13-Valent Pneumococcal Conjugate Vaccine (PCV13) and Kawasaki Disease

Meghan A. Baker,1,2 Bethany Baer,3 Martin Kulldorff,4 Lauren Zichittella,1 Rebecca Reindel,3 Sandra DeLuccia,1 Hana Lipowicz,1 Katherine Freitas,1 Robert Jin,1 W. Katherine Yih1

1. Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA
2. Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA
3. Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD
4. Division of Pharmacoepidemiology and Pharmacoeconomics, Department of Medicine, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA

August 2019
Disclaimer

- Funding source: U.S. Food and Drug Administration
 - HHS Mini-Sentinel contract: HHSF223200910006I
 - HHS Sentinel contract: HHSF223201400030I

- No relationships to disclose
Background: Post-licensure reports of Kawasaki disease after PCV13

- Vaccine Adverse Event Reporting System (VAERS)
- Vaccine Safety Datalink (VSD): Signal emerged during PCV13 sequential analysis, then:
 - End-of-surveillance analysis using chart-confirmed cases
 - Kawasaki disease in Days 0-28 after PCV13 vs. after PCV7
 - Relative risk: \(2.38 (95\% \text{ CI}: 0.92, 6.38)\)*
- FDA’s 18-month review cited these VAERS and VSD results, proposed a larger study in PRISM/Sentinel

Methods

• Study population
 – Children aged 0-23.99 months in 6 PRISM data partners
 – Data from 2010-2015
• Identifying exposure and outcome
 – PCV identified via CPT, NDC, and HCPCS codes
 – Kawasaki disease identified via ICD-9 code 446.1 and ICD-10 code M30.3
 • Inpatient setting
 • First code in 365 days (to exclude follow-up visits)
• Case adjudication
 – Based on American Heart Association guidelines
 – Selection criteria:
 • KD admit date within 70 days after PCV13 dose, or
 • KD in children not receiving PCV vaccines
Analyses conducted

<table>
<thead>
<tr>
<th>1° vs. 2°</th>
<th>Design</th>
<th>Regression</th>
<th>Age adjustment</th>
<th>Risk window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>1. Self-controlled risk interval</td>
<td>Logistic</td>
<td>Offset term (from HCUP KID data)</td>
<td>Days 1-28</td>
</tr>
<tr>
<td>Secondary</td>
<td>"</td>
<td>"</td>
<td>None</td>
<td>"</td>
</tr>
<tr>
<td>Secondary</td>
<td>2. Cohort</td>
<td>Unconditional Poisson</td>
<td>Internal, from study population</td>
<td>Days 1-28</td>
</tr>
<tr>
<td>Secondary</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Days 1-42</td>
</tr>
</tbody>
</table>

3. **Temporal scan statistics** used in a 2° analysis: evaluated all potential risk windows 1 to 28 days in length during 56-day follow-up

No dose-specific analyses
Self-controlled risk interval design

Uses only vaccinated cases with the outcome in either risk or control interval
Pre-specified risk and control intervals for the PCV13 study
Self-controlled risk interval design

• Each subject serves as own control—this adjusts for *time-fixed* confounders (e.g., sex, ethnicity, SES)

• Any time-varying confounding requires adjustment

• Kawasaki disease risk varies by age*

• Age-adjustment used Healthcare Cost & Utilization Project Kids’ Inpatient Database (HCUP KID)

Analyses conducted

<table>
<thead>
<tr>
<th>1° vs. 2°</th>
<th>Design</th>
<th>Regression</th>
<th>Age adjustment</th>
<th>Risk window</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>1. Self-controlled risk interval</td>
<td>Logistic</td>
<td>Offset term (from HCUP KID data)</td>
<td>Days 1-28</td>
</tr>
<tr>
<td>Secondary</td>
<td>"</td>
<td>"</td>
<td>None</td>
<td>"</td>
</tr>
<tr>
<td>Secondary</td>
<td>2. Cohort</td>
<td>Unconditional Poisson</td>
<td>Internal, from study population</td>
<td>Days 1-28</td>
</tr>
<tr>
<td>Secondary</td>
<td>"</td>
<td>"</td>
<td>"</td>
<td>Days 1-42</td>
</tr>
</tbody>
</table>

3. Temporal scan statistics used in a 2° analysis:
evaluated all potential risk windows 1 to 28 days in length during 56-day follow-up

No dose-specific analyses
Cohort design

- Started with entire eligible population, identified exposed and unexposed person-time, then any KD events therein
Cohort design

• Definition of “exposed”—two alternatives:
 – Within Days 1-28 of PCV13
 – Within Days 1-42 of PCV13

