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Agenda

▪Overview of Sequential Surveillance Theory

▪ Vaccine Safety Surveillance

▪Drug Safety Surveillance

▪ Interactive Demonstration of Sequential Software

▪Q&A
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Overview of Sequential Surveillance Theory

Bruce Fireman
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Time of Statistical Signal (alpha<0.05); 
Week 28, RR: 1.81;
Compare to an End-of-Study Analysis



Why Sequential Surveillance?

▪ Opportunities to detect elevated risk sooner

▪ However, one has to monitor for longer periods of time (i.e., accrue 
more events) to achieve the same statistical power at end-of-study.

6

Time

Sequential Surveillance
Study Design:

Time

Traditional Epidemiological
Study Design:

U
n

ce
rt

ai
n

ty

U
n

ce
rt

ai
n

ty



Sequential Statistical Analysis Born in Clinical Trials

Clinical Trials Observational Data

Data 
Characteristics

Primary use data 
collected for research

Secondary use data 
collected for healthcare

Sample Size Add 1 Patient at a Time Add 1 Database at a Time

Optimal
Performance

Minimize interim
hypothesis tests to 
minimize time to reach 
end-of-study with 
desired power

Maximize ability to detect 
a signal (i.e., test often) 
and continue monitoring 
to achieve same power



▪ MaxSPRT builds off Wald’s Sequential Probability Ratio Test (SPRT) 
but creates a composite alternative hypothesis 

▪ Uses exact statistics instead of asymptotic theory or normal 
approximations

▪ Supports Poisson type data or Binomial data 8



Early Sequential Surveillance in the
Vaccine Safety Datalink
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Early Sequential Surveillance in the
Vaccine Safety Datalink
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Methodological Improvements I

▪ Expansion from strictly continuous to hybrid continuous/group 
sequential hypothesis testing approaches

– Eliminated “alpha wasting” (and consequent losses in power) 
when unspent but allocated alpha accrued

– Silva IR, Kulldorff M. (2015), Continuous versus Group Sequential Analysis for Vaccine 
and Drug Safety Surveillance. Biometrics, 71 (3), 851–858

▪ Creation of minimum threshold for hypothesis testing to prevent 
early signaling
– Kulldorff M, Silva IR. (2015). Continuous Post-market Sequential Safety Surveillance with 

Minimum Events to Signal. REVSTAT Statistical Journal, 15(3): 373–394.
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▪ There is always a continuous design with shorter expected 
time-to-signal than the best group sequential design.

▪ Recommendation: Perform hypothesis tests on data as they 
arrive in whatever batches they arrive in. 12



Methodological Improvements II

▪ Optimal alpha 
spending to 
minimize expected 
time-to-signal

–Assumes a 
concave down 
shape

13



14



Methodological Improvements III

▪ We need a matrix of information: (z/p, treatment cases, 
comparator cases).

▪ z/p represents the probability of a case being in the treatment 
group under the null hypothesis.

▪ Key Innovation: let z be a vector not a scalar! 15
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▪ Appendix proof shows a case-centered logistic regression is 
mathematically equivalent to a stratified Cox proportional 
hazards model.

▪ Key innovation: Treat “survival” data as binary / Binomial data.



Summary

▪ Methodological advances to adapt sequential statistical 
analysis from the context of clinical trials to the context of 
observational database studies continue:

–Adaptation for the manner in which data arrive.

–Adaptation to cover commonly employed study designs (e.g., 
propensity score matched analysis with variable matching).

–Continued optimization to minimize expected time-to-signal 
(i.e., detect a risk as soon as possible).
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Implementing near real-time vaccine safety 
surveillance using the Clinical Practice 

Research Datalink
Andreia Leite

34th International Conference on Pharmacoepidemiology & 
Therapeutic Risk Management

Improving health worldwide

www.lshtm.ac.uk



20



Clinical Practice Research Datalink

• CPRD – UK primary care database:
– 4.4 million active patients by mid-2013;

– Information on diagnosis, vaccines administered in
primary care, referrals/feedback from secondary care;

• CPRD availability and key dates
– Data is made available monthly to researchers;

– Practices upload their data some time before that (last
collection date, lcd);
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Clinical Practice Research Datalink
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Trial implementations: objectives

• Assess the feasibility of implementing NRTVSS using
CPRD:

