribution (EEA only)

Proportion (%)

- Medication Error ICSRs
- All ICSRs

0-1 Month
2 Months - 2 Years
3 - 11 Years
12 - 17 Years
18 - 64 Years
65 - 85 Years
> 85 Years
Not Specified
Parameters for the qualitative evaluation of case reports

- Parameters to follow up when reporting medication errors (GPG Section 5.5.1)
- Contributing factors are particularly relevant for the analysis of route causes (e.g. human factors, communication issues, work environment, healthcare policies, etc.)

Case reports of medication errors should include where possible the following information:

- Classification of medication error
- Stage of medication process where the error occurred
- Contributing factor(s)
- Reported adverse reaction(s) if the error affected the patient or consumer with clinical consequences
- Potential for harm if a potential error or intercepted error did actually happen and reach the patient or consumer
- Medicinal product(s) involved
- Batch number if the error is due to device failure
Conclusions

▪ The reporting of cases of medication errors has been increasing between 2005 and 2015, both absolute numbers and proportion to all other reports in EudraVigilance.

▪ The synergy of different EU and international initiatives (public consultation of guidelines, SCOPE, communication of risk minimisation activities in relation to medication errors, activities related to MedDRA) has likely contributed to this increase and also to the granularity of coding.

▪ The release of the MedDRA SMQ for medication errors has been an important milestone to improve the detection and retrieval of reports related to medication errors.

▪ The proportion of medication errors vs the rest of the reports is higher in children than in adults.

▪ For patient reports, the proportion of cases of medication errors is higher compared to all cases.

▪ Ongoing further analysis to explore changes to the reporting trends of medication errors and the quality of reporting, considering all the different aspects (MedDRA evolvement, patient awareness, EU reporting requirements, publication of the EU guidelines, international initiatives).
Acknowledgements

• Victoria Newbould
• Steven Le Meur
• Thomas Goedecke
• Daniel Morales
• Xavier Kurz
Many thanks

Further information

rodrigo.postigo@ema.europa.eu

European Medicines Agency
30 Churchill Place • Canary Wharf • London E14 5EU • United Kingdom

Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555

Send a question via our website www.ema.europa.eu/contact

Follow us on @EMA_News
Coding accuracy of administrative drug claims in the Ontario Drug Benefit database

Adrian Levy PhD
Dalhousie University
Halifax, Nova Scotia, Canada
ADMINISTRATIVE HEALTH DATA

- Typically collected for reimbursement purposes
 - Standardized records of billable interactions between insured patients and care providers
 - Demographic/enrollment, inpatient/hospital, outpatient, pharmacy claims

- Very efficient for pharmacoepidemiology research

- Potentially key for distributed networks undertaking drug safety studies
ONTARIO DRUG CLAIMS DATABASE

- 160 million claims for 3.0 million Ontarians (2015)
 - 2.1 million aged ≥ 65 y
 - 0.9 million social assistance and others
- 8.8% of public expenditures on health (CDN$55B)
- 41% of all medications dispensed in Ontario
 - 2nd largest in Canada (after Quebec’s RAMQ)
- Potentially excellent research resource provided data are reliable
Drugs and Benefits Claim/Reversal

Ontario Ministry of Health and Long-Term Care

Claim Reversal (This information pertains to the original paid claim)

- Clear Form

Claim Submission

Beneficiary Information:
- Patient first name
- Patient last name
- Patient date of birth
- Sex
- Carrier ID (File Code)
- Group No Code (Long-Term Care Facility)
- Ontario Health No. differs from ODSP Eligibility No.

Prescription Service Information:
- Current prescription number
- Quantity
- Date written
- Prescriber I.D.
- Prescription I.D. Ref.
- Drug code/Product
- Cost spared
- Professional fee
- SBC
- Product selection
- Unitized compound
- Compounding time
- Compounding charge
- Medical Reason Ref.
- Medical condition - reason for use
- Previously paid

Comments:
- [PRINT]

Reason for Submission

(1) [] Claim Reversal Only (7 days)
(2) [] Claim of ODSP Eligible Not Available Prior to Rev (7 days)
(3) [] + 2 Intervention/Exception Codes
(4) [] + 99 Minutes Compounding Time
(5) [] Valid Claim Value is $0.00
(6) [] Ministry Initiated Pharmacy Audit Reimbursement

