

Overview of Sentinel Tool Capabilities, Mother-Infant Linkage and Pregnancy Analyses

Sentinel Public Training

Sentinel Operations Center | Harvard Pilgrim Health Care Institute

Agenda

01 Introduction to Sentinel System and Overview of Analytic Capabilities Noelle M. Cocoros, DSc, MPH

02 Creation of a Linked Mother-Infant Cohort and Descriptive Pregnancy Analyses Elizabeth Suarez, PhD

03 Inferential Analyses for Perinatal Exposures Mayura Shinde, DrPH

Pre-Training Survey

Introduction to the Sentinel System

Noelle M. Cocoros, DSc, MPH

The Sentinel Initiative and Real World Data

The FDA has two big jobs. One — are the medical products we use SAFE? Two — are the medical products we use EFFECTIVE? In other words, are medical products doing the job they are supposed to do?

FDA is looking into how real world data like that in Sentinel might help FDA answer these important questions. Much of this real world data comes from health insurance companies and patients themselves.

How does Sentinel work? •Sentinel gets information from insurance claims, electronic health records, and patient reports. •Sentinel uses computer

Sentinel uses computer programs to see how groups of patients are doing.
This real world evidence can show if patients are getting bad side effects and maybe also if products are working.

What kinds of questions? •What medicines are people taking and why? •Are medicines helping or hurting some patients more than others? •Do side effects interfere with people's lives? •Are patients taking medicines the way their doctors prescribed?

What about privacy? •No one looks at your name, address, phone number, or other information that identifies you.

•For more information please visit sentinelinitiative.org and fda.gov/safety/fdassentinelinitia tive/ucm2007250.htm

What happens next? •FDA may use information from Sentinel to help determine whether medical products are safe and working. •FDA warns patients and their doctors about bad side effects. •If you have concerns about your medical products, please contact your doctor.

Sentinel is a Distributed Data Network

Collaborating Organizations

DEPARTMENT OF POPULATION MEDICINE 🗱 Harvard Pilgrim HARVARD Lead: Harvard Pilgrim Health Care Institute Health Care Institute MEDICAL SCHOOL **Data & Scientific Partners TENNCARE** HealthCore Humana OPTUM Healthagen +aetna GDIT Penn veradigm. **OPTUM** l abs[®] Medicine KAISER PERMANENTE® **BRIGHAM HEALTH** pcornet **BRIGHAM AND** BWH **MASSACHUSETTS** WOMEN'S HOSPITAL Colorado Hawaii CMS **Mid-Atlantic** 缃 Booz | Allen | Hamilton HARVARD Northern California กไม่ไปไปไม่ได้ Marshfield Clinic T.H. CHAN Northwest CAPriCORN GPC RUTGERS Washington **Research Institute** SCHOOL OF PUBLIC HEALTH UF College of Pharmacy Greater Plains Collaborative NYC-CDRN KAISER PERMANENTE New York City Clinical The **Meyers** VANDERBILT VUNIVERSITY Data Research Network Primary Care Kaiser Permanente Washington **IBM Watson Health** MEDICAL CENTER Health Research Institute Institute OneFlorida **REACH**net HCA* HealthPartners[®] Institute (in) PEDSnet PaTH Network Healthcare SCHOOL OF PUBLIC HEALTH UNIVERSITY of WASHINGTON Stakeholders, Technology Duke Clinical Research Institute and Research CRN **IriNetX** THE UNIVERSITY COLLEGE OF PUBLIC HEALTH

Sentinel Data Philosophy

- Predominantly includes claims and a subset of electronic health record (EHR) and registry data
 - Flexible enough to accommodate new data domains (e.g., free text)
 - Typically, we do not include empty tables we expand as needed when fit for purpose

- Data are stored at most granular/raw level possible with minimal mapping
 - Distinct data types should be kept separate (e.g., prescriptions, dispensings)
 - Construction of medical concepts (e.g., outcome algorithms) from these elemental data is a project-specific design choice
 - Sentinel stores these algorithms in a library for future use

Sentinel Data Philosophy

- Appropriate use and interpretation of local data requires the Data Partners' local knowledge and data expertise
 - − Not all tables are populated by all Data Partners → site-specificity is allowed
- Designed to meet FDA needs for analytic flexibility, transparency, and control

Available Data Elements

Sentinel Common Data Model

		Administr	ative Data		
Enrollment	Demographics	Dispensing	Encounter	Diagnosis	Procedure
Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID
Enrollment Start & End Dates	Birth Date	Dispensing Date	Service Date(s)	Service Date(s)	Service Date(s)
Drug Coverage	Sex	National Drug Code (NDC)	Encounter ID	Encounter ID	Encounter ID
Medical Coverage	Zip Code	Days Supply	Encounter Type & Provider	Encounter Type & Provider	Encounter Type & Provider
Medical Record Availability	Etc.	Amount Dispensed	Facility	Diagnosis Code & Type	Procedure Code & Type
			Etc.	Principal Discharge Diagnosis	Etc.

Clinical Data							
Lab Result		Vital Signs					
Patient ID		Patient ID					
Result & Specimen Collection Dates	l	Measurement Date & Time					
Test Type, Immediacy & Location		Height & Weight					
Logical Observation		Diastolic & Systolic BP					
Codes (LOINC®)		Tobacco Use & Type					
Etc.		Etc.					

Registry Data								
Death Cause of Death State Vaccine								
Patient ID	Patient ID	Patient ID						
Death Date	Cause of Death	Vaccination Date						
Source	Source	Admission Date						
Confidence	Confidence	Vaccine Code & Type						
Etc.	Etc	Provider						
		Etc.						

Inpatient Data						
Inpatient Pharmacy	Inpatient Transfusion					
Patient ID	Patient ID					
Administration Date & Time	Administration Start & End Date & Time					
Encounter ID	Encounter ID					
National Drug Code (NDC)	Transfusion Administration ID					
Route	Transfusion Product Code					
Dose	Blood Type					
Etc.	Etc.					

Mother-Infant Linkage Data					
Mother-Infant Linkage					
Mother ID					
Mother Birth Date					
Encounter ID & Type					
Admission & Discharge Date					
Child ID					
Child Birth Date					
Mother-Infant Match Method					
Etc.					

