Adventures in Replication: Initial Experiences related to the Joint ISPE/ISPOR Guidance

Judith C. Maro¹, Shirley V. Wang², Ting-Ying (Jane) Huang¹, Robert W. Platt³, Xavier Kurz⁴

- 1. Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
- 2. Harvard Medical School and Brigham and Women's Hospital, Boston, MA
- 3. McGill University, Montreal, QC, Canada
- 4. European Medicines Agency, London, United Kingdom

Agenda

- Overview of ISPE/ISPOR Guidance
- Applied Example: REPEAT Initiative
- Applied Example: Sentinel System
- Applied Example: Canadian Network for Observational Drug Effect Studies
- Regulatory Perspective: Why Replication is So Important

Adventures in Replication:

Overview of ISPE/ISPOR Joint Task Force papers on 'real world' evidence to guide decision making

Shirley V Wang PhD, ScM

Division of Pharmacoepidemiology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School

Disclosures

- This work was not funded
- At the time that this work was conducted, Dr. Wang was principal investigator on other grants from:
 - o Agency for Healthcare and Research Quality
 - o National Institute of Aging
 - o Laura and John Arnold Foundation
 - o FDA Sentinel Initiative
 - Investigator initiated grants to Brigham and Women's Hospital from Novartis, J & J, Boehringer Ingelheim for unrelated work
- She is a consultant to Aetion Inc, for unrelated work

Timely Topic

Recent legislation with sections focused on evaluating when and how to make greater use of **'real world' evidence** from **'real world' data** (*administrative, clinical healthcare databases*) to support regulatory decisions:

- 21st Century Cures Act (FDA)
- PDUFA VI (FDA)
- Adaptive Pathways (EMA)

Joint Task Force ISPE/ISPOR

Improving the Confidence of Decision-Makers in Utilizing Real World Evidence By Increasing Transparency and Reproducibility

Received: 21 July 2017 Revised: 26 July 2017 Accepted: 28 July 2017 DOI: 10.1002/pds.4297

WILEY

ORIGINAL REPORT

Good practices for real-world data studies of treatment and/or comparative effectiveness: Recommendations from the joint ISPOR-ISPE Special Task Force on real-world evidence in health care decision making

Marc L. Berger¹ | Harold Sox² | Richard J. Willke³ | Diana L. Brixner⁴ | Hans-Georg Eichler⁵ | Wim Goettsch⁶ | David Madigan⁷ | Amr Makady⁶ | Sebastian Schneeweiss⁸ | Rosanna Tarricone⁹ | Shirley V. Wang⁸ | John Watkins¹⁰ | C. Daniel Mullins¹¹

Received: 21 July 2017 Revised: 25 July 2017 Accepted: 25 July 2017

DOI: 10.1002/pds.4295

WILEY

ORIGINAL REPORT

Reporting to Improve Reproducibility and Facilitate Validity Assessment for Healthcare Database Studies V1.0

Shirley V. Wang^{1,2} I Sebastian Schneeweiss^{1,2} | Marc L. Berger³ | Jeffrey Brown⁴ | Frank de Vries⁵ | Ian Douglas⁶ | Joshua J. Gagne^{1,2} Rosa Gini⁷ | Olaf Klungel⁸ | C. Daniel Mullins⁹ | Michael D. Nguyen¹⁰ | Jeremy A. Rassen¹¹ | Liam Smeeth⁶ | Miriam Sturkenboom¹² |

on behalf of the joint ISPE-ISPOR Special Task Force on Real World Evidence in Health Care Decision Making

Reporting to Improve Reproducibility and Facilitate Validity Assessment for Healthcare Database Studies V1.0

- Importance of achieving reproducible research is well recognized in many reporting guidelines
- STROBE, RECORD, PCORI Methodology Report, EnCePP, ISPE Guidelines for Good Pharmacoepidemiology Practice (GPP)
- These increase transparency, but even strict adherence would not necessarily provide all the information for full reproducibility
- Goal: catalogue specific decisions made during study implementation

What is reproducibility in database studies?

	Data Source	Methods
Analytic reproduction Re-running the same code on same data	Same	Same
Direct replication Independent implementation of a specific study	Same	Same
	Different	Same
Conceptual replication (robustness) <i>Implementing a study of the same exposure (and comparator), outcome and estimand of interest</i>	Same	Different
	Different	Different

What is reproducibility in database studies?

Same

Analytic reproduction

Re-running the same code on same data

Reproducibility

Hazard ratio = 2.0 Hazard ratio = 2.0 Hazard ratio = 2.0

Important but not transparent by itself

Same

Thousands of lines of code to create a temporally anchored analytic cohort from raw longitudinal data streams

What scientific decisions is the code implementing? Agree with the validity and/or relevance for the question of interest?

What is reproducibility in database studies?

... Ability to directly replicate a study is a proxy for transparency of study methodology

Need transparency to assess validity and relevance of evidence

What is reproducibility in database studies?

Data Source Methods

Most common, most interesting?

Why do results differ or converge?

Need transparency to understand

- Subtle design/implementation differences
- Differences in data
- Differences in population

Conceptual replication (robustness)Implementing a study of the same exposure (and
comparator), outcome and estimand of interest

	Different	Same
S) (and rest	Same	Different
	Different	Different

Important point to keep in mind

Transparency facilitates assessment of validity, relevance, replicability

Transparency and reproducibility of healthcare database research relies on data provenance:

Dynamic

P/

.....

Dashed line boxes represent a snapshot of a dynamically updated data model at a moment in time Solid line boxes represent a static data model

Gray arrows represent transition from one data model to another

Black boxes represent operational choices made to extract and reshape data before data is provided to researcher

Clear boxes represent operational choices performed by researchers after data was provided. These choices should be made transparent by the researchers with reporting of study findings

Static with versioned updates Relational data tables

Step 2

Parameters for creation of a study population

Comprehensive catalogue with 9 sections:

- A. Data source
- B. Design diagram
- C. Inclusion/exclusion criteria (attrition table)
- D. Exposure definition
- E. Follow up definition
- F. Outcome definition
- G. Covariates
- H. Control sampling
- I. Software

BWH See Rel es

Design diagram

Washout Window Exclusion assessment window (EXCL) (>45 gaps in medical and drug coverage) EXCL (No CAP dx and chest radiography) Days [-14, 0] EXCL (Age <18 or >64) Days [0, 0] Covariate Assessment Window (dependent variables in propensity score) Days [-183, -1]

Max 30 days Follow Up Window Days [1, censor] Time

Cohort Entry Date (Initiation of azithromycin, clarithromycin) Day 0

17

Day 0

Attrition table

Example specificity in reporting on exclusions

Patients entered the study at initiation of metformin after a 183 day washout without dispensation of any anti-diabetic agents. Patients were required to have diabetes, defined by ICD9 codes 250. * recorded in any care setting and any diagnosis position within 183 days prior to but not including study entry date.

What is the study entry date?

