

Sentinel Mother-Infant Linkage and Pregnancy Analyses

Canadian Mother-Child Cohort (CAMCCO) Active Surveillance – 1st Team and Stakeholders Symposium

Elizabeth Suarez, PhD, Harvard Pilgrim Health Care Institute

February 20, 2020

Agenda

- Sentinel Overview
- Introduction to Cohort Identification and Analysis (CIDA)
- Creating a cohort of deliveries
 - Identify live birth deliveries
 - Estimate pregnancy start
 - Create a non-live birth comparator cohort
 - Identify medical product use in pregnancy
 - Create exposed and referent cohorts
 - Identify maternal or infant outcomes

Sentinel Program Overview

What is the Sentinel System?

One of the FDA's biggest jobs is to make sure drugs, vaccines, and medical devices are safe. FDA wants to know if patients get bad side effects from these products. To make it faster and easier to learn about problems, FDA created a special program called the Sentinel System.

How the Sentinel System Works

Sentinel System's 3 important parts

- Information: The system looks at billing claims and patient records.
- **Expert Team: Sentinel** works with scientists. doctors and computer experts.
- **Computer Programs:** They study large groups of patients who take the same medicine. or use the same device.

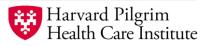
Personal privacy

- No one at FDA or the **Sentinel Operations** Center has access to your name, address, or any other information that identifies you.
- For more information. visit sentinelinitiative.org.

Sentinel asks questions like:

- How many patients take the same drug?
- How many patients are getting bad side effects (swelling, bleeding, etc.)?
- Are side effects more common after taking one drug than after another drug that treats the same problem?

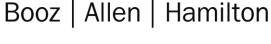
How does FDA use the information?


- FDA can choose to collect more information.
- FDA can provide updated safety information for patients and providers.
- If you have concerns about your own medical products, please contact your doctor.

Collaborating Organizations

Lead: Harvard Pilgrim Health Care Institute

Data & Scientific Partners



NYC-CDRN

New York City Clinical

IBM Watson Health

MEDICAL CENTER

Kaiser Permanente Washington Health Research Institute

(itin) PEDSnet

PaTH Network

Sentinel Data Philosophy

- Includes claims, electronic health record (EHR), and registry data and flexible enough to accommodate new data domains (e.g., free text).
 - Typically, we do not include empty tables we expand as needed when fit for purpose.
- Data are stored at most granular/raw level possible with minimal mapping.
 - Distinct data types should be kept separate (e.g., prescriptions, dispensings)
 - Construction of medical concepts (e.g., outcome algorithms) from these elemental data is a project-specific design choice.
 - Sentinel stores these algorithms in a library for future use.
- Appropriate use and interpretation of local data requires the Data Partners' local knowledge and data expertise.
 - Not all tables are populated by all Data Partners → site-specificity is allowed.
- Designed to meet FDA needs for analytic flexibility, transparency, and control.

Available Data Elements

Administrative Data						
Enrollment	Demographic	Dispensing	Encounter	Diagnosis	Procedure	
Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	
Enrollment Start &	Birth Date	Dispensing Date	Service Date(s)	Service Date(s)	Service Date(s)	
End Dates	Sex	National Drug Code	Encounter ID	Encounter ID	Encounter ID	
Drug Coverage	Zip Code	(NDC)	Encounter Type and	Encounter Type and	Encounter Type and	
Medical Coverage	Etc.	Days Supply	Provider	Provider	Provider	
Medical Record		Amount Dispensed	Facility	Diagnosis Code &	Procedure Code &	
Availability	Availability		Etc.	Туре	Туре	
				Principal Discharge	Etc.	
				Diagnosis		

Clinical Data					
Lab Result	Vital Signs				
Patient ID	Patient ID				
Result & Specimen Collection Dates	Measurement Date & Time				
Test Type,	Height & Weight				
Immediacy & Location	Diastolic & Systolic BP				
Logical Observation Identifiers Names	Tobacco Use & Type				
and Codes (LOINC®)	Etc.				
Etc.					

Registry Data						
Death	Cause of Death	State Vaccine				
Patient ID	Patient ID	Patient ID				
Death Date	Cause of Death	Vaccination Date				
Source	Source	Admission Date				
Confidence	Confidence	Vaccine Code & Type				
Etc.	Etc.	Provider				
		Etc.				

inpatient Data				
Inpatient Pharmacy	Inpatient Transfusion			
Patient ID	Patient ID			
Administration Date & Time	Administration Start & End Date & Time			
Encounter ID	Encounter ID			
National Drug Code (NDC)	Transfusion Administration ID			
Route	Transfusion Product			
Dose	Code			
Etc.	Blood Type			
	Etc.			