– Most appropriate statistical test to detect a signal

– Adjustment for delays

– Power to detect an increased risk
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Trial implementation: methods
Vaccine/outcome pairs

Characteristic Seasonal influenza/GBS MMR/seizures

Purpose Rare outcome (background rate –
0.7-4.3/100,000 PY1)

Less rare outcome and positive 
control

Statistical test PMaxSPRT PMaxSPRT and BMaxSPRT

Study population ≥ 65 years, vaccinated 12-23m, 1st MMR dose

Study period 2013/2014 and 
2014/2015

August 2014 – July 2015

Historical period (for 
PMaxSPRT)

2008/09-2012/13 and
2009/10-2013-14

July 2009 – June 2014

Risk-window 42 days 6-21 days

Control period (for 
BMaxSPRT)

- 1-5 and 22-32 days

BMaxSPRT – Binomial maximized sequential probability ratio test, GBS – Guillain-Barré syndrome, m – months, MMR –
Measles-mumps-rubella vaccine, PMaxSPRT – Poission maximized sequential probability ratio test, PY – Person-years.

1 – Bryan P et al. Lancet 2010; 376: 417-8. 
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Trial implementation: adjustments
• Number of expected events (PMaxSPRT) adjusted by age and sex.

GBS/seizure cases excluded if:
– Recording delays>365 days
– Likely to have been involved in mass transfers.

• Delays (PMaxSPRT):
– Expected events reduced based on a previously generated delay

distribution

• Delays & partially accrued periods (BMaxSPRT):
– The ratio of the adjusted number of days in the control and risk periods

was calculated and used as a matching ratio
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Adjustments for data accrual (PMaxSPRT)

Data release

Average recording 62.5% 
Expected recorded events in the recent data = 2.5

Risk window

Event date
System date

30 days (r30 = 70%)
3 X

2 X
1 day (r4 = 30.0%)

4 X
60 days (r60 = 80%)

1
30 days (r30 = 70%)

X
Vaccine

X Last collection date

rd expected recording 
d days after the event
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Observed Adjusted

Period Period duration (days)

Control 1 (c1) 5 4

Risk 15 11

Control 2 (c2) 7 4

Ratio (control/risk)

Control/Risk

Adjustments for data accrual and partially 
accrued periods (BMaxSPRT)

Risk window
Control period

Vaccine

X Last collection date

rd expected recording 
d days after the event

X
Risk - 10 days (r10 = 75.0%)

c1 - 15 days (r15 = 80.0%)

c2 - 5 days (r5 = 60.0%)
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Power and implementation
• Power to detect a signal calculated for detecting increases in relative risk (RR) from 1.5-10;

• Implementation done graphically, by calculating the log-likelihood ratio test (LLRT) at the time of
each CPRD data release (monthly):

– PMaxSPRT – based on the number of observed and expected events
– BMaxSPRT – based on the number of observed events in the control and risk periods.

• For influenza/GBS further implementation assuming an increase in risk that should be detected
according to power calculations.

• The results from the LLRT were compared with the critical limit. For PMaxSPRT this was done
requiring at least 1, 2, and 4 events before raising a signal.

• R Package Sequential version 2.3.1.
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Trial implementation: results

Characteristic

Vaccine/outcome pair

Influenza/GBS

Season 2013-14

Influenza/GBS

Season 2014-15
MMR/Febrile seizures

Number of doses (n) 533,110 477,454 28,249      

Sex – n (%)

Male 240,884 (45.2) 216,224 (45.3)       14,474 (51.2)

Female 292,226 (54.8) 261,230 (54.7)      13,775 (48.8)      

Age (years) – n (%)

65-74 270,690 (50.8) 242,168 (50.7)

*75-84 188,423 (35.3)       168,160 (35.2)

≥85 73,997 (13.9) 67,126 (14.1)

Age (months) – n (%)

* *

12 11,460 (40.6)       

13 10,049 (35.6)       

14 3,320 (11.8)       

≥ 15 3,420 (12.1)

*Age (at time of vaccination) is expressed in years for seasonal influenza/GBS and months for MMR/febrile seizures. 