- Identify first new initiation date (1)
 - o Patient does not contribute
- Consider all new initiation dates (1,2,3), use first that meets inclusion/exclusion
 o Patient contributes (2)
- Consider all new initiation dates (1,2,3), use all that meet inclusion/exclusion
 - Patient contributes (2, 3)

Example specificity defining exposure

Codes

- o Frequency and temporality
- o Diagnosis position
- o Care setting
- Type of exposure (e.g. incident, cumulative, time-varying)
- Induction period
- Exposure risk window
- Stockpiling
- Bridging exposure episodes
- Exposure extension
- Switching/add on

Wang 2017, ISPE/ISPOR Joint Task Force

Static with versioned updates Relational data tables

Step 2

Parameters for creation of study population

Comprehensive catalogue with 9 sections:

- A. Data source
- B. Design diagram
- C. Inclusion/exclusion criteria (attrition table)
- D. Exposure definition
- E. Follow up definition
- F. Outcome definition
- G. Covariates
- H. Control sampling
- I. Software

Summary

Comprehensive catalogue of **specific operational parameters** that represent scientific decisions made when defining a study population from longitudinal data captured in claims and EHRs

- Reporting these will facilitate replicability and validity assessment
- Expect catalogue will grow and change over time

Consensus - limited set of parameters are absolutely necessary to recreate a study population

Which? Debatable.

Disclosures

- This work was funded by the Laura and John Arnold Foundation
- At the time that this work was conducted, Dr. Wang was principal investigator on other grants from:
- o Agency for Healthcare and Research Quality
- o National Institute of Aging
- o Laura and John Arnold Foundation
- o FDA Sentinel Initiative
- Investigator initiated grants to Brigham and Women's Hospital from Novartis, J & J, Boehringer Ingelheim for unrelated work
- She is a consultant to Aetion Inc, for unrelated work

Objective

To increase the confidence of decision makers in using evidence from healthcare databases by producing empirically based recommendations on how to transparently report on study implementation, achieve reproducible and robust findings

1. Systematic search using Google Scholar

Top h-5 clinical, epidemiology journals

- Published after Jan 1, 2011
- "cohort" + "claims" + database name

1. Systematic search using Google Scholar

Top h-5 clinical, epidemiology journals

- Published after Jan 1, 2011
- "cohort" + "claims" + database name

2. Apply exclusion criteria

CONSORT style diagram

- Include descriptive, comparative safety/effectiveness cohort studies
- Exclude if data source mismatch, PDF unavailable, methods study, etc.

1. Systematic search using Google Scholar

- Top h-5 clinical, epidemiology journals
 - Published after Jan 1, 2011
 - "cohort" + "claims" + database name

CONSORT style diagram

- Include descriptive, comparative safety/effectiveness cohort studies
- Exclude if data source mismatch, PDF unavailable, methods study, etc.

Standardized extraction form

- Based on ISPE/ISPOR catalogue
- Measure/describe how often specific parameter decisions were unclear

1. Systematic search using Google Scholar

2. Apply exclusion criteria

3. Evaluate transparency

considering all publicly available

information

250 studies

Random sample

Top h-5 clinical, epidemiology journals

- Published after Jan 1, 2011
- "cohort" + "claims" + database name

CONSORT style diagram

- Include descriptive, comparative safety/effectiveness cohort studies
- Exclude if data source mismatch, PDF unavailable, methods study, etc.

Standardized extraction form

- Based on ISPE/ISPOR catalogue
- Measure/describe how often specific parameter decisions were unclear

4. Replicate 150 studies80% comparative(blind to original results)

Metrics to quantify replicability

• Abs. Diff, Std. Diff, "calibration", etc.

31

Aim 2. To evaluate the robustness of evidence currently found in healthcare database studies

1. Identify random sample of 50 comparative studies

- Closely replicated
- Noted design/analysis issue
- Implementation parameters ≠ intended question?

Aim 2. To evaluate the robustness of evidence currently found in healthcare database studies

1. Identify random sample of 50 comparative studies

- Closely replicated
- Noted design/analysis issue
- Implementation parameters ≠ intended question?

2. Conduct numerous sensitivity analyses

- Plausible alternative parameters
- Address design/analysis issues
- Assay sensitivity e.g. negative control outcomes

Aim 2. To evaluate the robustness of evidence currently found in healthcare database studies

nvolve original investigators

1. Identify random sample of 50 comparative studies

- Closely replicated
- Noted design/analysis issue
- Implementation parameters ≠ intended question?

2. Conduct numerous sensitivity analyses

- Plausible alternative parameters
- Address design/analysis issues
- Assay sensitivity e.g. negative control outcomes

3. Conduct external adjustment under varying assumptions

- Quantitative bias adjustment (misclassification)
- Residual confounding

Aim 2. To evaluate the robustness of evidence currently found in healthcare database studies

1. Identify random sample of 50 comparative studies

- Closely replicated
- Noted design/analysis issue
- Implementation parameters ≠ intended question?

2. Conduct numerous sensitivity analyses

- Plausible alternative parameters
- Address design/analysis issues
- Assay sensitivity e.g. negative control outcomes

3. Conduct external adjustment under varying assumptions

- Quantitative bias adjustment (misclassification)
- Residual confounding

Random Sample of Peer-Reviewed, Published Database Studies

Current progress

Transparency EvaluationReplicationRobustnessAuthor Contacts128 of 25056 of 1501 of 501 of 150(only 10 attempted contacts)

Difference in baseline characteristics* of cohort

Difference in baseline characteristics* of cohort

Difference in baseline characteristics* of cohort

Difference in baseline characteristics* of cohort

Why did the replication differ so much from the original for some baseline characteristics?

Calibration of effect estimates* for original versus replication

Calibration of effect estimates* for original versus replication

Estimates follow diagonal

* Hazard, odds, risk ratio

Effect estimate agreement between original and replication

Same side of null?

84% of effect estimates were on the same side of null16% were not

52% of effect estimates *and* confidence intervals were on same side of null

Difference in effect estimate log(original) – log(replication)

- Mean: 0.0
- 29% within ± 0.1
- Range: -0.6, 0.4

* Hazard, odds, risk ratio

Why is the replication estimate substantially larger?

* Hazard, odds, risk ratio

Why are the effect estimates on opposite sides of null?

* Hazard, odds, risk ratio

Work in progress...

Transparency Reproducibility Assessment of validity Investigator burden Reviewer burden Information overload

• Empirical evaluation

- Describe frequency of reporting, impact of transparency of specific study parameters
- Prioritize reporting on parameters with demonstrable influence on replicability or robustness
- Hard to replicate analysis results if unable to replicate base cohort
 - Majority of internal debate over vague prose on temporality (slower timeline for replication)
 - Exclusion criteria not detailed, selection of study entry date before or after applying exclusions
 - How much do assumptions on these paramters matter? Context dependent, robustness next...
- Shared terminology and structured reporting templates
 - Simplify reporting terminology used for the same concepts varies
 - Visualization of study design implementation
- Reporting on research using unstructured data (NLP, machine learning)

7 groups working in parallel on different studies (1+ faculty, 2+ research staff)

- Adrian Ortiz Santiago BS
- Ajinkya Pawar PhD MS
- Elisabetta Patorno MD DrPH
- Elizabeth M. Garry PhD MPH
- Emma Payne BS
- Jessica Franklin PhD
- Joshua Gagne PharmD ScD
- Krista Huybrechts PhD MS
- Kristina Stefanini BA
- Lily Bessette BS
- Mimi Zakarian BS
- Monica L. Gierrada MPH
- Mufaddal Mahresi MD MPH
- Nileesa Gautam BS
- Sebastian Schneeweiss MD ScD
- Shirley V Wang PhD ScM
- Sushama Kattinakere MBBS MSPH
- Yinzhu Jin MS MPH

Scientific Advisory Board (alphabetical)

Regulators, HTA, delivery systems, patients, payers, industry, journals, research societies...