Innationt Data

Mother-Infant Linkage Mother ID Mother Birth Date Encounter ID & Type Admission & Discharge Date Child ID Child Birth Date Mother-Infant Match Method

Etc.

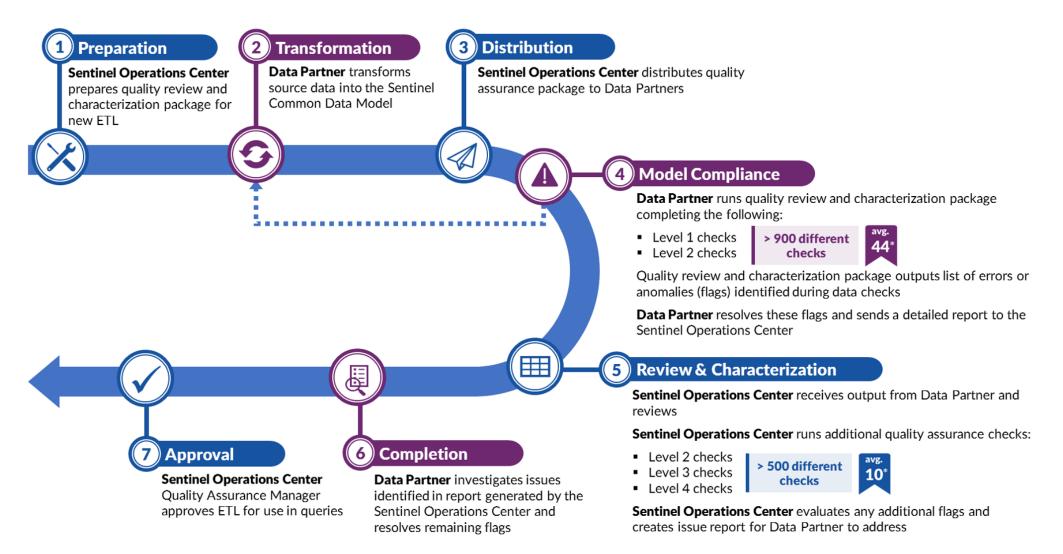
Mother-Infant Linkage Data

Single Patient Example Data in Model

	DEN	10G	RAPHIC			
PATID	BIRTH_DATE	SEX	HISPANIC	RACE	zi	р
PatID1	2/2/1984	4 F	N		5	32818

ENCOUNTER					
PATID	ENCOUNTERID	ADATE	DDATE	ENCTYPE	
PatID1	EncID1	10)/18/2005 10	0/20/2005 IP	

ENROLLMENT						
PATID	ENR_START	ENR_END	MEDCOV	DRUGCOV		
PatID1	7/1/2004	12/31/2006	Υ	Υ		
PatID1	9/1/2007	6/30/2009	Υ	Υ		


DIAGNOSIS							
PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYPE	DX	DX_CODETYPE	PDX
PatID1	EncID1	10/18/2005	Provider1	IP	296.2		9 P
PatID1	EncID1	10/18/2005	Provider1	IP	300.02		9 S
PatID1	EncID1	10/18/2005	Provider1	IP	305.6		9 S
PatID1	EncID1	10/18/2005	Provider1	IP	311		9 P
PatID1	EncID1	10/18/2005	Provider1	IP	401.9		9 S
PatID1	EncID1	10/18/2005	Provider1	IP	493.9		9 S
PatID1	FncID1	10/18/2005	Provider1	IP	715 0		95

DISPENSING					
PATID	RXDATE	NDC	RXSUP	RXAMT	
PatID1	10/14/2005	00006074031	30	30	
PatID1	10/14/2005	00185094098	30	30	
PatID1	10/17/2005	00378015210	30	45	
PatID1	10/17/2005	54092039101	30	30	
PatID1	10/21/2005	00173073001	30	30	
PatID1	10/21/2005	49884074311	30	30	
PatID1	10/21/2005	58177026408	30	60	
PatID1	10/22/2005	00093720656	30	30	