• Definition of “unexposed”:
 – Not within Days -7-42 of any PCV

PCV13 risk window

Days -7 through 42 (of any PCV) excluded from unexposed time
Modeling KD risk by age for cohort analyses

• To have enough cases to model KD risk by age, used all potential cases, not just chart-confirmed
 – No systematic difference in chart-confirmation ratio by age
 – Some bias toward null from using all potential cases
• Included data partner, calendar year, sex, and age
Summary of Methods

<table>
<thead>
<tr>
<th>1. Self-controlled risk interval design</th>
<th>2. Cohort design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk window</td>
<td>1°: Days 1-28</td>
</tr>
<tr>
<td></td>
<td>2°: Days 1-42</td>
</tr>
<tr>
<td>Control window</td>
<td>Person-time outside of Days -7 through +42 of any PCV</td>
</tr>
<tr>
<td>Doses 1&2: Days 29-56</td>
<td>Person-time outside of Days -7 through +42 of any PCV</td>
</tr>
<tr>
<td>Doses 3&4: Days 43-70</td>
<td>Person-time outside of Days -7 through +42 of any PCV</td>
</tr>
<tr>
<td>Age adjustment</td>
<td>Used internal data only</td>
</tr>
<tr>
<td>Used external data: HCUP KIDS data from 2009</td>
<td>Used internal data only</td>
</tr>
<tr>
<td>Case validation</td>
<td>Yes, 1° analysis used confirmed cases; a 2° analysis used possible cases also</td>
</tr>
</tbody>
</table>

3. Temporal scan statistics used in a 2° analysis: evaluated all potential risk windows 1 to 28 days in length during 56-day follow-up
Results

• Doses of PCV13 in study population: 6,177,795

• Kawasaki disease cases:

<table>
<thead>
<tr>
<th>Category</th>
<th>Number</th>
<th>% of total</th>
<th>% of obtained</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total ascertained</td>
<td>206</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Charts obtained</td>
<td>184</td>
<td>89%</td>
<td></td>
</tr>
<tr>
<td>Confirmed</td>
<td>125</td>
<td>68%</td>
<td>89%</td>
</tr>
<tr>
<td>Possible</td>
<td>29</td>
<td>16%</td>
<td>16%</td>
</tr>
<tr>
<td>Inconclusive</td>
<td>4</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Insufficient information</td>
<td>18</td>
<td>10%</td>
<td>10%</td>
</tr>
<tr>
<td>Ruled out</td>
<td>8</td>
<td>4%</td>
<td>4%</td>
</tr>
</tbody>
</table>

• Case confirmation:
 – 68% for confirmed
 – 84% for confirmed + possible
Analysis Results

SCRI design *(with confirmed and possible cases)*:

<table>
<thead>
<tr>
<th>Age-adjustment</th>
<th>Cases in risk window</th>
<th>Cases in control window</th>
<th>Kawasaki disease level of diagnostic certainty</th>
<th>Relative risk (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HCUP data</td>
<td>43</td>
<td>44</td>
<td>Level 1</td>
<td>1.07 (0.70, 1.63)</td>
</tr>
<tr>
<td>None</td>
<td>43</td>
<td>44</td>
<td>Level 1</td>
<td>0.98 (0.64, 1.49)</td>
</tr>
<tr>
<td>HCUP data</td>
<td>53</td>
<td>53</td>
<td>Level 1+2</td>
<td>1.09 (0.75, 1.60)</td>
</tr>
<tr>
<td>None</td>
<td>53</td>
<td>53</td>
<td>Level 1+2</td>
<td>1.00 (0.68, 1.46)</td>
</tr>
</tbody>
</table>

Cohort design *(with all potential cases)*:

<table>
<thead>
<tr>
<th>Risk window</th>
<th>Cases in risk window</th>
<th>Cases in unexposed time</th>
<th>Exposed person-years</th>
<th>Unexposed person-years</th>
<th>Risk estimate (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days 1-28</td>
<td>80</td>
<td>598</td>
<td>~474,000</td>
<td>2.7 million</td>
<td>0.84 (0.65, 1.08)</td>
</tr>
<tr>
<td>Days 1-42</td>
<td>145</td>
<td>598</td>
<td>~711,000</td>
<td>2.7 million</td>
<td>0.97 (0.79, 1.19)</td>
</tr>
</tbody>
</table>
Distribution of onsets of confirmed cases after PCV13 vaccination

- Temporal scan statistics:
 - No statistically significant clustering of cases
 - Lowest p-value of any grouping: 0.34
Conclusions

• No evidence of association found between PCV13 and Kawasaki onset during Days 1-28 after vaccination