Single Patient Example Data in Model

PatID1

5/3/2006

5/5/2006

PatID2

	DEN	MOGRAP	НІС					ENCOUNT	ER			
PATID	BIRTH_DATE	SEX HISP	ANIC RA	ACE zip	PATID	ENCOUNTERID	A	DATE	DDATE		ENCTYPE	
PatID1	2/2/198	84 F N		5 32818	PatID1	EncID1		10/	18/2005	10/20)/2005 IP	
	EN	IROLLME	NT					DIAGNOS	SIS			
PATID	ENR START E	NR END	MEDCOV	DRUGCOV	PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYPE	DX [DX_CODETYPE	PDX
	7/1/2004	12/21/2006	V	V	PatID1	EncID1	10/18/2005	5 Provider	1 IP	296.2		9 P
PaliDI	//1/2004	12/31/2000	Y	Y	PatID1	EncID1	10/18/2005	5 Provider	1IP	300.02		9 S
PatID1	9/1/2007	6/30/2009	Y	Y	PatID1	EnclD1	10/18/2005	5 Provider	1IP	311		9 S
					PatID1	EnclD1	10/18/2005	5 Provider	1 IP	401.9		9 S
	D	ISPENSIN	IG		PatID1	EnclD1	10/18/2005	5 Provider	1IP	493.9		9 S
PATID	RXDATE	NDC	RXSU	JP RXAMT	PatID1	EnclD1	10/18/2005	5 Provider	1IP	715.9		9S
PatID1	10/14/2005	50000607403	1	30 30								
PatID1	10/14/2005	0018509409	8	30 30								
PatID1	10/17/2005	50037801521	0	30 45				PROCEDU	RE			
PatID1	10/17/2005	5409203910	1	30 30	PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYPE	E PX	PX CODETY	'PE
PatID1	10/21/2005	50017307300	1	30 30	PatID1	EncID1	10/18/2	2005 Pro	vider1IP	8	4443C4	
PatID1	10/21/2005	54988407431	1	30 30			-, -,					
PatID1	10/21/2005	5817702640	8	30 60								
PatID1	10/22/2005	0009372065	6	30 30								
					M	OTHER-INFANT	LINKAGE					
MPATID	ADAT	re i	DDATE	CPATID	(CBIRTH DATE	CSEX	CENR START	BIR	ΤΗ ΤΥΡΕ	MATCHM	THOD

5/2/2006 M

1 SI

6/1/2006

Data Quality Review and Characterization Process

Sentinel Data Quality Review and Characterization Process

Data Quality Checks and Examples

Level 1 Checks	 Completeness ✓ Admission date is not missing value Validity ✓ Admission date is in date format 	Sentinel Common Data Model Compliance
Level 2 Checks	 Accuracy ✓ Admission date occurs before the patient's discharge date Integrity ✓ Admission date occurs within the patient's active enrollment period 	Cross-Variable and Cross-Tabular
Level 3 Checks	 Consistency of Trends ✓ There is no sizable percent change in admission date record counts by month-year 	Cross-ETLs

Growth of the Sentinel Distributed Database

• A total of 351 unique patient identifiers and 71 million members currently accruing new data

Overview of Routine Tools Analytic Capabilities

Active Risk Identification and Analysis (ARIA)

- Template computer programs with standardized questions
- Parameterized at program execution
- Pre-tested and quality-checked
- Standard output

Medical Product Utilization (Type 5)

- Follow patient after "first valid" exposure episode for all available follow-up time in database.
- Output metrics include the number of patients, episodes, dispensings, and days supply; number of episodes by episode number, episode length; number of episode gaps by gap number, gap length.
- Examples:
 - Evaluate utilization patterns of obesity drugs
 - Examine utilization of oral and intranasal steroid use

Design Type 3 (s) (12) (13)

(si) Signal Identification (L1) Level 1 Analysis (L2) Level 2 Analysis (L3) Level 3 Analysis

gulatory Actions

nterrupted Fime Series

Type 2

12

Sinus Stents with Mometasone and

Medical P

Diminished Visual Acuity

ducts & Outcome

 Table 1. Descriptive Statistics for Cumulative Length of Treatment Episodes for Oral and Intranasal Steroids in the Sentinel

 Distributed Database (SDD) between August 1, 2011 and May 31, 2017

	Cumulative Episode Length (Days)							
	Number of Days	Q1	Median	Q3	Mean	Standard Deviation		
al Steroids								
Episode 1	40,899	7	14	27	27.77	566.13		
Episodes 1-2	20,003	17	25	44	46.14	536.70		
Episodes 1-3	11,018	25	38	65	66.93	515.22		
Episodes 1-4	6,602	35	52	86	88.41	447.26		
Episodes 1-5	4,259	45	66	110	111.40	457.77		
Episodes 1-6	2,934	56	80	135	134.51	438.79		
tranasal Steroids								
Episode 1	52,763	30	60	144	123.36	1159.80		
Episodes 1-2	29,074	60	120	240	192.56	1021.33		
Episodes 1-3	18,978	120	180	303	251.71	910.99		
Episodes 1-4	13,362	150	225	379	304.29	817.15		
Episodes 1-5	9,821	180	270	438	352.61	742.84		
Episodes 1-6	7,473	218	319	480	395.14	679.62		

Generic C

Sacubitril/Valsartan, Angiotensin-

Converting Enzyme (ACE) Inhibitors and

lucts & Outcomes

Table 5a. Descriptive Statistics of Time to First Switch for New Users of Angiotensin-Converting Enzyme (ACE) Inhibitors, Angiotensin II Receptor Blockers (ARBs), and Sacubitril/Valsartan in the Sentinel Distributed Database (SDD) between January 1, 2015 to July 31, 2019

					_				Per	centile (d	ays)				-
Switch	Switch Pattern	Switch Episodes	Mean (days)	Standard Deviation (days)	Minimum (days)	1st	5th	10th	25th	50th	75th	90th	95th	99th	Maximum (days)
ACE Inhibitors to Sacubitril/Valsartan	ACE Inhibitors to Sacubitril/Valsartan to ACE Inhibitors	6,628	207.43	243.61	1	4	11	19	40	106	285	558	742	1,090	1527
ACE Inhibitors to Sacubitril/Valsartan	ACE Inhibitors to Sacubitril/Valsartan to ARBs	6,628	207.43	243.61	1	4	11	19	40	106	285	558	742	1,090	1527
ARBs to Sacubitril/Valsartan	ARBs to Sacubitril/Valsartan to ARBs	3,363	194.59	233.52	1	3	10	18	40	100	264	516	713	1,095	1517
ARBs to Sacubitril/Valsartan	ARBs to Sacubitril/Valsartan to ACE Inhibitors	3,363	194.59	233.52	1	3	10	18	40	100	264	516	713	1,095	1517
	[Description		Settings In this an sacubitril	alysis we exa /valsartan, ai	mined c ngiotens	ounts of 1 in-conver	new users rting enzy	of me (ACE)	me Sei Type 2 L2	ries 2			

https://www.sentinelinitiative.org/communications/publications/evaluation-switching-patterns-fdas-sentinel-system-new-tool-assess

Construct Pregnancy Episodes and Identify Medical Product Use (Type 4)

- Identifies live births to create pregnancy episodes and assesses medical product use during pregnancy episodes and in a comparator group of women.
- Output metrics include number of pregnancy episodes, medication use stratified by trimester.
- Example:
 - Evaluate utilization patterns of hydroxyprogesterone caproate and progesterone among pregnant women

Actions

Hydroxyprogesterone Caproate and Progesterone Use During Pregnancy

tuss//www.sentineminitative.org/assessments/urugs/nyuroxyprogesterone-caproate-and-progesterone-use-utime_pregnancy

https://www.fda.gov/advisory-committees/advisory-committee-calendar/october-29-2019-meeting-bone-reproductive-and-urologic-drugs-advisory-committee-meeting-announcement