GBS – Guillain-Barré syndrome, MMR – Measles-mumps-rubella.
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Implementation: influenza vaccine/GBS
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Critical limit (M = 1)

Critical limit (M = 2)

0

1

2

3

Sep13 Oct13 Nov13 Dec13 Jan14 Feb14 Mar14 Apr14

Month

Lo
g-

Li
ke

lih
oo

d 
R

at
io

A

Critical limit (M = 4)

Critical limit (M = 1)

Critical limit (M = 2)

Sep14 Oct14 Nov14 Dec14 Jan15 Feb15 Mar15 Apr15

Month

B

Season 2013-14 Season 2014-15

No signal detected in any of the seasons
30



Power and time to signal: influenza/GBS

Minimum 

events
Season

Data available 

at

Power (time to signal in months from beginning of surveillance)*

Relative Risk

1.5 2 2.5 3 4 5 6 8 10

1
2013-14 07-04-2014 13 25 40 55 (4) 78 (4) 91 (3) 97 (3) 100 (3) 100 (3)
2014-15 06-04-2015 12 23 37 51 (4) 74 (4) 88 (4) 95 (4) 99 (3) 100 (3)

2
2013-14 07-04-2014 14 28 44 60 (4) 82 (4) 93 (3) 98 (3) 100 (3) 100 (3)
2014-15 06-04-2015 14 26 41 55 (4) 77 (4) 90 (4) 96 (4) 100 (3) 100 (3)

4
2013-14 07-04-2014 16 33 50 65 (4) 86 (4) 95 (4) 98 (4) 100 (3) 100 (3)
2014-15 06-04-2015 16 31 47 62 (4) 83 (4) 93 (4) 98 (4) 100 (4) 100 (4)

Cells in bold refer to power ≥ 80%. * Time to signal is only displayed for cells where equivalent power ≥ 50%. PMaxSPRT - Poisson-based Maximized

Sequential Probability Ratio.
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Implementation: influenza vaccine/GBS
Season 2013-14 Season 2014-15

Signal detected assuming RR = 4/5
32
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Implementation: MMR/seizures

M = 4
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M = 2
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Power and time to signal: MMR/seizures

Minimum 

events
Season

Data available 

at

Power (time to signal in months from beginning of surveillance)*

Relative Risk

1.5 2 2.5 3 4 5 6 8 10

1
PMaxSPRT 06-07-2015 30 73 (5) 95 (4) 99 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)

BMaxSPRT 06-07-2015 28 63 (6) 85 (6) 95 (5) 99 (5) 100 (4) 100 (3) 100 (3) 100 (3)

2 PMaxSPRT 06-07-2015 33 76 (5) 96 (4) 100 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)

4 PMaxSPRT 06-07-2015 36 79 (5) 96 (4) 100 (3) 100 (2) 100 (1) 100 (1) 100 (1) 100 (1)
Cells in bold refer to power ≥ 80%. * Time to signal is only displayed for cells where equivalent power ≥ 50%. BMaxSPRT - Binomial-based Maximized

Sequential Probability Ratio, PMaxSPRT - Poisson-based Maximized Sequential Probability Ratio.
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Trial implementation: summary

• For influenza/GBS we implemented a system in both
seasons with no signal detected.

• Power to detect a signal was >80% for RR≥4.
Implementation assuming RR=4/5 did signal;

• For MMR/seizures we were able to identify a signal
with PMaxSPRT only.

• Power was >80% for RR≥2.5.
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Conclusions

• NRTVSS is an option to quickly identify vaccine
safety signals;

• Delays exist in CPRD but these are compatible with
a near real-time system;

• CPRD can be used to implement NRTVSS, despite
limited power to identify signals for a rare
outcome.
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Prospective Sequential Surveillance
“Regulatory Perspective”

Efe Eworuke, PhD

Presented by: Sarah Dutcher, PhD

Division of Epidemiology
Office of Pharmacovigilance and Epidemiology
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Center for Drug Evaluation and Research 
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FDA’s Sentinel System 
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Sequential Analysis in Sentinel

Prospective sequential analyses is one of Sentinel’s Active Risk 
Identification and Analysis (ARIA) tools
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Sequential Surveillance: 
Regulatory Context

• Formal study design

• Outcomes are checked using a plan that permits termination of 
surveillance with a determination that:

– Additional investigation is needed 

– Results support a regulatory action 

– Any observed differences in safety fall within acceptable limits

Martin D, Gagne JJ, Gruber S, et al. Sequential surveillance for drug safety in a regulatory environment. Pharmacoepidemiol Drug 

Saf. 2018;27:707–712.
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Why Prospective Sequential 
Surveillance?