- Jeffrey Brown PhD
- Alison Bourke MSc FRPharm.S
- Amr Makady PharmD PhD
- Andrew Bate PhD
- Brian Bradbury DSc
- Brian Nosek PhD
- Christine Laine MD MPH FACP
- David Martin MD MPH
- Deborah Zarin MD
- Dick Willke PhD
- Dorothee Bartels MSc PhD
- Elizabeth Loder MD MPH
- Frank de Vries PharmD PhD
- Hans-Georg Eichler MD, MSc
- Henrik Toft Sørensen MD PhD
- Javier Jimenez MD MPH
- Jesper Hallas MD PhD
- Joanne Waldstreicher MD
- John Ioannidis MD DSc

- John Seeger PharmD DrPh
- K. Arnold Chan MD ScD
- Karen Burnett MBA MS
- Kris Kahler PhD
- Laura Happe PharmD MPH
- Liam Smeeth PhD
- Lisa Freeman
- Michael Nguyen MD
- Nam-Kyong Choi B. Pharm PhD
- Páll Jónsson PhD Mres
- Peter Arlett BSc MBBS MRCP FFPM
- Peter Tugwell MSc MD FRCPC
- Richard Platt MD MSc
- Sarah Priddy Alwardt PhD
- Sean Hennessy PharmD, PhD
- Troyen Brennan MD
- Will Shrank MD
- Wolfgang Winkelmayer MD MPH ScD FASN
- Yoshiaki Uyama PhD

Adventures in Replication The Sentinel System Experience

Ting-Ying Jane Huang, PhD

Research Scientist Department of Population Medicine Harvard Medical School and Harvard Pilgrim Health Care Institute 8/26/2018

- Studies used as examples in this presentation were supported by the U.S. Food and Drug Administration (FDA) through the Department of Health and Human Services Contract No. HHSF223201400030I
- This presentation reflects the views of the authors and not necessarily those of the U.S. FDA
- The author has no conflicts of interest to disclose

Sentinel System

sentinelinitiative.org

- A component of the U.S. FDA Sentinel Initiative
- Active safety surveillance system to monitor regulated products
 - Pre-existing electronic healthcare data from multiple sources
 - Routine querying tools (pre-tested, parameterizable modular programs)
- Sentinel Distributed Database
 - 66.9 million members with medical and drug coverage currently accruing new data
 - 14.4 billion pharmacy dispensings
 - 13.3 billion medical encounters

Sentinel Common Data Model v6.0

Administrative												
Enroliment Demographic		Dispensing		sing	Encounter		Diagnosis		Procedure			
Person ID	Person ID Person ID			Person ID		Person ID		Person ID		Person ID		
Enrollment start & end date	& end dates Birth date			Dispensing date		Service date(s)			Service dates		Service date(s)	
Drug coverage	verage Sex			National drug code (NDC)		Encounter ID		Encounter ID		Encounter ID		
Medical coverage	ge Zip code			Days supply		Encounter type and provider		Encounter type and provider		Encounter type & provider		
Medical record availability	ty Etc.			Amount dispended		Facility		Diagnosis code & type		Procedure code & type		
						Etc. Pri		Principal discharge diagnosis		Etc.		
Clinical				Registry					Inpatient			
Lab Result		Vital Signs		Death Cause o		f Death State Vaccine		ne	Inpatient Pharmac		Inpatient Transfusion	
Person ID		Person ID		Person ID Perso		on ID Person ID		Person ID			Person ID	
Result and specimen	Meas	Measurement date &		Death date Cause c		of death Vaccination dat		ate	Administration date		Administration start &	
collection dates		time		Source		Source Admission ty		/pe			end date & time	
Test type, immediacy & location	He	Height & weight		Confidence Confi		dence Vaccine code &		Encounter ID			Encounter ID	
Logical Observation	Diastolic & systolic BP			Etc.		tc. Provider			National Drug Code (NDC)		Transfusion administration ID	
Identifiers Names and	Tob	pacco use & type					Etc.		Route		Transfusion product	
Codes (LOINC [®])		Etc.							Dose		code	
Test result & unit											Blood type	
Etc. 8/26/2018				34th	ICPF. Prague	. Czech Repul	blic		ElC.		Etc.	

Sentinel Distributed Database

1- User creates and submits query 2- Data Partners retrieve query **3- Data Partners review and run** query against their local data 4- Data Partners review results 5- Data Partners return results via secure network 6- Results are aggregated and returned

57

Sentinel Toolbox

Modular Programs

- Pre-tested, parameterizable SAS macros
- Summary Table
- Cohort Identification and Descriptive Analysis
- Propensity Score Analysis

Summary Table Tool

Cohort ID and Descriptive Analysis with Propensity Score Matching or Stratification Self-controlled Risk Interval Design Drug Use in Pregnancy Drug Utilization Concomitant Drug Utilization Pre/Post Index Tool

Query Parameterization

Design:

Identify patients _____ with a _____ dispensing of a _____. To be eligible, patients must have met the following criteria in the _____ days before the index dispensing: (1) continuous enrollment in _____ benefits, (2) no prescription for _____ or ____, and (3) no diagnosis of _____ in ____ care setting.

The primary outcome of interest is _____ identified with _____ in ____ position during an _____ encounter.

Standardized Reporting

		Primary Analysis: Expo	sure/Comparator Pair 1	Sensitivity Analysis 1: Exposure/Comparator Pair 2		
Specifications for Request ID c	Pre-Existing Condition	Dementia	Dementia	Dementia	Dementia	
Query Period:	Include/Exclude	Exclude	Exclude	Exclude	Exclude	
Coverage Requirement:	Care Settings/PDX	Any	Any	Any	Any	
Enrollment Requirement:	Lookback Period	-183, -1	-183, -1	-183, -1	-183, -1	
Enrollment Gap:	45 Days	Event/Outcome				
Age Group(s): 18-64 years		Event/Outcome	emorrhagic and ischemic	Hemorrhagic and ischemic	Hemorrhagic and ischemic	Hemorrhagic and ischemic
]	Primary Analysis: Exp	Care Setting/PDX	IPP	IPP	IPP	IPP
Drug/Exposure		Washout	0	0	0	0
Incident Exposure/Comparator	All typical antipsychotics	Blackout Period	None	None	None	None
	in cypical antipoyono no	Propensity Score Matching				
Incident w/ Respect to:	All atypical and typical	Covariates	See Covariates tab	See Covariates tab	See Covariates tab	See Covariates tab
Washout	183 days Cablert includes exclusted firm	Covariate Evaluation Window	-183, -1	-183, -1	-183, -1	-183, -1
Conort Definition	ade Gan		1:1	1:1	1:1	1:1
Episode Extension Period	None	Matching Caliper	0.050	0.050	0.050	0.050
Minimum Episode Duration	1 day	Analysis Type	Unconditional	Unconditional	Unconditional	Unconditional
Maximum Episode Duration	None	Propensity Score Percentile				
Minimum Days Supplied	1 day	Percentiles	5	5	5	5
Episode Truncation at Death Yes		Additional Covariates to Adjust for	None	None	None	None
Episode Truncation for	Episode Truncation for All atypical antipsychotics		None	None	None	None
Exposure		Kaplan Meier Plot	Yes	Yes	No	No

cla

Standardized Reporting

Sentinel

Glossary of Terms for Analyses Using Cohort Identification and Descriptive Analysis (CIDA) Tool*

Amount Supplied - number of units (pills, tablets, vials) dispensed. Net amount per NDC per dispensing. This is equivalent to the "RxAmt" value in the Sentinel Common Data Model.