	PROCEDURE					
PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYPE	PX	PX_CODETYPE
PatID1	EncID1	10/18/2005	Provider1	IP	84443	C4
PatID1	EncID1	10/18/2005	Provider1	IP	99222	C4
PatID1	EncID1	10/18/2005	Provider1	IP	99238	C4
PatID1	EncID1	10/18/2005	Provider2	IP	27445	C4

				MOTHER-INFA	NT LINKAGE			
MPATID	ADATE	DDATE	CPATID	CBIRTH_DATE	CSEX	CENR_START	BIRTH_TYPE	MATCHMETHOD
PatID1	5/3/2006	5/5/2006	PatID2	5/2	2/2006 M	6/1/	/2006	1SI

Data Quality Review and Characterization Process

^{*} On average, there are 44 flags identified by the program and 10 additional flags identified by the Sentinel Operations Center per ETL

Data Quality Checks and Examples

Level 1 Checks

Completeness

✓ Admission date is not missing value

Validity

✓ Admission date is in date format

Sentinel Common Data Model Compliance

Level 2 Checks

Accuracy

✓ Admission date occurs before the patient's discharge date

Integrity

✓ Admission date occurs within the patient's active enrollment period

Cross-Variable and Cross-Tabular

Level 3 Checks

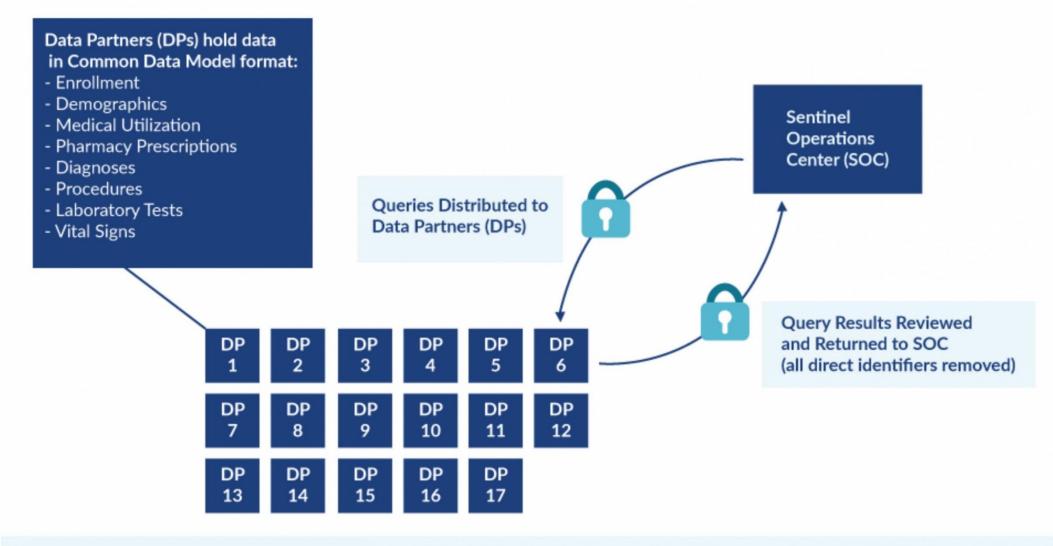
Consistency of Trends

✓ There is no sizable percent change in admission date record counts by month-year