• Characterize hypothesized risk not adequately powered in clinical trials

• Characterize observed risk in populations not adequately covered in 
clinical trials

– Patients difficult to recruit (e.g., those with multiple comorbidities)

– Minority populations

• Detect a potential undesirable exposure-outcome association earlier than 
a non-sequential analyses
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Key Assumptions

Sequential boundaries and sequential test statistics are determined by 
assuming that:

1. Each new look includes all of the same data from prior looks 
(“anchoring” assumption)

2. Data are relatively stable and accurate, and therefore, worth anchoring 
on (“data stability” assumption)
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Pilot Test Case in Sentinel

• Angiotensin-converting enzyme inhibitors (ACEI) and angioedema

– Comparator: beta-blockers 

– Known positive exposure-outcome association

• Surveillance population and study criteria:

– Claims-based databases in Sentinel

– Age 18+ years with established new use of any study medication

– Exclusion criteria: history of angioedema, use of ARB or aliskiren

– Follow-up: treatment cessation, switch to another study or excluded drug, disenrollment, 
outcome, death, 60 days, end of study period

• Outcomes monitored:

– Angioedema (ICD-9: 995.1, ICD-10: T783XXA) 

– Serious angioedema (presence of angioedema diagnosis + inpatient care management)
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Implementation Challenges in 
Postmarketing Settings

• Dynamic Data Environment

– Investigators have to allow time for corrections to claims data

– Data lag often differs between Data Partners in a distributed database 
setting

– Data lag may complicate prospective sequential surveillance

• Variable outcome risk windows

– Risk may not be fixed at a single data look

– Challenge when risk window is variable and spans across data refreshes
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Three surveillance modes to meet anchoring assumptions:

• Full lock

• Requires data to be strictly incremental: matched pair cannot be broken across looks

• Already-analyzed information cannot be updated in subsequent looks

• Limitation: Potential misclassification if data is incomplete during an interim analyses 

• Partial lock

• Data is added incrementally

• Allows data for an interim look to be updated if new information comes in from subsequent look

• Limitation: Incomplete information in prior looks if subsequent look adds information, which can affect 
test statistic for inferences 

• Re-matching / No lock

• Re-do PS estimation and PS matching at each look

• Uses the most updated information

• Limitation: Anchoring assumption is not met

Implementation Challenges in 
Postmarketing Settings
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• Multiple outcomes under surveillance

– Setting the same end of surveillance may be challenging if outcomes 
under consideration do not occur at the same rate

– How long do we continue to monitor for each outcome?

• Use of maximum length of surveillance

• Follow-up descriptively

• Uptake of product

– Changes in practice recommendations, guidelines 

– Formulary changes

Implementation Challenges in 
Postmarketing Settings
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• Expected time to signal is an important criterion in postmarketing
surveillance

– Unlike clinical trials, it is often more desirable to detect a signal early 
(if any) in the post-approval setting

– Determined by parameter selection

• Trade-off between looking as the data arrive (continuous sequential) vs. 
looking at intervals (group sequential)

Implementation Challenges in 
Postmarketing Settings
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Parameter Considerations for       
Sequential Analysis

• Maximum length of surveillance: Number of outcomes needed to stop 
surveillance, when the null is not rejected

• Total type I error: 0.05

• Shape of the alpha spending function: rho can be set at 0.5, 1, or 2

– To “spend” more alpha in earlier looks, balanced over time, or in later 
looks

• Minimum number of events: Number of outcomes required to begin 
hypothesis testing 
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Test Case Parameter Selection

• Surveillance mode: Partial lock

• Propensity score adjustment: Compared stratification and matching

• Assumed mean probability of being exposed: 0.56

• Maximum length of surveillance: 

– Angioedema: 112 

– Serious angioedema: 25

• Total type I error: 0.05

• Shape of the alpha spending function: rho = 0.5

• Minimum number of outcomes: 5
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Test Case Results: Angioedema
Exposure 
Definition

Monitoring 
Period

New Users
Person Years        

at Risk
Average Person 

Days at Risk
Number of 

Events
Hazard Ratio 

(95% CI)

Unmatched Analysis (Site-adjusted only)

ACE Inhibitors
1

498,360 67,665.43 49.59 530
2.90 (2.40, 3.52)

381,633 47,898.43 45.84 132Beta Blockers

ACE Inhibitors
2

620,604 85,792.13 50.49 674
2.96 (2.50, 3.51)