Hypertension in Pediatric Patients: A Descriptive Analysis

Project Title	Hypertension in Pediatric Patients: A Descriptive Analysis
Date Posted	Thursday, July 23, 2020
Project ID	cder_mpl1r_wp149

Table 2a. Summary of Members with Pediatric Hypertension in the Sentinel Distributed Database (SDD) between January 1, 2008 and April 30, 2019, by Hypertension Definition¹

	Members with Diagnosis	Number of Diagnoses	Eligible Members ²	Eligible Member-Years ²	Members with Diagnosis per 10,000 Eligible Members
Hypertension Definition 1	62,363	272,204	26,493,696	67,740,191.5	23.54
Hypertension Definition 2	141,860	427,526	26,493,696	67,740,191.5	53.54

¹Hypertension Definition 1: 2 outpatient claims within 183 days OR 1 inpatient claim

Hypertension Definition 2: Any hypertension claim

²Eligible members and member-years are reflective of the number of patients that met all cohort entry criteria on at least one day during the query period

r opulation, conorc	mannadais 17 years of age and younger
Time Period	January 1, 2008 - April 30, 2019
Assessment Type	Exploratory Analyses
Study Type	Modular Program
Data Sources	Sentinel Distributed Database (SDD)
FDA Center	CDER

https://www.sentinelinitiative.org/drugs/assessments/characteristics-gout-patients-and-use-urate-lowering-therapies

Glaucoma, Cataracts, Diminished Visual

Table 2. Summary of Glaucoma and Cataract Events in Single and Repeat Mometasone Stent Implant Users in the Sentinel Distributed Database (SDD) between January 1, 2016 and September 30, 2019, Overall

	Number of Users	Eligible Members ¹	Number of Exposed Patients per 1,000 Eligible Members	Years at Risk	Average Years at Risk	All Events	Number of Users with an Event	Number of Exposed Members with an Outcome per 1,000 Years at Risk	
Glaucoma			Ť						
Single Propel Stent (O	ne-year follow-u	la)							
	3,340	308,788	10.82	2,471.8	0.74	189	104	42.07	
Single Sinuva Stent (One-year follow-up)									
	111	308,788	0.36	****	****	****	****	48.39	
Single Sinuva Stent (One-year follow-up, incident with respect to self)									
	118	310,221	0.38	****	****	****	* * * *	46.15	
Repeat Propel Stent (One-year follow-up)									
	36	310,229	0.12	****	****	****	****	35.59	
Repeat Sinuva Stent (One-year follow-up)									
	18	310,229	0.06	9.0	0.50	0	0	0.00	
Single Propel Stent (T	Single Propel Stent (Two-year follow-up)								
	3,321	308,788	10.75	3,666.2	1.10	329	140		
Single Sinuva Stent (Two-year follow-up)									
	111	308,788	0.36	****	****	****	****	44.98	
Single Sinuva Stent (Two-year follow-up, incident with respect to self)									
	118	310,221	0.38	****	****	****	****	42.74	
Repeat Propel Stent (Two-year follow-up)									
	36	310,229	0.12	****	****	****	****	23.87	
Repeat Sinuva Stent (Two-year follow-up)									
	18	310,229	0.06	9.9	0.55	0	0	0.00	

https://www.sentinelinitiative.org/assessments/drugs/adverse-ocular-events-nasal-septal-perforation-mometasone-sinus-implant

0.1 1.0 Apixaban Use in Patients Aged 65 or Older: A Propensity Score Matched Analysis" Thromboembolic Stroke Algorithm Defined in "Stroke, Intracranial Hemorrhage, and Bleeding following Dabigatran, Rivaroxaban, and Apixaban Use in Patients Aged 65 or Older: A Propensity Score Matched Analysis" 1.0

https://www.sentinelinitiative.org/assessments/drugs/stroke-intracranial-hemorrhage-bleeding-following-dabigatran-rivaroxaban-apixaban-use-patients-65-older

- Visual display of the observed time series and predicted trends
- Inferential analysis results of level and trend change estimates, and absolute and relative differences at certain time points post-intervention

What are you investigating?

Sentinel's Public Documentation and SAS Program Depot (Public GIT) dev.sentinelsystem.org

Data Quality Review and Characterization Programs

Quality Assurance (QA) Package

Overview

This document describes the program package used to perform quality assurance (QA) review and characterization of data in the Sentinel Common Data Model (SCDM) format. This program package helps to ensure the data meets the necessary standards for data transformation consistency and quality.

Analytic programs that are executed against data that is not in SCDM format will likely yield errors. Successful execution of the QA package indicates that the source data adheres to SCDM rules. Note that data must be in the form of SAS® datasets in order to use these analytic programs.

Folder Structure

- docs: is where specifications are saved; specifications provide details about the request parameters and functionality of the QA package
- dplocal: is where datasets with patient identifiers are saved. For more information about Sentinel's privacy standards, please refer to The Sentinel System Principles and Policies.
- inputfiles: is the subfolder containing all input files and lookup tables needed to execute a request. Input files contain information on what tables should be output and the type of analyses conducted on the variables in each table
- msoc: is where aggregated program results are saved
- sasprograms: contains the file(s) to be executed

Requirements

- UNIX/Linux or Windows environment
- SAS version 9.3 or higher
- SCDM formatted data (Medicare Claims Synthetic Public Use Files are available in the Sentinel Common Data Model Format here)

Cohort Identification and Descriptive Analysis (CIDA)

SENTINEL ROUTINE QUERYING SYSTEM OVERVIEW

The purpose of this repository is to document version 8.0.3 of the Sentinel Routine Querying System, also known as the Query Request Package (QRP). This system is comprised of cohort identification and analytic modules.

This documentation describes QRP capabilities and provides the information required to build query packages (i.e., input and output specifications) to address questions of interest.

COHORT IDENTIFICATION AND DESCRIPTIVE ANALYSIS (CIDA) MODULE

QRP's Cohort Identification and Descriptive Analysis Module (CIDA) identifies and extracts cohorts of interest from the Sentinel Distributed Database based on requester-defined options (e.g., exposures, outcomes, continuous enrollment requirements, incidence criteria, inclusion/exclusion criteria, relevant age groups, demographics).

CIDA calculates descriptive statistics for the cohort(s) of interest and outputs datasets that may be useful for additional analyses.

CIDA Cohort Identification Strategies

- Type 1: Extract information to calculate background rates
- Type 2: Extract information on exposures and follow-up time
- Type 3: Extract information for a self-controlled risk interval design
- Type 4: Extract information for medical product use during pregnancy
- Type 5: Extract information for medical product utilization
- Type 6: Extract information on manufacturer-level product utilization and switching patterns

Downloading Sentinel Analytic Packages

Sentinel Analytic Packages

Overview

A Sentinel analytic package is a standard folder structure containing detailed user-defined specifications, input files, SAS® macros, and SAS programs used to conduct Sentinel's routine querying analyses. A package allows the user to select the cohort(s) of interest in order to examine their health profile and outcomes.