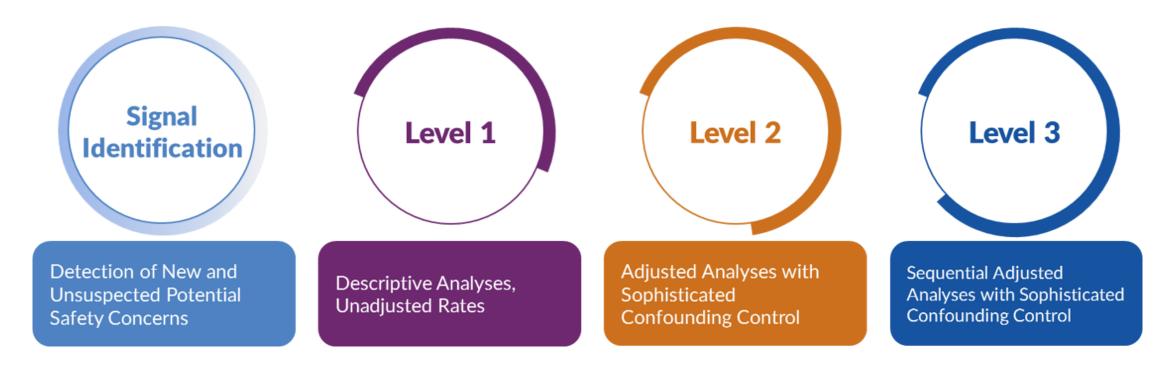
Cross-ETLs

Level 4 Checks

Plausibility

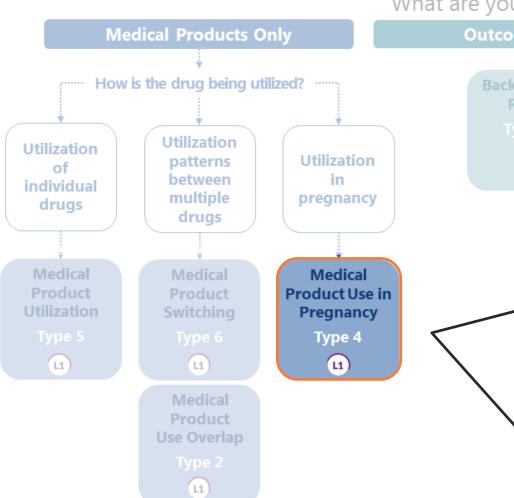

✓ There is no sizable percent change in the number of prostate cancer encounters by sex*

Cross-ETLs

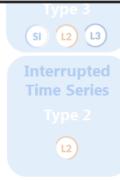

*Under development

Sentinel Data Queries: Routine Querying Tools

Sentinel is a Distributed Data Network


Active Risk Identification and Analysis (ARIA)

- Template computer programs with standardized questions
- Parameterized at program execution
- Pre-tested and quality-checked
- Standard output


What are you investigating? **Medical Products Only Outcomes Only Medical Products & Outcomes** How is the drug being utilized? Background **Incidence** Rates Rates Type 1 Utilization Utilization patterns Utilization L1 (L1) of in between individual multiple pregnancy drugs **Propensity** drugs Score **Analysis** Medical Medical Medical **Product Product Product Use in** SI L2 L3 Utilization **Switching Pregnancy** Multiple Type 5 Type 6 Type 4 Factor (L1) (L1) (L1) Matching Medical **Product** SI L2 L3 **Use Overlap Self-Controlled** Type 2 **Risk Interval** (L1) Design SI L2 L3 Interrupted **Time Series** (L2) (SI) Signal Identification (L1) Level 1 Analysis (L2) Level 2 Analysis (L3) Level 3 Analysis

What are you investigating?

Construct Pregnancy Episodes and Identify Medical Product Use (Type 4)

- Identifies live births to create pregnancy episodes and assesses medical product use during pregnancy episodes and in a comparator group of women.
- Output metrics include number of pregnancy episodes, medication use stratified by trimester.
- Example:
 - Evaluate utilization patterns of phosphodiesterase 5 inhibitors in pregnant women

Submit Comment

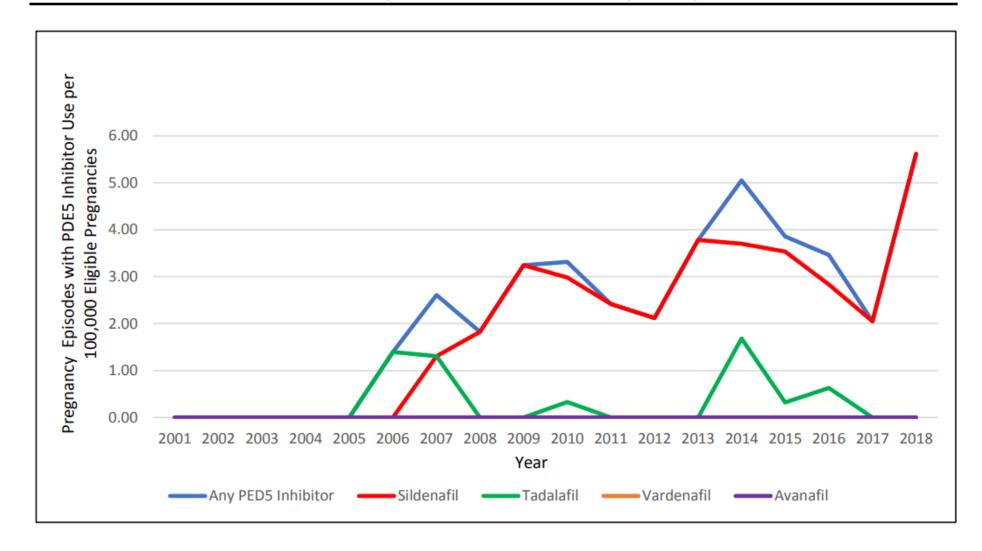
Phosphodiesterase Type 5 (PDE5) Inhibitor **Utilization Among Women**

