Promises and Challenges of Screening for Adverse Events in Sentinel

Michael D. Nguyen, MD
FDA Sentinel Lead
Office of Surveillance and Epidemiology
Center for Drug Evaluation and Research
August 28, 2017
Plan for Talk

• When and why does FDA need safety screening approaches?
• How has Sentinel contributed to advancing these methods?
• What are some of the key remaining challenges?
FDA Amendments Act 2007

• “to provide for adverse event surveillance ... to create a robust system to identify adverse events and potential drug safety signals”

• “develop validated methods for the establishment of a postmarket risk identification and analysis system to link and analyze safety data from multiple sources”

The US Food and Drug Administration’s Sentinel Initiative: Expanding the horizons of medical product safety

Melissa A. Robb1*, Judith A. Racoosin1, Rachel E. Sherman1, Thomas P. Gross2, Robert Ball3, Marsha E. Reichman4, Karen Midthun5 and Janet Woodcock6

1Office of Medical Policy, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
2Office of Surveillance and Biometrics, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD 20993, USA
3Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA
4Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993 USA
5Center for Biologics Evaluation and Research, Food and Drug Administration, Rockville, MD 20852, USA
6Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA
The system being created under the auspices of the Sentinel Initiative (the *Sentinel System*) will help FDA identify and investigate postmarket safety signals, a concern about an excess of adverse events compared with what is expected to be associated with a product’s use, through the processes of signal generation, signal refinement, and signal evaluation. *Signal generation* is an approach that uses statistical methods to identify medical product–adverse outcome associations that may be safety signals; no particular medical product exposure or adverse outcome is pre-specified. *Signal refinement* is a process by which an identified potential safety signal is further investigated to determine whether evidence exists to support a relationship between the medical product exposure and the outcome. *Signal evaluation* consists of the implementation of a full epidemiological analysis to more thoroughly evaluate the causal relationship between exposure to the medical product and the adverse outcome of interest.

Signal refinement, the initial focus of the Sentinel Ini-
Comprehensive Approach

The FDA’s Sentinel Initiative—A Comprehensive Approach to Medical Product Surveillance

R Ball¹, M Robb¹, SA Anderson² and G Dal Pan¹

In May 2008, the Department of Health and Human Services announced the launch of the Sentinel Initiative by the US Food and Drug Administration (FDA) to create the Sentinel System, a national electronic system for medical product safety surveillance.¹,² This system complements existing FDA surveillance capabilities that track adverse events reported after the use of FDA regulated products by allowing the FDA to proactively assess the safety of these products. The success of the Mini-Sentinel pilot⁴ and leverage the Sentinel Infrastructure, a distributed database with a Common Data Model to enable the creation of analytical programs to be run remotely in participating data partner’s secure data environment for analysis. The FDA is also seeking to develop the use of the Sentinel Infrastructure for questions outside of safety surveillance, but of importance to the FDA in the protection and promotion of public health. All these elements are defined in Table 1.

Assessment of the Sentinel System’s current capabilities

The Sentinel Program Interim Assessment mandated by the Prescription Drug User Fee Act (PDUFA) V concluded that “In the implementation and execution of Mini-
The FDA’s Sentinel Initiative—A Comprehensive Medical Product Safety System

R Ball¹, M Robb¹, SA Wise²

In May 2008, the Deputy Commissioner for Regulatory Affairs at the US Food and Drug Administration (FDA) announced the launch of the Sentinel Initiative, a national electronic safety surveillance system.¹² This initiative is designed to improve the use of FDA regulatory data to proactively assess the safety of medical products and identify potential safety concerns.

Early warning system

The FDA is focusing on projects to refine existing methodologies and develop new and innovative approaches to support safety surveillance. For example, several projects are underway to test methods of identifying unexpected safety concerns. CBER conducted a pilot study on a vaccine to evaluate one statistical approach, TreeScan, and has launched another pilot study, a prospective evaluation of a recently licensed vaccine to further evaluate the tool in conducting general safety studies.¹⁰
Examples of Requested Studies

• “The outcomes will include major congenital malformations, spontaneous abortions, stillbirths, and small for gestational age births.”

• “The study’s primary outcome is malignancy. Secondary outcomes include, but are not limited to, serious infection, tuberculosis, opportunistic infections, hypersensitivity reactions, autoimmune disease, neurologic or demyelinating disease, cardiovascular, gastrointestinal or hematologic adverse events.”

• “drug-induced liver injury, serious infections, and immune-mediated disorders, including hepatitis, noninfectious colitis, serious skin reactions, Type I diabetes, thyroid disease, sarcoidosis, and other immune disorders”

• “chronic kidney disease, periampullary cancer, gastric polyps, dementia, AMI, celiac disease”

• “Events for monitoring would include serious infection, tuberculosis, opportunistic infections, malignancy, hypersensitivity reactions, autoimmune disease, neurologic or demyelinating disease, cardiovascular, gastrointestinal or hematologic adverse events, eye disorders, herpes virus infections, parasitic infections, and atopic conditions (e.g., asthma)”
Common Themes of Requests

• **Desire for depth within a single clinical area**
 – Numerous outcomes within a single anatomic, disease or pathophysiologic area

• **Yet span across organ systems**
 – Outcomes that span across multiple organ systems, disease processes, signs and symptoms

• **With a variety of degrees of clinical suspicion**
 – Origin of need and clinical index of suspicion differs by health outcome
 – Duration and size of safety database pre-approval differs

• **In other words...**
 – Concern is often specific enough to name ≥1 disease entity, but not specific enough to focus a study on that entity
 – A single concern drives a set of concerns that are biologically plausible
Range of Different Starting Points

Assume: Pre-approval scenario, issues can occur in combination and not mutually exclusive*

- Mechanism of action
- Pre-clinical data
- Small clinical trial imbalances (chance?)
- Larger clinical trial imbalances

No suspicion

Some degree of suspicion

* For illustration purposes; not a comprehensive list
ICH E2C(R2) Signal Definition

Both the Endpoint and the Context

“Information that arises from one or multiple sources (including observations and experiments), that suggests a new potentially causal association, or a new aspect of a known association, between an intervention and an event or set of related events, either adverse or beneficial, that is judged to be of sufficient likelihood to justify further action to verify.”