• Strengths of the study:
 a) Large—6 million doses, 87 confirmed cases in primary SCRI analysis
 b) SCRI adjusts completely for time-fixed potential confounders, e.g., race/ethnicity
 c) Qualitatively similar results obtained in all secondary analyses (with alternative methods of analysis and age-adjustment, varying levels of diagnostic certainty)
Pneumococcal conjugate vaccines (PCV)

• 2/17/2000: FDA licensed 7-valent PCV (PCV7) (Prevnar; Wyeth)
 – Rates of invasive pneumococcal disease in children under 5 years of age (of serotypes targeted by vaccine) dropped sharply

• 2/24/2010: FDA licensed 13-valent PCV (PCV13) (Prevnar 13; Wyeth) to protect against 6 additional serotypes

• > 90% of Pfizer’s private shipments of PCV were PCV13 by 7/2010
2013 Recommended Immunizations for Children from Birth Through 6 Years Old

<table>
<thead>
<tr>
<th>Age Range</th>
<th>Immunizations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Birth</td>
<td>HepB</td>
</tr>
<tr>
<td>1 month</td>
<td>HepB</td>
</tr>
<tr>
<td>2 months</td>
<td>RV DTaP Hib</td>
</tr>
<tr>
<td>4 months</td>
<td>RV DTaP Hib</td>
</tr>
<tr>
<td>6 months</td>
<td>RV DTaP Hib</td>
</tr>
<tr>
<td>12 months</td>
<td>PCV IPV</td>
</tr>
<tr>
<td>15 months</td>
<td>IPV</td>
</tr>
<tr>
<td>18 months</td>
<td>IPV</td>
</tr>
<tr>
<td>19–23 months</td>
<td>DTaP DTaP</td>
</tr>
<tr>
<td>2–3 years</td>
<td>DTaP</td>
</tr>
<tr>
<td>4–6 years</td>
<td>DTaP</td>
</tr>
<tr>
<td></td>
<td>Influenza (Yearly)*</td>
</tr>
<tr>
<td></td>
<td>MMR</td>
</tr>
<tr>
<td></td>
<td>Varicella</td>
</tr>
<tr>
<td></td>
<td>HepA§</td>
</tr>
</tbody>
</table>

*Shaded boxes indicate the vaccine can be given during shown age range.

Kawasaki Disease (KD)

- Acute, self-limited febrile illness of unknown etiology that predominantly affects children < 5 years of age
- KD can result in inflammation, dilation and aneurysms of the medium-sized arteries, particularly the epicardial coronary arteries
- Timely initiation of treatment with intravenous immunoglobulin (IVIG) has reduced the incidence of coronary artery aneurysms from 25% to ≈4%
Clinical criteria of Kawasaki disease

• ≥ 5 days fever
• 4 of the following:
 – Bilateral conjunctival injection
 – Oral mucosal changes
 – Peripheral extremity changes
 – Rash
 – Cervical lymphadenopathy
Epidemiology

- The estimated incidence in North America is ≈25 cases per 100,000 children <5 years of age per year
 - The highest relative risk is in Asian children, especially of Japanese ancestry
 - The ratio of males to females is ≈1.5:1
- Coronary artery aneurysms from KD account for 5% of acute coronary syndromes in adults <40 years of age
- KD is the leading cause of acquired heart disease in children in developed countries

Data for age adjustment

- Healthcare Cost and Utilization Project Kids’ Inpatient Database (HCUP KID) was pre-specified as source of KD background rates
- Used most up-to-date HCUP KID data containing month-of-age, 2009
- Modeled KD by age using polynomial functions (in successive models)
- Ultimately chose 4th-order polynomial function to obtain offset terms for age adjustment
KID 2009 Kawasaki rate for 2-35 months of age
Model 4: Kawasaki_count = Agemonth + Agemonth^2 + Agemonth^3 + Agemonth^4

- Observed rate
- Predicted rate
Using offset terms to adjust for age in SCRI

- Each KD case in the SCRI analysis (i.e., occurring in a risk or control window (RW or CW)) gets an offset term.
- Offset term corresponds to:
 - age at index PCV13 vaccination, and
 - dose number (because determines control window)
 (CW for Dose 1 or 2: Days 29-56; CW for Dose 3 or 4: Days 43-70)
- Whether case in RW or CW has no bearing on offset term.
- Offset term =
 $$\ln \left(\frac{\text{estimated cumulative baseline risk in RW}}{\text{estimated cumulative baseline risk in CW}} \right)$$
Addressing possibility of risk window > 28 days

- **SCRI** pre-specified control windows meant to address this (Doses 1&2: Days 29-56; Doses 3&4: Days 43-70)
 - Results null

- **Cohort** with Days 1-42 risk window
 - Results null

- **Temporal scan**, Days 1-56
 - Results presented earlier