2

Sentinel's analytic request packages are intended to run on data formatted in accordance with the Sentinel Common Data Model (SCDM). Note that data must be in SAS datasets to use these analytic programs.

Analytic Request Packages Available for Download

Request ID	Summary
cder_mpl2r_wp015	A New Propensity Score Matched Analysis Tool for Pregnancy: Replicating A Study of Oral Clefts following Topiramate Use during the First Trimester of Pregnancy
cder_mpl2p_wp015	Factors Related to the Assignment of Sodium Glucose Cotransporter-2 Inhibitors (SGLT-2i) versus Dipeptidyl Peptidase-4 Inhibitors (DPP-4i)
cder_mpl2p_wp017	Stroke, Intracranial Hemorrhage, and Bleeding following Dabigatran, Rivaroxaban, and Apixaban Use in Patients Aged 65 or Older: A Propensity Score Matched Analysis
cder_mpl2p_wp018	Severe Uterine Bleed following Novel Oral Anticoagulants Use: A Propensity Score Stratified Analysis (an update to cder_mpl2p_wp007)
cder_mpl1r_wp176	Diminished Visual Acuity and Nasal Septal Perforation following Mometasone Sinus Implant Use in Patients with Nasal Polyposis: A Descriptive Analysis (an update to cder_mpl1r_wp157), Part
cder_mpl1r_wp172	Glaucoma and Cataracts following Mometasone Sinus Implant Use in Patients with Nasal Polyposis: A Descriptive Analysis (an update to cder_mpl1r_wp157), Part 1
cder_mpl1r_wp157	Glaucoma, Cataracts, Diminished Visual Acuity, and Nasal Septal Perforation following Mometasone Sinus Implant Use in Patients with Nasal Polyposis: A Descriptive Analysis
cder_mpl2p_wp023	Risk of Congenital Cardiac Malformations Following Armodafinil or Modafinil Use: A Propensity Score Matched Analysis
cdrh_mpl2r_wp001	Gynecologic Surgery following Permanent Sterilization: A Propensity Score Matched Analysis
cder_mpl2r_wp011	Acute Myocardial Infarction and Hospitalized Heart Failure following Saxagliptin or Sitagliptin Use: A Propensity Score Matched Analysis, Part 2
cder_mpl2r_wp008	Acute Myocardial Infarction and Hospitalized Heart Failure following Saxagliptin or Sitagliptin Use: A Propensity Score Matched Analysis, Part 1
cder_mpl2p_wp022	Non-Melanoma Skin Cancer following Hydrochlorothiazide Use: A Propensity Score Matched Analysis, Part 4
cder_mpl2p_wp019	Non-Melanoma Skin Cancer following Hydrochlorothiazide Use: A Propensity Score Matched Analysis, Part 3
cder_mpl1p_wp034	Non-Melanoma Skin Cancer following Hydrochlorothiazide Use: A Propensity Score Matched Analysis, Part 2
cder_mpl2p_wp016	Non-Melanoma Skin Cancer following Hydrochlorothiazide Use: A Propensity Score Matched Analysis, Part 1
cder_mpl2p_wp014	Neuropsychiatric Events following Montelukast Use: A Propensity Score Matched Analysis, Part 2

Downloading Sentinel Analytic Packages

Source				
39 cder_mpl2r_wp015	 ··· Sentinel A 	nalytic Packages /		Browse Filter
\$ 81 commits	39 26 branches	0 releases	10 contributors	
Source		Descr	ation	Last Modified
docs				
dplocal				
inputfiles				
msoc				
resources				
sasprograms				
C readme.md		Senti	el Query: cder_mpl2r_wp015_public_v01	Yesterday
C readme.md				

Sentinel

A New Propensity Score Matched Analysis Tool for Pregnancy: Replicating A Study of Oral Clefts following Topiramate Use during the First Trimester of Pregnancy

In this request (cder_mpl2r_wp015) we replicated the Hernandez-Diaz, et al. (1) study assessing risk of oral clefts with topiramate use during the first trimester of pregnancy. The replication was conducted to assess the performance of a newly developed inferential pregnancy tool for use in the Sentinel Distributed Database (SDD).

(1) Hernández-Díaz, S., et al. Topiramate use early in pregnancy and the risk of oral clefts: A pregnancy cohort study. Neurology. 2018; 90(4):e342-e351.

For details on cohort identification for Propensity Score Matched Analyses, please visit the documentation.

For instructions on how to run this query on Sentinel Common Data Model formatted data, please refer to the master branch.

Refer to the Sentinel website for accompanying materials.

Part 1 Questions

Creation of a Linked Mother-Infant Cohort

Elizabeth Suarez, PhD

Table in Sentinel Common Data Model

Sentinel Common Data Model

	Administrative Data							
	Enroliment	Demographics	Dispensing	Encounter	Diagnosis	Procedure		
ſ	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID		
Ì	Enrollment Start & End Dates	Birth Date	Dispensing Date	Service Date(s)	Service Date(s)	Service Date(s)		
Ī	Drug Coverage	Sex	National Drug Code (NDC) Encounter IE		Encounter ID	Encounter ID		
ſ	Medical Coverage	Zip Code	Days Supply	Encounter Type & Provider	Encounter Type & Provider	Encounter Type & Provider		
Ī	Medical Record Availability	Etc.	Amount Dispensed	Facility	Diagnosis Code & Type	Procedure Code & Type		
				Etc.	Principal Discharge Diagnosis	Etc.		

Clinic	Clinical Data				
Lab Result	Vital Signs				
Patient ID	Patient ID				
Result & Specimen Collection Dates	Measurement Date & Time				
Test Type, Immediacy & Location	Height & Weight				
Logical Observation	Diastolic & Systolic BP				
Codes (LOINC®)	Tobacco Use & Type				
Etc.	Etc.				

Registry Data					
Death Cause of Death State Vaccine					
Patient ID	Patient ID	Patient ID			
Death Date	Cause of Death	Vaccination Date			
Source	Source	Admission Date			
Confidence	Confidence	Vaccine Code & Type			
Etc.	Etc	Provider			
		Ftc			

Inpatient Data					
Inpatient Pharmacy Inpatient Transfusion					
Patient ID	Patient ID				
Administration Date & Time	Administration Start & End Date & Time				
Encounter ID	Encounter ID				
National Drug Code (NDC)	Transfusion Administration ID				
Route	Transfusion Product Code				
Dose	Blood Type				
Etc.	Etc.				

Mother-Infant Linkage Data
Mother-Infant Linkage
Mother ID
Mother Birth Date
Encounter ID & Type
Admission & Discharge Date
Child ID
Child Birth Date
Mother-Infant Match Method
Etc.