Beta Blockers 479,025 61,196.84 46.66 166

1:1 Matched Unconditional Analysis; Caliper=0.025

ACE Inhibitors
1

288,908 38,989.41 49.29 349
3.17 (2.54, 3.94)

Beta Blockers 288,908 36,195.30 45.76 104

ACE Inhibitors
2

362,038 49,777.84 50.22 444
3.35 (2.75, 4.09)

Beta Blockers 362,038 46,201.77 46.61 125

Predefined Deciles Analysis

ACE Inhibitors
1

498,360 67,665.43 49.59 530
3.41 (2.79, 4.17)

Beta Blockers 381,633 47,898.43 45.84 132

ACE Inhibitors
2

620,604 85,792.13 50.49 674
3.59 (3.00, 4.30)

Beta Blockers 479,025 61,196.84 46.66 166
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Discussion/Lessons Learned

• Selection of parameters depends on the regulatory question

– Weigh relative importance of stopping boundaries: expected time to 
signal vs. maximum length of surveillance

• There are unique challenges when conducting sequential surveillance in 
observational data

– Data timeliness depends on the source data

• Sentinel is based on secondary use of administrative claims

– Data stability is impacted by claims adjustments, number of 
contributing sources (Data Partners), refresh rate
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Sequential Surveillance Demonstration and Exercise

Judith C. Maro
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www.sequentialanalysis.org



R Sequential Features

1. Signaling threshold functions – the CV and Threshold suite – that
help investigators develop optimal statistical stopping boundaries.

2. Planning functions – the Performance and SampleSize suite – that
develop statistical power information before you select your
parameters for surveillance.

3. Implementation functions – the Analyze suite – that execute
sequential analysis according to the chosen study design.
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Performing Sequential Statistical Analysis

▪ You are performing a study to monitor Outcome Y following new 
Drug A v. Drug B use with a 1:1 propensity-score matched design.

▪ You intend to monitor outcomes sequentially.

▪ For simplicity, in this example, we will assume the matching ratio or 
probability of exposure is fixed – so if one part of a matched pair 
censors (i.e., disenrolls, dies, has outcome), the other part of the pair 
censors too.

▪ Recall: We have two statistical stopping boundaries: 1) the rejection 
of the null hypothesis in case of a detected elevated hazard ratio and 
2) the failure to reject the null hypothesis by the end-of-study.
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Tradeoff between Two Stopping Boundaries

59

Continuous
4 

Hypothesis 
Tests

2 
Hypothesis

Tests

Non-
Sequential

Maximum Sample 
Size
(in Total Events)

112 92 84 78

Mean Time-to-
Signal
(in Total Events)

44.2 50.4 57.5 78

Sequential Information Time to detect a Twofold Relative Risk with
90% Statistical Power and Overall Type 1 Error=0.05 (one-sided).
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Browse as Guest and Proceed to Sequential 
Analysis

61



Set-up the Binomial Analysis
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Enter Surveillance Parameters

▪ N= 100 (Maximum Length of Surveillance in Total Events)

▪ alpha= 0.05 (Total one-sided Type 1 error)

▪ AlphaSpendType = Wald (Shape)

▪ zp=1 (Matching Ratio)

▪ M=5 (Minimum Number of Events to Perform Tests)

▪ Title = Outcome Y after PSM 1:1 analysis (Drug A v. Drug B)
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Set-Up is Complete! Now, Time for the Analysis

65



Add Sequential Hypothesis Test #1

66

Test No. Z (Ratio) Cases** Controls**

Test 1 1 2 2

Knowledge Check: Who knows what’s going to happen?

**The software refers to “cases” as the number of outcome events that occurs in the 
exposed or treatment group of interest. The software refers to “controls” as the number 
of outcome events that occurs in the comparator or referent group of interest.
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Results after Hypothesis Test #1

68



Add Sequential Hypothesis Test #2

69

Test No. Z (Ratio) Cases Controls

Test 1 1 2 2

Test 2 1 21 10

**The software refers to “cases” as the number of outcome events that occurs in the 
exposed or treatment group of interest. The software refers to “controls” as the number 
of outcome events that occurs in the comparator or referent group of interest.
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Results after Hypothesis Test #2

71



Additional 
Graphical 
Output after 
Test #2
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Add Sequential Hypothesis Test #3