Blackout Period - number of days at the beginning of a treatment episode that events are to be ignored. If an event occurs during the blackout period, the episode is excluded.

Care Setting - type of medical encounter or facility where the exposure, event, or condition code was recorded. Possible care settings include: Inpatient Hospital Stay (IP), Non-Acute Institutional Stay (IS), Emergency Department (ED), Ambulatory Visit (AV), and Other Ambulatory Visit (OA). For laboratory results, possible care settings include: Emergency department (E), Home (H), Inpatient (I), Outpatient (O), or Unknown or Missing (U). Along with the Principal Diagnosis Indicator, forms the Care Setting/PDX parameter.

Ambulatory Visit (AV) - includes visits at outpatient clinics, same-day surgeries, urgent care visits, and other same-day ambulatory hospital encounters, but excludes emergency department encounters.

Glossary of Terms for Analyses Using Propensity Score Matching (PSM) Tool*

Covariate Evaluation Window - specified number of days relative to index date to evaluate the occurrence of covariates of interest. Note: members are required to have continuous enrollment during the covariate evaluation window, regardless of the value included in the "Continuous enrollment before exposure" field. **Mahalanobis Distance** - provides a measure of balance across all variables while accounting for their correlation.

Matching Caliper - maximum allowed difference in propensity scores between treatment and control patients. Requester may select any caliper (e.g., 0.01, 0.025, and 0.05). Matching Ratio - patients in exposed and comparator groups are nearest neighbor matched by a 1:1 or 1:n (up to 10) matching ratio.

Matched Conditional and Unconditional Analysis - in a conditional matched analysis, a Cox model, stratified by Data Partner site and matched set, is run on the matched population. This can be done for both the both 1:1 and 1:n matched cohorts. In an unconditional analysis, a Cox model, stratified by Data Partner site only, is run on the matched population. This can be done for the 1:1 matched cohort only.

Propensity Score Stratification - option to stratify propensity scores based on requester-defined percentiles in the unmatched population. In a stratified analysis, a Cox model, stratified by Data Partner site, is run on the stratified population. Note that all patients identified in exposure and comparator cohorts are used in the analysis. PSM Tool - performs effect estimation by comparing exposure propensity-score matched parallel new user cohorts. Propensity score estimation and matching are conducted within each Sentinel Data Partner site via distributed programming code; data are returned to the SOC, aggregated, and used to calculate effect estimates.

Standardized Reporting

Table 1a. Cohort of New Initiators of Typical Antipsychotics and Atypical Antipsychotics (Unmatched, Aggregated), Ratio = F, Caliper = 0.05]			
	Medical Product Covariate Balance									Balance		
Characteristic					Typical An	Typical Antipsychotics Atypical Antipsy		psychotics	/chotics			
										Absolute	Standardized	
					N/Mean	%/Std	Dev ¹	N/Mean	%/Std Dev ¹	Difference	Difference	
Patie	nts (N)				45,576	100	0.0%	806,611	100.0%	-	-	
Patient Ch	aracteristics											
Mear	n age				44.0		12.6	39.9	12.8	4.121	0.324	
Age:	18-64				45,576	100	0.0%	806,611	100.0%	0	-	
Gend	der (Ambiguous)				-		0.0%	3	0.0%	0	-	
Gend	Gender (Female)			21,206	40	6.5%	489,469	60.7%	-14.153	-0.287		
Gend	Gender (Male)		24,368	5	3.5%	317,090	39.3%	14.155	0.287			
Gend	der (Unknown)				2		0.0%	49	0.0%	-0.002	-0.002	
Recorded	Table 2 Effect Estimates	for Typical A	ntinevchotice	and Atynical	Antinevchotice	and Strok	a by Analy	sis Typo				
Prior	Table 2. Effect Estimates		nupsychotics	anu Atypicar	Antipsychotics		e by Analy	sis rype				
Atria									Incidence			
Acute									Rate			
Coag				Average	Average		Inciden	ce	Difference	Difference in		
Diabo		Number of	Person Years	Person Days	Person Years	Number of	Rate per	1000 Risk per	1000 per 1000	Risk per 1000	Hazard Ratio	Weld D.Velu
Hear	Unmatched Analysis (Site-	adjusted only)	dt Nisk	dt NISK	at Kisk	Events	Person f	ears new 0s	ers Person rears	New Osers	(95% CI)	walu P-valu
Hype	Typical Antipsychotics	45 576	10 125 82	81.15	0.22	25	2 47	0.55				
	Atypical Antipsychotics	806.611	338.987.22	153.50	0.42	396	1.17	0.49	1.30	0.06	1.75 (1.17, 2.63)	0.007
	1:1 Matched Unconditional Predefined Analysis: Caliper=0.05											
	Typical Antipsychotics	45,495	10,113.92	81.20	0.22	25	2.47	0.55				
	Atypical Antipsychotics	45,495	20,636.19	165.67	0.45	53	2.57	1.16	-0.10	-0.62	0.87 (0.54, 1.41)	0.566

Sentinel Replications

- Tool verification: function performance and result comparability
- Sentinel protocol-based assessments
 - ACEI and angioedema: Toh 2012 ← Gagne 2016
 - Dabigatran/warfarin and bleeding: Go 2017 ← Dabigatran variability
- Known positives
 - Glyburide, Glipizide, and Serious Hypoglycemia: Zhou 2017
 - Clindamycin/Penicillin and Clostridium Difficile: Carnahan, 2018
- Canadian Network for Observational Drug Effect Studies (CNODES) protocolbased assessments
 - Incretins and acute pancreatitis: Azoulay 2016 ← Incretin replication
 - Incretins and heart failure: Filion 2016 ← Incretin replication

Example 1: Dabigatran Variability

Data Source Methods Analytic reproduction Same Same *Re-running the same code on same data* **Direct replication** Same Same Independent implementation of a specific study Different Same Conceptual replication (robustness) Same Different Implementing a study of the same exposure (and comparator), outcome and estimand of interest Different Different

Reproducibility

Example 1: Dabigatran Variability

Annals of Internal Medicine[®]

LATEST ISSUES CHANNELS CME/MOC IN THE CLINIC JOURNAL CLUB WEB EXCLUSIVES AUTHOR INFO

ADVANCED SEARC

ORIGINAL RESEARCH | 14 NOVEMBER 2017

Outcomes of Dabigatran and Warfarin for Atrial Fibrillation in Contemporary Practice: A Retrospective Cohort Study

Alan S. Go, MD; Daniel E. Singer, MD; Sengwee Toh, ScD; T. Craig Cheetham, PharmD, MS; Marsha E. Reichman, PhD; David J. Graham, MD, MPH; Mary Ross Southworth, PharmD; Rongmei Zhang, PhD; Rima Izem, PhD; Margie R. Goulding, PhD; Monika Houstoun, PharmD; Katrina Mott, MS; Sue Hee Sung, MPH; Joshua J. Gagne, PharmD, ScD