Claim Submission Intervention / Exception Codes (check applicable codes)
- [] Claim submitted incorrect
- [] Claim submitted incorrect in data entry
- [] Claim submitted incorrect due to incorrect billing
- [] Claim submitted incorrect due to incorrect coding
- [] Claim submitted incorrect due to incorrect documentation

Authorized signature

Submit claims to: Ministry of Health and Long-Term Care

Claims Services Branch
PO Box 2088, Station ‘K’, L1C 4P1
Hamilton ON L8N 4A2
Telephone number: 1-800-565-8811
Key message: understand the process underlying the data

WHAT’S LURKING BEHIND A DRUG CLAIM?
OBJECTIVE

- To estimate the reliability of coding of the Drug Identification Number, and the date, quantity and duration of the dispensation on medication claims sent to the Ontario Drug Benefit database
HYPOTHESIS

- Coding errors would be more likely to occur among pharmacies having higher volume

 ➔ less time per prescription

- Also examined: location, owner affiliation
Audit of prescriptions in community pharmacies in southern Ontario (Niagara Falls to TO)
DESIGN

- Randomly chose dispensed medications from different months in 1999

- Compared written prescription with label

- Information
 - date, drug identification number, quantity of drug
 - prescriber - type, location
 - pharmacy’s “productivity”
PHARMACIES

<table>
<thead>
<tr>
<th>Location</th>
<th>n</th>
<th>%</th>
<th>N invited</th>
<th>% participation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANCASTER</td>
<td>6</td>
<td>12</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>BURLINGTON</td>
<td>7</td>
<td>14</td>
<td>40</td>
<td>17</td>
</tr>
<tr>
<td>HAMILTON</td>
<td>19</td>
<td>38</td>
<td>26</td>
<td>73</td>
</tr>
<tr>
<td>ST CATHERINES</td>
<td>10</td>
<td>20</td>
<td>13</td>
<td>77</td>
</tr>
<tr>
<td>TORONTO</td>
<td>8</td>
<td>16</td>
<td>99</td>
<td>8</td>
</tr>
</tbody>
</table>

50 pharmacies after 184 invitations => participation rate 27%
PRESCRIPTIONS DISPENSED

<table>
<thead>
<tr>
<th>Pharmacologic-Therapeutic Classification</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>28:00 Anti-infective agents</td>
<td>1399</td>
<td>27</td>
</tr>
<tr>
<td>8:00 Central nervous system drugs</td>
<td>1287</td>
<td>25</td>
</tr>
<tr>
<td>24:00 Cardiovascular medications</td>
<td>965</td>
<td>19</td>
</tr>
<tr>
<td>68:00 Hormones and substitutes</td>
<td>425</td>
<td>8</td>
</tr>
<tr>
<td>56:00 Gastrointestinal drugs</td>
<td>373</td>
<td>7</td>
</tr>
<tr>
<td>All other</td>
<td>706</td>
<td>14</td>
</tr>
<tr>
<td>All</td>
<td>5155</td>
<td>100</td>
</tr>
</tbody>
</table>
MAIN RESULT

5,155 Dispensed Prescriptions, 37 Errors

→ overall error rate = 0.7% (95% CI = 0.5% to 0.9%)

▪ 13 - Rx had something other than prescribed
▪ 11 - identified the wrong physician
▪ 9 - errors in the instructions to the patient
▪ 4 – clerical, affecting information sent to ODB
HYPOTHESIS

- Coding errors would be more likely to occur among pharmacies having higher volume (less time per Rx).

- Using logistic regression: none of the characteristics of pharmacies (location, owner affiliation, productivity) were associated with coding errors.

 ➔ Low power to detect differences.
LIMITATIONS

- Biggest threat to validity: selection bias
 was it the pharmacies with “better” coding practices
 that participated?

- Could not examine:
 - all sources of coding errors
 - patient characteristics, time of day
 - prescribing, dispensing, or administering
EVIDENCE FROM THIS STUDY

- claims are reliable transcriptions of information listed on prescriptions

- inferences drawn using drug claims data are not likely to be compromised by low reliability of coding