Mother-Infant Linkage Table

Table in the Sentinel Common Data Model, populated by four Data Partners

- 3 national claims insurers
- 1 Medicaid data source

Mother-Infant Linkage Table

- Mother-Infant Linkage Table is only used to identify:
 - deliveries that resulted in a live birth
 - mother-infant pairs
 - certain infant characteristics
- Pregnancies can be selected from linked mother-infant pairs
 - Requester can select infant linking method
- Requesters can look at all deliveries in table or only linked deliveries

Steps for creating the MIL table

ID deliveries and infants	A. Operations Center distributes the mother-infar identification program package to Data Partners	nt B. Data Partners execu package	te the C. Operations Contractions Contractions Contractions Contractions Contractions Contractions Contractions	enter reviews to ensure acy	
↓ → Link	D. Data Partners complete linkage using their own processes and source data				
↓ Quality assurance	E. Operations Center distributes the MIL table quality assurance program package to DPs	F. Data Partners execute the MIL quality assurance package	G. Operations Center evaluates results	H. Data respond to is	a Partners o outstanding sues
♥ Final table	I. Operations Center approves MIL table				

Identifying deliveries for the MIL table

Information recorded for mothers:

Patient ID

- ID for delivery encounter
- Delivery encounter type
- Delivery encounter admission date
- Delivery encounter discharge date
- Singleton or multiple delivery

Sentinel Initiative | 42

Identifying infants for the MIL table

• Date of first enrollment

Linking mothers to infants

- Linkage process and source data is determined by each Data Partner
- Most matches were *deterministic* and relied on subscriber IDs; *probabilistic* matching was also used by some Data Partners
- Multiple infants could be linked to the single delivery, but only one linkage was allowed per infant

Linking mothers to infants

New variable for MatchMethod:

BC = Birth Certificate RE = DP maintained birth registry SI = health plan subscriber or family number LA = exact or probabilistic last name and address match based upon health plan administrative data OT = other

Values of MatchMethod if no link is made:

N1 = No subscriber/family IDs available for linkage

N2 = No name/address available for linkage

N3 = Neither subscriber/family IDs nor name/address available for linkage

NA = no linkage

Mother Infant Linkage – Latest Data

Approximately 5 million linked deliveries available in the Sentinel Common Data Model currently – updated regularly

	Total
Deliveries	6,491,060
Linked deliveries	5,108,877
Linkage rate	78.7%

Things that impact linkage rates -

- Mothers and infants insured under different plans
- Requirements for identifying deliveries was strict and require enrollment – an infant may have been identified but not the mother because only part of her pregnancy was observed
- Data partners only linked when they had confidence in the link – more linkages could have been possible with looser criteria, but with the cost of incorrect linkages

Linkage Rates by Birth Types

	Birth type				
			1	3+ live births or	Conflicting
	Unknown #	One live	Two live	unspecified	codes on # of
	of live births	birth	births	multiples	live births
Deliveries	520,744	5,832,761	110,405	6,030	21,120
Linked Deliveries	165,911	4,832,347	89,166	3,424	18,029
Linkage Rate	31.86%	82.85%	80.76%	56.78%	85.36%

95% of linked deliveries were singleton deliveries

Linkage by age and encounter type

97% of linked deliveries were ages 20-44

Maternal age at delivery					
20-44 45-54	10-19 20-44				
172,895 48,494	269,671 6,172,8	Deliveries	Deliveries		
968,554 15,055	125,268 4,968,5	nked Deliveries	Deliveries		
0.50% 31.00%	46.50% 80.50%	Linkage Rate	kage Rate		

	Encounter type of delivery					
	Inpatient	Emergency	Non-Acute	Ambulatory	Other	
	Hospital	Department	Institutional	Visit	Ambulatory Visit	
Deliveries	6,131,319	8,772	3,140	244,234	103,595	
Linked Deliveries	5,050,905	1,154	2,555	28,231	26,032	
Linkage Rate	82.40%	13.20%	81.40%	11.60%	25.10%	

Linkage Rates By Year

Linked mother-infant sample for analysis

• Singleton deliveries only

- We currently only analyze singleton deliveries due to the additional complexity of analyzing multiple infants paired with a single mother
- Require drug coverage in addition to medical coverage
 - Inclusion in the MIL table only requires medical coverage
- Require a specific duration of medical and drug coverage prior to delivery for the mother

Duration of enrollment prior to delivery

Medical and drug enrollment should be required for:

- The duration of the pregnancy episode, and
- Any pre-pregnancy period used to assess covariates

Cohort size shrinks as more enrollment duration is required

Cohort size after requiring continuous medical and drug coverage prior to delivery

3.0 million linked singleton deliveries with medical and drug coverage

Comparison of Linked and Unlinked Deliveries in the SDD MIL table

- Recently completed an analysis to compare linked and unlinked deliveries in the SDD MIL table
- For this analysis, we required that:
 - Only singleton deliveries were included
 - Mothers had 391 days of medical and drug coverage prior to the delivery date
 - Covers full pregnancy period and a 90-day pre-pregnancy period
 - No additional enrollment required for the matched infants

	Linked	Unlinked
Number of singleton pregnancies	2,175,261	474,858
Number of pregnant patients	1,826,162	441,520

Comparison of Linked and Not Linked Deliveries in the SDD MIL table

Linked deliveries were older than not linked deliveries:

- Mean age (SD):
 - Linked: 31.1 (4.7) years
 - Not linked: 27.7 (7.0) years

Linked deliveries were less likely to be classified as preterm than not linked deliveries:

- Linked: 5.7% preterm
- Not linked: 7.3% preterm

Maternal Age

Comparison of Linked and Not Linked Deliveries in the SDD MIL table

	Linked	Not Linked	
Race			Health care uti
American Indian or Alaska Native	0.1%	0.1%	Mean numbe encounters
Asian	1.0%	0.4%	Mean numbe
Black or African American	2.8%	2.8%	encounters
Native Hawaiian or Other Pacific Islander	0.1%	0.0%	Mean numbe encounters
White	10.1%	7.5%	
Unknown	86.0%	89.1%	encounters
Hispanic			Moon numbo
Yes	1.3%	1.5%	department e
No	7.2%	5.7%	
Unknown	91.6%	92.8%	

Linked Not Linked

lealth care utilization (90 days prior to pregnancy start)

Mean number of ambulatory encounters	2.0 (3.1)	1.7 (2.8)
Mean number of other ambulatory encounters	0.3 (0.9)	0.3 (0.9)
Mean number of inpatient encounters	0.0 (0.1)	0.0 (0.2)
Mean number of institutional stay encounters	0.0 (0.0)	0.0 (0.0)
Mean number of emergency department encounters	0.1 (0.4)	0.1 (0.5)

Pre-existing Conditions Among Linked and Not Linked Deliveries

Descriptive Pregnancy Analyses

Creating and analyzing a cohort of deliveries

Creating and analyzing a cohort of deliveries

Cohort Selection

PREGNANCIES

Requester may select:

- 1. All pregnancies
- 2. Pregnancies linked to an infant
- 3. Pregnancies not linked to an infant