Article, Author, and Disclosure Information

Example 1: Dabigatran Variability

8/26/2018

Example 1: Dabigatran Variability

- Strategies to identify discrepancy
- Programming code audit
 - Study parameter differences, including subsequent interpretation and operational implementation, in computer programs
- Anchor cohort creation and output review
 - Isolate divergence in each of five main processing steps
 - 2010-2014 Truven Health MarketScan[®] Research Databases (formatted to Sentinel Common Data Model)
 - Patients matched in both anchor cohorts

Investigation Results

Go 2017

Modular Program Replication

1. Maximum enrollment gap to bridge consecutive enrollment spans: 30 vs 45 days

2. Dispensings with zero days supply or supply amount were vs were not considered to define the index date

3. Dialysis patients defined using CPTs in any vs outpatient-only care setting

4. If patient disenrolls or has outcome on day 0, they are removed from the cohort

Anchor Cohorts

Parameter	Inclusion Cohort	Exclusion Cohort						
Enrollment gap	Set gap to 30 days							
bridging								
New user	Use evidence of days supply during washout period							
definition								
Valid Dispensing	Exclude dispensings with zero pills or zero days supply from							
Definition	consideration							
Cohort Inclusion	Inclusion/exclusion lookback period: (-365, -1)							
Definitions	Exclude patients censored on Day 0 from the cohort							
	Define dialysis using codes in any care setting							
	Include patients with history	Exclude patients with history						
	of joint replacement,	of joint replacement,						
	pulmonary embolism and deep	pulmonary embolism, and deep						
	vein thrombosis	vein thrombosis						

Propensity Score Estimation

Example 1: Lessons Learned

- Comprehensive programming review was necessary to identify sources of discrepancy
- Difference in findings may be caused by
 - Intentional scientific decisions: additional exclusion criteria
 - Unintentional, alternate interpretation of operational definitions: Day 0 management
 - Limitation of Sentinel modular programs: stockpiling rules
- Changes in upstream study design decisions (e.g., cohort identification and propensity score estimation) are expected to have downstream influence that could lead to discrepant findings

		Data Source	Methods
	Analytic reproduction Re-running the same code on same data	Same	Same
	Direct replication Independent implementation of a specific study	Same	Same
	Conceptual replication (robustness) Implementing a study of the same exposure (and comparator), outcome and estimand of interest	Different	Same
		Same	Different
		Different	Different

JAMA Internal Medicine | Original Investigation

Association Between Incretin-Based Drugs and the Risk of Acute Pancreatitis

Laurent Azoulay, PhD; Kristian B. Filion, PhD; Robert W. Platt, PhD; Matthew D Kristin K. Clemens, MD, MSc; Madeleine Durand, MD, MSc; Nianping Hu, MD, P J. Michael Paterson, MSc; Laura E. Targownik, MD, MSHS; Tanvir C. Turin, MD, I and the Canadian Network for Observational Drug Effect Studies (CNODES) In

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

A Multicenter Observational Study of Incretin-based Drugs and Heart Failure

Kristian B. Filion, Ph.D., Laurent Azoulay, Ph.D., Robert W. Platt, Ph.D., Matthew Dahl, B.Sc., Colin R. Dormuth, Sc.D., Kristin K. Clemens, M.D., Nianping Hu, M.D., Ph.D., J. Michael Paterson, M.Sc., Laura Targownik, M.D., M.S.H.S., Tanvir C. Turin, M.D., Ph.D., Jacob A. Udell, M.D., M.P.H., and Pierre Ernst, M.D., for the CNODES Investigators*

	CNODES	Sentinel	
Data source	Administrative claims data from 5	US MarketScan Databases (converted	
	Canadian provinces, UK CPRD, US	to Sentinel Common Data Model)	
	MarketScan databases		
Study design	Nested case-control study	Retrospective cohort study	
Data year	2007-2014	2010-2016	
Study treatment	Incretin-based drugs		
Comparator	≥2 oral hypoglycemic agents (OHAs)		
treatment			
Outcome	Hospitalized acute pancreatitis, heart failure		
Exposure assessment	Concurrent treatment	New treatment preceded by a 365-	
	overlapping with outcome	day washout period	
	occurrence		
Confounding	1:n (n≤20) matching and	Propensity score stratification	
adjustment	outcome model regression		
Outcome model	Conditional logistic regression	Cox proportional hazards model	

First-ever non-insulin prescription

New anti-diabetic prescription

22

Case

CNODES cohorts

Exposure hierarchy on index (outcome) day

i. Incretins

- ii. Insulins
- iii. 2+ OHAs
- iv. Single OHA

v. Not exposed

Figure 1: Case-control selection

Note: Patient 1 and patient 3 have simultaneous entry into the base cohort and the study cohort.

Sentinel cohorts

New exposure based on preindex washout qualification only

 Does not guarantee ongoing concurrent exposure for 2+ OHAs

Figure 1. Association Between the Use of Incretin-Based Drugs Compared to Use of 2+ Oral Hypoglycemic Agents and the Risk of <u>Acute Pancreatitis</u>

Figure 2. Association Between the Use of Incretin-Based Drugs Compared to Use of 2+ Oral Hypoglycemic Agents and the Risk of <u>Acute Pancreatitis (MarketScan only)</u>

Figure 3. Association Between the Use of Incretin-Based Drugs Compared to Use of 2+ Other Hypoglycemic Agents and the Risk of <u>Heart Failure</u>

Figure 4. Association Between the Use of Incretin-Based Drugs Compared to Use of 2+ Oral Hypoglycemic Agents and the Risk of <u>Heart Failure (MarketScan only)</u>

Example 2: Lessons Learned

- Comprehensive programming review was not necessary
 - Thanks to CNODES readily-available protocols
 - Yet, author contact is needed to access study design and operational details
- Tool limitations in customizability
 - Fixed study design options
 - Limited capability to identify and characterize drug utilization following complex therapeutic regimen
- Comparable findings under altered but robust design
- Fast analysis turn-around time
- Ready to replicate in Sentinel Distributed Database

Summary and Discussion

Summary and Discussion

- Common data model plus modular programs
- Sentinel System approach
- Standardized data structure
- Pre-tested, parameterizable programs
- Standardized reporting
 - Program specifications
 - Result outputs

Safety Assessment in Sentinel

Time to complete a typical analysis

Summary and Discussion

- However, standardization also implies...
- Moderate flexibility: methods, measures, and reporting
 - Ad hoc programs offer some degree of customization
- Upfront investment to build and maintain the system
 - Deploy a common data model
 - Routine data refresh and quality assurance
 - Continuous enhancement of the modular programs