73

Test No. Z (Ratio) Cases Controls

Test 1 1 2 2

Test 2 1 21 10

Test 3 1 16 9

**The software refers to “cases” as the number of outcome events that occurs in the 
exposed or treatment group of interest. The software refers to “controls” as the number 
of outcome events that occurs in the comparator or referent group of interest.
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Results after Hypothesis Test #3

75
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Additional 
Graphical 
Output after 
Test #3



Add a Non-Sequential Version of My New 
Analysis

77
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Same Surveillance Parameters as BEFORE

▪ N= 100 (Maximum Length of Surveillance)

▪ alpha= 0.05 (Total Type 1 error)

▪ AlphaSpendType = Wald (Shape)

▪ zp=1 (Matching Ratio)

▪ M=5 (Minimum Number of Events to Perform Tests)

▪ Title = Non-Sequential PSM 1:1 Outcome Y
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Add Non-Sequential Hypothesis Test #1

81

Test No. Z (Ratio) Cases Controls

Test 1 1 2 2

Test 2 1 21 10

Test 3 1 16 9

Test 4 1 28 12

Non-Sequential 1 67 33
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Compare with the sequential test version below. Note the difference in the 
information time required to signal (100 total outcomes v. 60 total outcomes).
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▪ We looked at a 3-test sequence that reached a stopping boundary with 60 
total outcomes accumulated (39/21 split with p=0.5 / z=1)

▪ What if our first bolus of data had those 60 outcomes with the same split?

– Would you reach the stopping boundary?

– Will the number of treatment group outcomes needed to reach the stopping boundary 
be a) higher? b) lower? or c) the same?

Knowledge Check

84

Compare with the sequential test version below
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What if you need an answer NOW?

▪ Let’s rewind and go back to Test #1 in our sequential analysis when we still had 
not signaled.

▪ Despite the best-laid plans, low uptake means that you will not be able to 
monitor Outcome Y for the rest of the planned surveillance – you will need to 
terminate surveillance at Test 2. What do you do?

85

Test No. Z (Ratio) Cases Controls

Test 1 1 2 2

Test 2 1 21 10



Override
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Test Results after Alpha Override to Force-Quit 
Surveillance

87



88

Important Takehomes

▪ Hitting an early stopping boundary means that you identified a potential 
elevated risk worthy of additional scrutiny. 

– It occurs prior to the total sample size you had planned (consider 60 outcomes instead 
of 100 outcomes) – there is less information there (and hence, more uncertainty in the 
risk estimate).

▪ You don’t have to stop monitoring. You can continue to collect data on the 
outcome, verify the existing data, and/or perform additional investigations.

▪ You do have to stop performing sequential hypothesis tests in the current 
analysis, but you can continue to develop risk estimate information. 
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Other R Sequential Analysis or R Functions

▪ Poisson Analysis is also available

– As Andreia discussed, Poisson functions compare observed outcomes to expected 
outcomes where expected outcomes are given by a flat rate that increments as follow-
up time among the observed group accrues.

▪ More Complex Functions are available in R: https://cran.r-
project.org/web/packages/Sequential/index.html

– Includes Conditional Poisson Analysis.

– Includes a more sophisticated suite of equations to find optimal alpha spending plans.
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https://cran.r-project.org/web/packages/Sequential/index.html
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Recall Case-Centered Logistic Regression Paper

▪ It is possible for Z to be a summation over multiple risk sets (e.g., different 
matching ratios, different amounts of contributed time)

▪ EXAMPLE:
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Test No. Z (Ratio) Cases Controls

Test 1 (1,2) (2,0) (1,1)

Test 2 (1,2) (19,2) (7,3)
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R Sequential Features

1. Signaling threshold functions – the CV and Threshold suite – that
help investigators develop optimal stopping boundaries.

2. Planning functions – the Performance and SampleSize suite – that
develop statistical power information before you select your
parameters for surveillance.

3. Implementation functions – the Analyze suite – that execute
sequential analysis according to the chosen study design.
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Calculate Sample Size for Binomial Data
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Enter Several Relative Risks and Powers

▪ RR= 1.5,2,3

▪ alpha= 0.05

▪ Power = 0.90,0.85,0.80

▪ M=5

▪ z=1
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While that’s running…
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While that’s running…
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Summary and Audience Questions

▪ Today, we wanted to talk about:

– Sequential Statistical Theory

–Applied Uses in Research and Regulatory Settings

–How to do an analysis, thereby developing intuition with it

▪ Audience Questions
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