Plan for Talk

• When and why does FDA need safety screening approaches?
• How has Sentinel contributed to advancing these methods?
• What are some of the key remaining challenges?
Categories of Projects in Sentinel

One of earliest decisions is whether to select a broad-based approach (e.g., TreeScan) or an approach with a pre-defined outcome (e.g., Level 3).
Varieties of TreeScan Methods

<table>
<thead>
<tr>
<th></th>
<th>Exposure Indexed</th>
<th>Outcome Indexed</th>
</tr>
</thead>
</table>
| **Self controlled** | - Self control risk interval (Bernoulli)
 - Tree-temporal (SCRI + temporal scan) | Case-crossover (DrugScan) |
| **Cohort-based** | - Cohort (Poisson)
 - Propensity scored matched TreeScan | None |

Each type can condition on pre-exposure healthcare utilization rates, to control for temporal trends before and after exposure.
Select Ongoing Projects

• TreeScan
 – Tree-temporal pilot with long acting contraceptives
 – Propensity score based TreeScan simulation
 – Enhancing TreeScan for long-term follow-up

• L3 sequential surveillance
 – Pilot of angioedema after ACE inhibitors

• Other developmental projects related to screening
 – Evaluation of Patient Episode Profile Retrieval (PEPR) to manage alerts
 – Switching of between brand and generic medications
 – Medication error detection (e.g., name confusion, dose errors)

https://www.sentinelinitiative.org/sentinel/methods
Plan for Talk

• When and why does FDA need safety screening approaches?
• How has Sentinel contributed to advancing these methods?
• What are some of the key remaining challenges?
Intuitively Simple; Deceptively Difficult

<table>
<thead>
<tr>
<th></th>
<th>FAERS</th>
<th>Sentinel</th>
</tr>
</thead>
</table>
| **Data source** | Reports with some clinical suspicion for association
 Known limitations of spontaneous reports | All healthcare encounters; longitudinal data
 Known limitations of claims data |
| **Required** | “Always on”
 Few design decisions | Need “to activate”
 Many design decisions |
| **Decisions** | | |
| **Analytic** | Universal approach
 “All drugs by all outcomes” | Many statistical methods
 Choice of drug(s) and outcomes |
| **Approach** | | |
| **Alert** | Well established
 Case series approach | Under development |
| **Investigation** | | |
Challenges of Deciding When to Activate

Depends on drug characteristics: NME vs. follow-on, drug indication, disease treatment tier, etc.
When to Activate Depends On Many Factors

Drug Uptake vs Years After Approval

- Drug A
- Drug B
- Drug C

TreeScan
Level 3 Analysis
Reasons to Be Careful

<table>
<thead>
<tr>
<th></th>
<th>Traditional Retrospective Study</th>
<th>Screening for Unexpected Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regulatory Setting</td>
<td>Evidence of safety concern</td>
<td>Variable underlying clinical suspicion</td>
</tr>
<tr>
<td>Outcome</td>
<td>Use of complex, validated algorithm or chart review</td>
<td>- Outcome codes with variable specificity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Mixture unintended + intended effects</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Finite resources for chart review</td>
</tr>
<tr>
<td>Power</td>
<td>Powered to a single drug-event pair</td>
<td>- Variable power across many outcomes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Subject to false reassurance</td>
</tr>
<tr>
<td>Confounding</td>
<td>Tailored to drug-event pair</td>
<td>Single nonspecific confounding control strategy</td>
</tr>
<tr>
<td>Multiple comparisons</td>
<td>N/A</td>
<td>Baseline rate of false positives</td>
</tr>
<tr>
<td>Communication of Results</td>
<td>Clear communication point at end of study</td>
<td>- Generates results with uncertainty</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Alert fatigue; potential to confuse study approaches with screening approaches</td>
</tr>
</tbody>
</table>
How it Might Work

1 drug

Use TreeScan
Screen for all outcomes

All Sentinel
Data Partners

Generate
statistical alerts

Clinician review
of claims profiles
+
Follow-up
sensitivity analyses

Further study

- Categorized alerts
- Uncategorized alerts

Confirmed or
unconfirmed alerts
Summary

• There is a clear regulatory need and public expectation for signal detection in Sentinel
• FDA is invested in and has invested in approaches to detect unexpected adverse events in Sentinel
 – Prospective sequential surveillance (L3)
 – TreeScan
 – Other screening approaches (medication errors, switching)
• Such methods draw inspiration from sophisticated study designs but are configured to achieve either increase speed (Level 3 analysis) or breath of surveillance (TreeScan)
• Numerous trade-offs emerge in order to achieve these desirable characteristics, and their performance needs to be better characterized before routine implementation