- 1. Sentinel System and Routine Querying Tools: <u>https://www.sentinelinitiative.org</u>
- Toh, S., Reichman, M.E., Houstoun, M., Southworth, M.R., Ding, X., Hernandez, A.F., Levenson, M., Li, L., McCloskey, C., Shoaibi, A. and Wu, E., 2012. Comparative risk for angioedema associated with the use of drugs that target the renin-angiotensin-aldosterone system. Archives of internal medicine, 172(20), pp.1582-1589.Go, A.S., Singer, D.E., Toh, S., Cheetham, T.C., Reichman, M.E., Graham, D.J., Southworth, M.R., Zhang, R., Izem, R., Goulding, M.R. and Houstoun, M., 2017. Outcomes of dabigatran and warfarin for atrial fibrillation in contemporary practice: a retrospective cohort study. Annals of internal medicine, 167(12), pp.845-854.
- 3. Zhou, M., Wang, S.V., Leonard, C.E., Gagne, J.J., Fuller, C., Hampp, C., Archdeacon, P., Toh, S., Iyer, A., Woodworth, T.S. and Cavagnaro, E., 2017. Sentinel Modular Program for Propensity Score–Matched Cohort Analyses. Epidemiology, 28(6), pp.838-846.
- 4. Carnahan, R.M., Kuntz, J.L., Wang, S.V., Fuller, C., Gagne, J.J., Leonard, C.E., Hennessy, S., Meyer, T., Archdeacon, P., Chen, C.Y. and Panozzo, C.A., 2018. Evaluation of the US Food and Drug Administration sentinel analysis tools in confirming previously observed drug-outcome associations: The case of clindamycin and Clostridium difficile infection. Pharmacoepidemiology and drug safety.
- 5. Azoulay L, Filion KB, Platt RW, Dahl M, Dormuth CR, Clemens KK, Durand M, Hu N, Juurlink DN, Paterson JM, Targownik LE, Turin TC, Ernst P; and the Canadian Network for Observational Drug Effect Studies (CNODES) Investigators., Suissa S, Dormuth CR, Hemmelgarn BR, Teare GF, Caetano P, Chateau D, Henry DA, Paterson JM, LeLorier J, Levy AR, Ernst P, Platt RW, Sketris IS. Association between Incretin-Based Drugs and the Risk of Acute Pancreatitis. JAMA Intern Med. 2016 Oct 1;176(10):1464-1473.
- Filion KB, Azoulay L, Platt RW, Dahl M, Dormuth CR, Clemens KK, Hu N, Paterson JM, Targownik L, Turin TC, Udell JA, Ernst P; CNODES Investigators.. A Multicenter Observational Study of Incretin-based Drugs and Heart Failure. N Engl J Med. 2016 Mar 24;374(12):1145-54.

CANADIAN NETWORK FOR OBSERVATIONAL DRUG EFFECT STUDIES (CNODES)

Replication in CNODES

Robert Platt

August 26, 2018 34th ICPE, Prague

Disclosures

- Albert Boehringer I Chair in Pharmacoepidemiology
- Canadian Institutes of Health Research (CIHR) grants
- No conflicts relevant to this presentation to disclose

CNODES funding and investigators

Canadian Network for Observational Drug Effect Studies (CNODES), a collaborating center of the Drug Safety and Effectiveness Network (DSEN), is funded by the Canadian Institutes of Health Research (CIHR, Grant #DSE – 146021).

CNODES INVESTIGATORS

Executive:	Samy Suissa (NPI*), Robert Platt
British Columbia:	Colin Dormuth
Alberta:	Brenda Hemmelgarn
Saskatchewan:	Gary Teare
Manitoba:	Patricia Caetano, Dan Chateau
Ontario:	David Henry, Michael Paterson
Québec:	Jacques LeLorier
Atlantic (NB, NL, NS, PEI):	Adrian Levy, Ingrid Sketris
UK CPRD:	Pierre Ernst, Kristian Filion

*Nominated Principal Investigator

CNODES at a glance

The Canadian Network for Observational Drug Effect Studies (CNODES) uses **population-based administrative healthcare data** to provide **timely responses** to queries for Canadian public stakeholders regarding drug safety and effectiveness

Reproducibility

Data Source Methods

Data sources

Data from across Canada

Example from a CNODES study examining the association between statin potency and acute kidney injury (Dormuth et al. 2013), using data from

The CNODES process

From query submission to project completion and knowledge translation

Why does CNODES need Replication?

- Sample size
 - Canada: ~30 million covered lives
 - But provinces keep their own data
 - Replication/meta-analysis allows increased power
- Robustness
 - Natural (sampling) variability
 - Variability in
 - Population served
 - Formulary
 - Province-specific estimates

Reproducible Research

- To what extent do differences between studies reflect:
 - Population
 - Characteristics
 - Prescription/formulary patterns
 - Question
 - Data source/structure
 - Analysis plan
 - Analyst/code
 - Interpretation?

Ensuring Replicability in CNODES

- 1. Protocol approved by every site plus methods and content experts
 - Feasibility, scientific content, power
- 2. Statistical analysis plan
 - Very detailed protocol for distribution across sites
- 3. Iterative analytic process
 - Ensure reproducibility but avoid contamination
- 4. Meta-analysis and outlier checking

The CNODES Statistical Analysis Plan

- Step-by-step guide that sets out how each CNODES site will design their study and analyze their data.
- Written after the scientific protocol has been developed, in consultation with site liaisons and analysts
- Created in phases:
 - Cohort construction; definitions of exposures, outcomes, and measures of confounding; descriptive statistics
 - Primary analyses
 - Sensitivity analyses in addition to the primary statistical analyses
- Guiding principles:
 - Given this protocol, any two analysts should produce the same results from the same dataset.
 - Minimize unwanted heterogeneity

Reproducible Research

- To what extent do differences between studies reflect:
 - Population
 - Characteristics
 - Prescription/formulary patterns
 - Question
 - Data source/structure
 - Analysis plan
 - Analyst/code?
 - Interpretation?

Variability Across Analysts

- Some code-sharing
- Sharing of generic (fake) data
 - Conduct basic analyses to ensure replication
 - Analytic reproduction
- Frequent contact between analysts
 - Discussion groups
 - Structured review
 - Blinded checks

Examples

Pancreatic cancer

(Incretin-based drugs vs sulfonylureas)

Exposure: Ever use with 1 year lag

PPIs and HCAP

Filion KB. Gut 2014.
		Data Source	Methods
	Analytic reproduction Re-running the same code on same data	Same	Same
lucibility	Direct replication Independent implementation of a specific study	Same	Same
prod		Different	Same
Re	Conceptual replication (robustness) Implementing a study of the same exposure (and comparator), outcome and estimand of interest	Same	Different
		Different	Different

International Replication Collaborations

- CNODES-EMA collaboration on DOACs
 - Concurrent replication of a common protocol
 - Multiple sites in Europe plus Canadian sites
- CNODES-Sentinel replication Incretins
 - Sentinel replicated a CNODES study
 - Modified protocol to use semi-automated systems
- Both allow testing robustness of findings across much wider populations.

Concluding Thoughts

- Replication an important component of CNODES' processes
- Key to
 - Quality control/detecting data and/or analysis errors
 - Understanding of population/formulary differences
 - Understanding inherent variability

Thank you

Visit us at www.cnodes.ca

Adventures in Replication:

a regulatory perspective

ICPE Prague, 26 August, 2018

Presented by Xavier Kurz, European Medicines Agency

Disclosure

Employee of the European Medicines Agency

The views expressed in this presentation are my personal views and may not be understood or quoted as being made on behalf of or reflecting the position of the European Medicines Agency or one of its committees or working parties.

No other relationships to disclose.

Why is replication relevant for regulators ?