Live birth pregnancies

Not linked to

infant

Females

Linked to infant Describe medical product use and cohort characteristics

EXPOSED PREGNANCIES

Selecting deliveries for analysis

Method	Use case examples	Advantages
Using ICD-9 and ICD-10 codes (without the MIL table)	 Any analysis that uses mothers claims only: Characterizing medication utilization prior to and during pregnancy Characterizing comorbidities among pregnant women Conducting an inferential analysis for a maternal outcome 	 Does not require having the MIL table in the SCDM When analyzing the SDD, we can include data from all Data Partners, not just those with a populated MIL table, greatly increasing our sample size
Using the MIL table	 Any analysis that requires infant data or knowledge of the linkage status: Conducting an inferential analysis for an infant outcome Characterizing medication utilization or comorbidities among deliveries that were linked to infants 	 Access to infant data Ability to select a cohort of linked deliveries, leading to less misclassification of delivery status

Identifying live birth deliveries using ICD-9 and ICD-10 codes

User-specified: Live birth delivery encounter type

Live birth delivery date = admission date for delivery encounter

Identifying live birth deliveries from the MIL table

User-specified: MatchMethod

- BC = Birth Certificate
- RE = DP maintained birth registry
- SI = health plan subscriber or family number
- LA = exact or probabilistic last name and address match based upon health plan administrative data
- OT = other

Identifying live birth deliveries from the MIL table

User-specified: maximum number of days between mother's delivery admission date and infant's birth date

1. Identify live birth deliveries

Refining the cohort of deliveries

Creating and analyzing a cohort of deliveries

Gestational age algorithm

Last menstrual period (LMP) is not available in US insurance claims data, therefore gestational age needs to be estimated

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2013; **22**: 524–532 Published online 21 January 2013 in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.3407

ORIGINAL REPORT

Validation of an algorithm to e health plan databases[†]

Qian Li^{1,2}, Susan E. Andrade³, William O. Coope Pamala A. Pawloski⁸, Simone P. Pinheiro⁷, Marsh Inna Dashevsky², Katherine Haffenreffer², Karin F Algorithm underestimates the prevalence of preterm birth, but has **high sensitivity and specificity for identifying trimesterspecific medication exposure** (compared to gestational age from birth certificates)

Current algorithm is a modification or this algorithm and includes both ICD-9 and ICD-10 codes

Identifying gestational duration codes

Examples of ICD-9-CM and ICD-10-CM GA Codes

If multiple conflicting gestational age codes are found in the record, a priority ranking is used to determine the final gestational age:

1	Gestational week specific codes: Z3A codes and P07 codes	Code	Description	(weeks)	(days)
		Z3A.35	35 weeks gestation of pregnancy	35.5	249
2	"Vague" codes that do not specify gestational age but suggest pre-term status	644.24	Onset of delivery before 37	25	245
		644.21	completed weeks of gestation	35	245
	"Vague" codes that do not				
3	specify gestational age but	O480	Post-term pregnancy	41	287
	suggest post-term status		If there are no gestational age cod default gestational age is assigned -	les, a user-c – typically 2	lefined 73 days

Duration Duration

Identifying duration codes

Count back by selected duration

Creating and analyzing a cohort of deliveries

Cohort Selection

PREGNANCIES

Requester may select:

- 1. All pregnancies
- 2. Pregnancies linked to an infant
- 3. Pregnancies not linked to an infant

Non-pregnant comparator: Episodes that do not end in a live birth delivery

Live birth pregnancies

Linked to infant Not linked to infant

Females

Non-pregnant matched time periods Describe medical product use and cohort characteristics

EXPOSED PREGNANCIES Create non-pregnant comparator cohort

Creating and analyzing a cohort of deliveries

Sentinel Initiative | 73

Classifying medical product use by timing during pregnancy

Creating exposure episodes: stockpiling

Patients may refill prescriptions before exhausting previous dispensing's days supply

4. Identify medical product use in pregnancy

Creating exposure episodes: stockpiling

• Apply stockpiling algorithm to adjust dispensing dates

Creating exposure episodes: stockpiling

4. Identify medical product use in pregnancy

Example patient:

1/1/14

11/15/14

Example patient:

Example patient:

Based on overlapping treatment episode:

- Exposed pre-pregnancy
- Exposed first trimester
- Exposed second trimester

Example patient:

Example patient:

Based on date of dispensing:

- Exposed pre-pregnancy
- Exposed first trimester
- NOT exposed second trimester

Characterizing medication exposure – 2 examples

- Example 1: Characterizing medication exposure for all linked deliveries in the MIL table
 - Identify commonly used medication groups during pregnancy
 - Used overlapping medication episode to define gestational timing
- Example 2: Studying utilization of topiramate and lamotrigine
 - Compare utilization during pregnancy and in a matched non-pregnant comparator cohort
 - Inform planned inferential analyses

Example 2: Studying utilization of topiramate and lamotrigine

- Study parameters:
 - Study period: January 1, 2000 September 30, 2015
 - Live births linked to infants, selected from the MIL table
 - Look at utilization of Topiramate and Lamotrigine by trimester

Characteristic	Live Birth Pregnancy Cohort	Non-Pregnant Cohort
Patients, N	1,311,094	1,320,369
Pregnancies, N	1,538,486	1,538,486
Age, years, mean (sd)	30.60 (4.76)	30.60 (4.78)

Topiramate use

Any use vs. use in all trimesters

Lamotrigine use

Any use vs. use in all trimesters

Comparing Topiramate and Lamotrigine use in pregnancy

Part 2 Questions

Break

10 minutes

Inferential Analyses for Perinatal Exposures

Mayura Shinde, DrPH

Pregnancy Analyses

Use Case: Topiramate Use in Early Pregnancy and Risk of Oral Clefts

Use Case: Topiramate and Oral Clefts

ARTICLE

Topiramate use early in pregnancy and the risk of oral clefts

A pregnancy cohort study

1.3 million pregnancies with a live birth from US Medicaid Analytic Extract from 2000-2010

Abstract

Objective

To assess the relative risk of oral clefts associated topiramate during the first trimester for epilepsy

Methods

ni J. Desai, PhD, Jacqueline M. Cohen, PhD, MD, and Elisabetta Patorno, DrPH 00000004857 **Correspondence** Dr. Hernandez-Diaz shernan@hsph.harvard. edu

Maternal use of topiramate during the first trimester was associated with an ≈3-fold increased risk of oral clefts after accounting for confounding by clinical characteristics...