- Regulators need to rely on best evidence to take and communicate informed decisions; different studies are often required and complementary to meet regulatory needs for information.
- Generalisability, particularly for EU: inferences from study results to general population (judgmental decision) stronger if based on more than one study
- Post-authorisation studies often based on secondary data collection with inherent limitations; confirmation of results may be needed
- Need to identify and control for determinants of risk which are not all collected in all data sources, e.g. confounders, effect modifiers.
- Regulatory decisions on safety are therefore rarely based on single study

Assessment of CHC and VTE: ~ 40 observational studies from 13 countries, incl. meta-analyses

In this presentation:

Lessons learned from three examples of safety issues with replication:

- Hydrochlorothiazide and risk of skin and lip cancer
- Fluoroquinolones and risk of tendon disorders
- Direct oral anticoagulants and risk of bleeding

Example 1: Hydrochlorothiazide and risk of skin and lip cancer

Pottegard et al. Hydrochlorothiazide use is strongly associated with risk of lip cancer. J Intern Med 2017; 282: 322–331.

- HCTZ is photosensitizing and has previously been linked to lip cancer in screening study in the US
- Association between HCTZ and risk of lip cancer studied in nested case-control analysis using the Danish Registries between 2004-2012- Conditional logistic regression.

Subgroup	Cases	Controls	Crude OR*	Adjusted OR ^b
Nonuse	494	55 666	1.0 (ref.)	1.0 (ref.)
Ever-use	139	7401	2.2 (1.8-2.6)	2.1 (1.7-2.6)
High use (≥25 000 mg)	94	2771	4.0 (3.2-5.0)	3.9 (3.0-4.9)
Cumulative amount				
1-4999 mg	16	1745	1.0 (0.6-1.7)	1.0 (0.6-1.7)
5000-9999 mg	12	1083	1.2 (0.7-2.2)	1.2 (0.7-2.2)
10 000-24 999 mg	17	1802	1.1 (0.7-1.7)	1.1 (0.7-1.7)
25 000-49 999 mg	20	1253	1.9 (1.2-2.9)	1.8 (1.2-2.9)
≥50 000 mg	74	1518	5.8 (4.5-7.5)	5.5 (4.2-7.2)

Table 2 Association between exposure to hydrochlorothiazide and risk of squamous cell carcinoma of the lip, according to cumulative amount of hydrochlorothiazide use Pedersen et al. Hydrochlorothiazide use and risk of nonmelanoma skin cancer: A nationwide case-control study from Denmark. J Am Acad Dermatol 2018;78:673-81.

- HCTZ is photosensitizing and has previously been linked to lip cancer
- Association between HCTZ and risk of basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) studied in the Danish Cancer Registry during 2004-2012- Conditional logistic regression.

Subgroup	Case patients	Controls	Adjusted OR (95% CI)*	Adjusted OR (95% CI) [†]
Basal cell carcinoma				
Nonuse	63,653	1,281,894	1.0 (ref)	1.0 (ref)
Ever use	7900	148,989	1.07 (1.04-1.10)	1.08 (1.05-1.10)
High use (≥50,000 mg)	1897	30,075	1.28 (1.22-1.34)	1.29 (1.23-1.35)
Squamous cell carcinoma				
Nonuse	6817	149,944	1.0 (ref)	1.0 (ref)
Ever use	1812	22,518	1.80 (1.70-1.90)	1.75 (1.66-1.85)
High use	862	4802	4.05 (3.75-4.39)	3.98 (3.68-4.31)

Safety signal assessed by the EU Pharmacovigilance Risk Assessment Committee (PRAC)

- Potentially significant public health consequences.
- Only photosensitisation listed as a rare adverse reaction in the SPC.
- Limited quality and size of previous studies with missing data on confounders and no data on absolute risks. Importance of lag time periods.
- Two studies in same population and same databases (Danish registries). Uncertainty in the applicability or generalisability of the findings given variation between EU countries in:
 - incidence of NMSC and risk profiles
 - marketing status, approved indications and treatment strategies for antihypertensives
 - HCTZ exposure.

Replication study done by EMA in THIN database (UK) using same design (*D. Morales et al., submitted for publication*).

Study design differences

Г

Definition	Danish studies	THIN studies
Population		
No previous history of skin or other cancer*	Yes	Yes
No record of organ transplantation	Yes	Yes
No record of HIV diagnosis	Yes	Yes
No previous azathioprine/cyclosporine/mycophenolate use	Yes	Yes
Only patients included with at least 10 years follow-up	Yes	As secondary analysis
Time period of study	2004-2012	1999-2016
Outcomes		
Method of identifying diagnoses	Histology	Read codes
Control selection		
Up to 100 controls and 20 controls sampled respectively	Yes	Yes
Selection of matched controls using risk set sampling	Yes	Yes
Exposures		
HCTZ excluded within 2 years of index date	Yes	Yes
High dose HCTZ definition in lip cancer studies	25,000 mg	25,000 mg
High dose HCTZ definition in other cancer studies	50,000 mg	50,000 mg
Covariates included as potential confounders		
Retinoids/tetracyclines/macrolides/quinolones/amiodarone	Yes	Yes
Aspirin, NSAIDs, statins	Yes	Yes
Diabetes, COPD and alcohol abuse	Yes	Yes
Charlson comorbidity index score	Yes	Yes
Highest achieved education	Yes	No
Smoking and body mass index	No	Yes

5 year exposure lag period

lable 2 Associu	Lip cancer	Adjusted OR ^a	Adjusted OR ^b	Adjusted with	lip, according to
cumulative an				Smoking & Bivil	
Subgroup	All patients irrespective of follow-up duration				Adjusted OR ^b
Nonuse	Non-use	1.0 (ref)	1.0 (ref)	1.0 (ref)	1.0 (ref.)
Ever-use	Ever use	2.48 (1.16-5.29)	2.15 (1.00-4.63)	2.31 (1.07-4.97)	2.1 (1.7-2.6)
High use (≥25	Cumulative amount (mg)				3.9 (3.0-4.9)
Cumulative as	1-24,999	2.96 (1.38-6.32)	2.59 (1.20-5.60)	2.85 (1.32-6.15)	
1-4999 mg	■ >=25,000	-	-	-	1.0 (0.6-1.7)
5000-9999 mg	12	108	3	1.2 (0.7-2.2)	1.2 (0.7-2.2)
10 000-24 999 mg	17	180	2	1.1 (0.7-1.7)	1.1 (0.7-1.7)
25 000-49 999 mg	20	125	3	1.9 (1.2-2.9)	1.8 (1.2-2.9)
≥50 000 mg	74	151	8	5.8 (4.5-7.5)	5.5 (4.2-7.2)

Subgroup

Basal cell carcin Nonuse Ever use High use (≥5

Basal cell carcinoma	Adjusted OR ^a	Adjusted OR ^b	Adjusted with smoking & BMI®	
All patients irrespective of follow-up duration				
Non-use	1.0 (ref)	1.0 (ref)	1.0 (ref)	
Ever use	1.24 (1.16-1.32)	1.08 (1.01-1.15)	1.10 (1.03-1.17)	
Cumulative amount (mg)				
1-24,999	1.13 (1.04-1.24)	1.06 (0.98-1.14)	1.08 (0.995-1.16)	
• 25,000-49,999	1.21 (1.03-1.43)	1.08 (0.92-1.26)	1.10 (0.94-1.29)	
■ >=50,000	1.42 (1.10-1.84)	1.30 (1.03-1.65)	1.34 (1.06-1.69)	

djusted OR (95% CI)[†]