This population-based study nested in the US 2000–2010 Medicaid Analytic eXtract included a cohort of 1,360,101 pregnant women with a live-born infant enrolled in Medicaid from 3 months before conception through 1 month after delivery. Oral clefts were defined as the presence of a recorded diagnosis in claims during the first 90 days after birth. Women with a topiramate dispensing during the first trimester were compared with those without any

Topiramate

- Approved indications:
 - Epilepsy
 - Migraine headaches
- May be used off-label for:
 - Bipolar disorder
 - Chronic weight management
 - Alcohol dependence
- Previous pregnancy classification: Category D
 - Fetal Toxicity: use during pregnancy can cause cleft lip and/or palate and being small for gestational age (5.7)

https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-risk-oral-clefts-children-born-mothers-taking-topamax-topiramate https://www.cdc.gov/ncbddd/birthdefects/features/birthdefects-topiramate-keyfindings.html

Oral Clefts

- Cleft lip/cleft palate is second most common birth defects in United States
- Approximately 1 in 1,600 infants is born with cleft lip with cleft palate and 1 in 1,700 with cleft palate
- Risk factors include:
 - Genetics
 - Smoking
 - Diabetes
 - In utero exposures to some medical products, such as antiepileptics

Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, Anderson P, Mason CA, Collins JS, Kirby RS, Correa A; National Birth Defects Prevention Network. Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004-2006. <u>Birth Defects Res A Clin Mol Teratol.</u> 2010 Dec;88(12):1008-16. Mai CT, Isenburg JL, Canfield MA, Meyer RE, Correa A, Alverson CJ, Lupo PJ, Riehle-Colarusso T, Cho SJ, Aggarwal D, Kirby RS. National population-based estimates for major birth defects, 2010–2014. *Birth Defects Research*. 2019; 111(18): 1420-1435.

Use Case Study Parameters

- Objective: To assess the risk of oral clefts with topiramate use during the first trimester of pregnancy in the Sentinel Distributed Database (SDD).
 - Study period: January 1, 2000 September 30, 2015
 - Women, aged 12-55 years
 - No evidence of chromosomal abnormalities and teratogen medication use

Creating and analyzing a cohort of deliveries

Cohort Selection

PATIENTS Requester may select: Non-pregnant Females comparator: Episodes 1. All pregnancies that do not end in a 2. Pregnancies linked to an infant 3. Pregnancies not linked to an infant live birth delivery Describe **PREGNANCIES** Non-pregnant medical Live birth pregnancies matched time product use Not linked to Linked to periods and cohort infant infant characteristics Control for **PREGNANCIES** Describe cohort EXPOSED confounding and characteristics estimate risk of **Exposed** Referent maternal/infant outcomes

Defining the Exposed and Referent Cohorts

- Exposure is binary
 - A pregnancy may be exposed (yes vs. no) during a specific exposure window
 - Pregnancies are classified as either *exposed* or *unexposed/comparator-exposed*
- The exposure window can be specified in trimesters or gestational weeks
 - E.g. first trimester, or gestational weeks 6-12

Defining exposed and unexposed referent groups

Defining exposed and comparator exposed referent groups

Defining exposed and comparator exposed referent groups

Topiramate study exposure definitions: unexposed comparator

Classified as exposed to topiramate if dispensing date was in the first trimester

Classified as unexposed to topiramate no dispensing occurred in first trimester or 90 days before pregnancy start

Topiramate study exposure definitions: active comparator

5. Create exposed and referent cohorts

Refine Exposed and Referent Cohorts

• Define window for exclusions/inclusions and covariates

Topiramate study: exclusions

No diagnosis codes for chromosomal abnormalities: 0 to 273 days after pregnancy start

No dispensings of known teratogens: 0 to 90 days after pregnancy start

Estimated start

of pregnancy

Delivery date

5. Create exposed and referent cohorts

Topiramate study: covariates

Creating and analyzing a cohort of deliveries

Defining infant outcomes

Outcomes are typically assessed after delivery – for example, cardiac defects

Defining maternal outcomes

Outcomes occur during gestation and after delivery – for example, gestational hypertensive disorders

Topiramate study: defining oral clefts

- Infants were classified as having an oral cleft if at least one of the following criteria were met in the mother's or infant's record:
 - ≥2 diagnosis codes for oral clefts, OR
 - 1 diagnosis code and 1 procedure/surgery code for oral clefts

Maternal vs infant records

- Infants are typically enrolled under parent's insurance within 30-60 days after delivery
- Before enrollment, claims for the infant may appear on the mother's record
- Therefore, infant outcomes are assessed using claims from <u>both</u> the *infant's record* and the *mother's record*
- To assess outcomes only based on the infant's record would require limiting the cohort to infants that are enrolled at birth this is very restrictive

Putting it all together: design diagram for topiramate study

Creating and analyzing a cohort of deliveries

Operational flow at Data Partner site

Operational flow at SOC

Analyzing maternal and infant outcomes

- Single outcome analysis: Logistic regression to estimate the association between an exposure and outcome of interest
- Multiple outcome analysis (signal detection): TreeScan to detect possible safety alerts across a range of infant or maternal outcomes with a single exposure of interest

Methods to Control for Confounding				
	Logistic Regression	Signal Detection [§]		
Propensity score matching	Available	Available		
Propensity score stratification	Available			
Propensity score weighting (inverse probability and stratification weighting)	Not yet available for pregnancy analyses			
Covariate stratification	Available			
*High-dimensional propensity score approach is available for all propensity score methods				

§ Signal detection is still under testing and is not yet available for regulatory decision making

Measure Covariates and Estimate Propensity Score

0.10 0.19 0.21 0.27 0.33 0.44 0.47 0.49 0.490.52 0.55 0.71 0.78 0.79

7. Evaluate exposure-outcome relationship

Sentinel Initiative | 126

Topiramate Study: Propensity Score Models

- PS models optimized for each analysis to maintain sample size
- Full model included:
 - **Demographics**: Age
 - Treatment indications: epilepsy/seizure, migraine/headache/bipolar disorder, neuropathic pain, non-neuropathic pain
 - Comorbidities and lifestyle factors: obesity, smoking, depression, anxiety, other psychiatric disorders, sleep disorders, fibromyalgia, hypertension, Charlson Comorbidity Index
 - Medication use: other anticonvulsants, benzodiazepines, triptans, antipsychotics, antidepressants, antihypertensives, anxiolytics, stimulants, non-insulin diabetics, opioids, other pain, ADHD, hypnotics, teratogens, NSAIDS
 - Healthcare utilization: number of inpatient stays, number of ambulatory visits, and number of filled prescriptions

Method 1: Propensity Score Matching

- Algorithm
 - Optimal nearest neighbor matching without replacement
 - Calculate differences in PS values between all possible treatment and comparator group pairs
 - Find smallest difference and match, then remove pair
 - Repeat in rounds
- Options
 - 1:1 or 1:M fixed-ratio and variable-ratio matching
 - Matching caliper on natural scale (e.g., 0.01) sets maximum allowable difference

Method 1: Matching on the Propensity Score

Method 2: Propensity Score Stratification

- Algorithm
 - Group episodes into strata defined by quantile of PS distribution
 - PS percentiles determined for the entire cohort within each Data Partner (which may be quite different in size)
 - ALL pregnancies are retained, there is no trimming
 - Performs an *"Average Treatment Effect"* (ATE) analysis
- Options
 - Number of groups (e.g., 10 for deciles)

Method 2: Stratification on the Propensity Score

Average treatment effect (ATE) type

Estimate Odds Ratios in Matched/Stratified Cohort

Population	Analysis	Output
Unmatched	Site-adjusted logistic regression	Cohort N Number of events Crude risk Crude risk ratio Crude risk difference Odds Ratio 95% Confidence Interval
Matched	Fixed-ratio or variable- ratio matched logistic regression	
Stratified	N strata stratified logistic regression	

Table 2 Risk at birth of oral clefts among infants exposed to topiramate during the first trimester compared to infantsexposed to lamotrigine and to unexposed infants

Oral clefts	Unexposed (n = 1,322,955)		Topiramate (n = 2,425)
Events, n	1,501	Topiramate vs unexposed:	<11 ^b
Risk (per 1,000)	1.1	Adjusted RR: 2.90 (1.56, 5.40)	4.1
Unadjusted RR (95% CI)	Deference	1.89 (0.85–4.21)	3.63 (1.95–6.76)
PS-adjusted RR (95% CI)	Reference	1.89 (0.85–4.21)	2.90 (1.56–5.40)
Unadjusted RR (95% Cl)		Deference	2.30 (0.69–7.64) ^a
PS-adjusted RR (95% CI)	NA NA	Topiramate vs lamotrigine:	2.38 (0.71–7.96) ^a
Abbreviations: CI = confidence int	erval; NA = not applicable; PS = propensity	score Adjusted RR: 2.38 (0.71, 7.96)	

Abbreviations: CI = confidence interval; NA = not applicable; PS = propensity score Medicaid Analytic eXtract, 2000 to 2010.

^a Analyses comparing topiramate and lamotrigine were restricted to patients who did not concomitantly use topiramate and lamotrigine during the 90 days before the last menstrual period through the end of the first trimester.

^b In accordance with the data-use agreement, we do not report information for frequency cells with less than 11 cases.

Cohort Sizes: Sentinel Distributed Database study

Propensity Score Distribution – Unadjusted, Primary Analyses

7. Evaluate exposure-outcome relationship

Propensity Score Distribution – Adjusted, Primary Analyses

Propensity Score Distribution – Unadjusted, Active Comparator Analyses

Propensity Score Distribution –Adjusted, Active Comparator Analyses

Selected Health Characteristics: Unmatched/Stratified Cohorts

Selected Health Characteristics: Matched Cohorts

Maternal age (years) at delivery: Unmatched/Stratified Cohorts

Maternal age (years) at delivery: Matched Cohorts

Pre- or post-term delivery codes: Unmatched/stratified cohorts

Pre- or post-term delivery codes: Matched cohorts

Number of dispensings: Unmatched/stratified cohorts

Sentinel Initiative | 145

Number of dispensings: Matched cohorts

Oral Clefts – Unexposed comparator

Topiramate versus unexposed	Cohort	Events	Risk per 1000	OR	95% CI
Crude	Exposed	8	3.99	3.24	(1.62, 6.51)
	Referent	1,314	1.23		
1:1 matched	Exposed	8	4.04	8.03	(1.00, 64.25)
	Referent	1	0.51		
PS stratified	Exposed	8	3.99	2.92	(1.43, 5.93)
	Referent	1,314	1.23		

Hernandez-Diaz et al.: Topiramate vs unexposed: Adjusted RR: 2.90 (1.56, 5.40)

Oral Clefts – Lamotrigine comparator

Topiramate versus lamotrigine	Cohort	Events	Risk per 1000	OR	95% CI
Crude	Exposed	8	4.01	1.64	(0.59 <i>,</i> 4.53)
	Referent	7	2.45		
1:1 matched	Exposed	3	2.65	0.75	(0.17, 3.36)
	Referent	4	3.54		
PS stratified	Exposed	8	4.01	2.72	(0.75 <i>,</i> 9.93)
	Referent	7	2.45		

Hernandez-Diaz et al.: Topiramate vs lamotrigine: Adjusted RR: 2.38 (0.71, 7.96)

Conclusions

Topiramate and Oral Clefts

- Our study suggests that topiramate exposure during the first trimester increases the risk of oral clefts when compared to no topiramate exposure
 - Confirms previous findings of association between topiramate and oral clefts
- When comparing topiramate exposure to lamotrigine exposure, results were also suggestive of an increase in risk, but results were more variable
 - Propensity score matching was unable to balance the topiramate and lamotrigine cohorts on key indication variables that were not included in the propensity score
- 1:1 matching resulted in exclusion of a large proportion of the unexposed population and only one oral cleft case in the unexposed group, leading to imprecise estimates

Performance of the Sentinel Tools for Pregnancy Outcomes

- The new Sentinel tool allows for inferential analysis of maternal and infant outcomes following perinatal exposures
- We replicated a published study using our parameterized tools
 - Estimates of oral cleft risk were similar to published estimates
 - The estimate of the association between topiramate and oral clefts was similar to published estimates
- Flexibility of pregnancy tool allows for a variety of analyses with different methods for controlling confounding including propensity score matching and stratification

Limitations of the topiramate analysis

- Limited to singleton live born infants
 - Multiple gestation deliveries are included in the MIL Table
 - Identification of non-live birth pregnancy outcomes, and methods to estimate the pregnancy duration, are currently under development
- Exposure, outcome, and covariate misclassification is possible when using insurance claims data
 - Outcomes of interest should be validated in similar data sources
 - Sensitivity analyses should be employed to evaluate potential exposure misclassification
 - Validated algorithms for covariates should also be used, when available

How can the FDA – and others – leverage the new functionalities described today?

- FDA now has access to a large network of 5.1 million (and growing) linked mother-infant pairs
 - This supplements existing use of registry data
- FDA and others with data in the Sentinel Common Data Model format and mother-infant linked data can:
 - Conduct inferential analyses to examine infant and maternal outcomes following maternal exposures during pregnancy

Completed Mother-Infant Linkage Analyses

- Topiramate and oral clefts replication study
 - Available at https://www.sentinelinitiative.org/methods-data-tools/methods soon
- Characterizing the Mother-Infant Linkage Table
 - Maternal characteristics: available at <u>https://www.sentinelinitiative.org/assessments</u> soon
 - Infant characteristics ongoing
- Armodafinil or modafinil and cardiac malformations
 - <u>https://www.sentinelinitiative.org/assessments/drugs/risk-congenital-cardiac-malformations-following-armodafinil-or-modafinil-use</u>

Acknowledgments

SOC

- Amanda Carruth
- Elnara Fazio-Eynullayeva
- Nicole Haug
- Judy Maro
- Andrew Petrone
- Rajani Rajbhandari
- Darren Toh
- Emily Welch

FDA

- Catherine Corey
- Jenni Li

Data Partners

- Aetna
- HealthCore, Inc.
- Harvard Pilgrim Health Care
- Humana, Inc., Healthcare Research
- OptumInsight, Inc.
- Vanderbilt University Medical Center

Thank You

Questions?

Post-Training Evaluation