1.0 (ref) 1.08 (1.05-1.10) 1.29 (1.23-1.35)

Squamous cel	All patients follow-up du
Nonuse	Non-use
Ever use	Ever use
High use	Cumulative ar
5	- 1 24 000

Squamous cell carcinoma	Adjusted OR ^a	Adjusted OR ^b	Adjusted with smoking & BMI [®]
All patients irrespective of follow-up duration			
Non-use	1.0 (ref)	1.0 (ref)	1.0 (ref)
Ever use	1.50 (1.26-1.78)	1.22 (1.02-1.45)	1.25 (1.05-1.48)
Cumulative amount (mg)			
1-24,999	1.28 (1.03-1.59)	1.03 (0.83-1.28)	1.05 (0.84-1.30)
25,000-49,999	1.69 (1.15-2.47)	1.38 (0.95-2.03)	1.44 (0.98-2.11)
■ >=50,000	3.40 (2.16-5.35)	2.93 (1.85-4.62)	3.05 (1.93-4.81)

1.0 (ref) 1.75 (1.66-1.85) 3.98 (3.68-4.31)

Replication of results in another population and database provides strong support for regulatory

121 decision-making

Example 2: Risk of tendon rupture with fluoroquinolones

- Following a FDA review, the PRAC started a review of the persistence of fluoroquinolones adverse reactions to help determine the need for any restriction of indication.
- Risk of tendon rupture associated with fluoroquinolone is recognised but there is inconsistency in its reported size, with residual confounding in existing studies and limited information on absolute risk.
- Data were needed to better characterise the risk and how it is influenced by timing of exposure
- A study was performed by EMA in the THIN database
- Co-amoxiclav chosen as negative control to circumvent problems related to confounding by indication and severity.
- Manuscript submitted for publication (*D. Morales et al.*)

Table 2. Incidence rate ratios for the association between tendon rupture and current

Te	endon rupture	Exposed cases/total	Exposed controls/total	Crude IRR	Adjusted IRR	Adjusted p-value
Ar	ny tendon rupture		-			
•	Fluoroquinolones	111/4836	236/18356	1.79 (1.41-2.27)	1.61 (1.25-2.09)	<0.001
•	Co-amoxiclav	98/4836	314/18356	1.15 (0.90-1.45	1.02 (0.79-1.31)	0.900
Ac	hilles tendon rupture					
•	Fluoroquinolones	67/1577	82/6007	3.50 (2.45-5.02)	3.14 (2.11-4.65)	<0.001
•	Co-amoxiclav	38/1577	114/6007	1.19 (0.81-1.77	1.00 (0.64-1.57)	0.989
Bi	ceps tendon rupture					
•	Fluoroquinolones	20/1316	62/4946	1.19 (0.71-2.00)	1.07 (0.61-1.89)	0.804
•	Co-amoxiclav	23/1316	74/4946	1.16 (0.72-1.88)	1.01 (0.61-1.66)	0.978
Ot	her tendon rupture					
•	Fluoroquinolones	24/1943	92/7403	0.94 (0.59-1.50)	0.82 (0.50-1.35)	0.439
•	Co-amoxiclav	37/1943	126/7403	1.09 (0.75-1.60)	1.01 (0.68-1.50)	0.946

systemic fluoroquinolone and co-amoxiclav exposure.

Replication of previous results in another population and database with negative control and taking into account additional confounders and interactions (not shown) provides support to regulatory ¹²³ decision-making

Example 3: Direct oral anticoagulants (DOACs) and the risk of bleeding

- From RCTs, the risk of haemorrhagic stroke and intracranial bleeding is lower for DOACs compared to vitamine K antagonists (VKA), but the risk of gastro-intestinal bleeding is increased, with differences between substances.
- Patients in RCTs are very different from real life populations. Despite several observational studies, evidence remains inconclusive for specific patient populations, e.g. those with older age, impaired renal function and other comorbidities.
- EMA-funded study to characterise the risk of major bleeding in DOAC users in a real-world setting to help establish the effectiveness of risk minimization measures.
- Requirement for common protocol study in several databases and settings in Europe.
- Preliminary results available.

Preliminary results: Risk of bleeding of DOACs vs. VKA in four large European databases

Database	Gastrointestinal bleeding		Intracranial Haemorrhage				Stroke		
	# events	Incidence rate per 1000 person years	Adjusted Hazard Ratio (95% CI)*	# events	Incidence rate per 1000 person years	Adjusted Hazard Ratio (95% CI)*	# events	Incidence rate per 1000 person years	Adjusted Hazard Ratio (95% CI)*
Α	168	24.2	1.40 (1.17-1.67)	15	2.1	1.65 (0.90-3.03)	205	30.6	1.76 (1.50-2.08)
В	232	18.9	1.36 (1.17-1.58)	11	0.9	0.57 (0.30-1.08)	190	14.6	1.18 (1.00-1.39)
С	890	24.9	1.26 (1.15-1.39)	17	0.5	0.63 (0.32-1.23)	714	20.0	0.88 (0.81-0.95)
D	368	14.4	0.87 (0.76-1.00)	55	2.1	0.46 (0.33-0.63)	428	16.7	1.00 (0.88-1.13)

With more discrepancies at substance level, replication of same study design in several databases ¹²⁵ raises questions about inferences that can be made from the results.

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2016; 25(Suppl. 1): 156–165 Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.3968
SUMMARY
Multi-centre, multi-database studies with common protocols: lessons
learnt from the IMI PROTECT project
Olaf H. Klungel ^{1,8} *, Xavier Kurz ² , Mark C. H. de Groot ^{1,3} , Raymond G. Schlienger ⁴ , Stephanie Tcherny-Lessenot ⁵ Lamiae Grimaldi ⁶ , Luisa Ibáñez ⁷ , Rolf H. H. Groenwold ^{1,8} and Robert F. Revnolds ^{9†}

- Use of positive controls: 6 drug-adverse event pairs with known association
- Using common protocols: implementation of different study designs for each drug-adverse event pair in different databases
- Analysis of sources of variability in results

Sources of variability: antibiotics and liver toxicity

SCCS: self-controlled case series, CXO: case-crossover, CC: Case-control, NCC: nested case-control

Lessons learned from a regulatory perspective

- Given limitations of observational designs, multidatabase studies are useful for regulatory decisionmaking, if variability between results can be investigated and understood.
- Replication study most useful if it provides added value to current evidence, e.g. control for unmeasured confounding, measures of interactions, stratification by categories of effect modifiers, detailed analysis of dose effect and time factors
- Replication study requires in-depth knowledge of the data source(s)
- Careful choice of data source(s) for replication study to be made based on relevance and usefulness (not availability)

Potential barriers to replication studies

- Inadequate information available to replicate study design differences still exist (~50% of studies registered in EU PAS Register have protocol posted)
- Time factor: replication study(-ies) may add burden on regulators and delay decision-making.
 - How can we accelerate replication studies? Could CDM help?
- Access to relevant data sources
- Replication studies less appealing to academics; harder to get funding and to get published.

Thank you

Acknowledgments:

Daniel Morales, Alison Cave

Further information

Xavier.kurz@ema.europa.eu

European Medicines Agency

30 Churchill Place • Canary Wharf • London E14 5EU • United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact

Follow us on **main @EMA_News**

Questions and Discussion