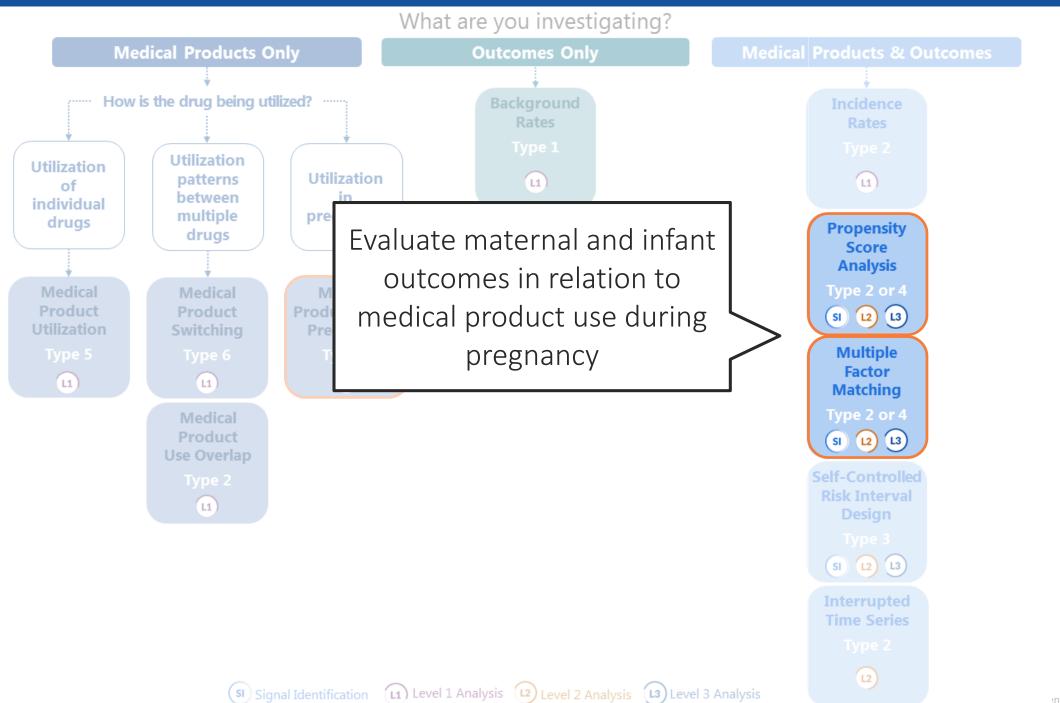
Project Title	Phosphodiesterase Type 5 (PDE5) Inhibitor Utilization Among Women
Date Posted	Friday, October 12, 2018
Project ID	cder_mpl1r_wp111-112
Status	Complete
Deliverables	Sentinel Modular Program Report: Phosphodiesterase Type 5 (PDE5) Inhibitor Utilization Among Reproductive-Aged Women, Report 1
	Sentinel Modular Program Report: Phosphodiesterase Type 5 (PDE5) Inhibitor Utilization Among Pregnant Women, Report 2
Description	The goal of this query was to estimate phosphodiesterase type 5 (PDE5) inhibitor utilization among women in the Sentinel Distributed Database (SDD). Report 1 contains estimates of phosphodiesterase type 5 (PDE5) inhibitor use among reproductive-aged women. Report 2 contains estimates of PDE5 inhibitor use that occurred during a pregnancy ending in a live-born delivery or within 90 days prior to pregnancy start, among women. Data from January 1, 2001 to March 31, 2018 from 16 Data Partners contributing to the SDD were included in this report. This request was distributed to Data Partners on August 27, 2018.
Medical Product	phosphodiesterase type 5 (PDE5) inhibitor

PDE5 Inhibitor use among women with live birth deliveries

Table 1a. Summary of Pregnancy Episodes with Prevalent Phosphodiesterase Type 5 (PDE5) Inhibitor Use among Women with Live Birth Deliveries in the Sentinel Distributed Database between January 1, 2001 and March 31, 2018, by Pregnancy-Related Time Period

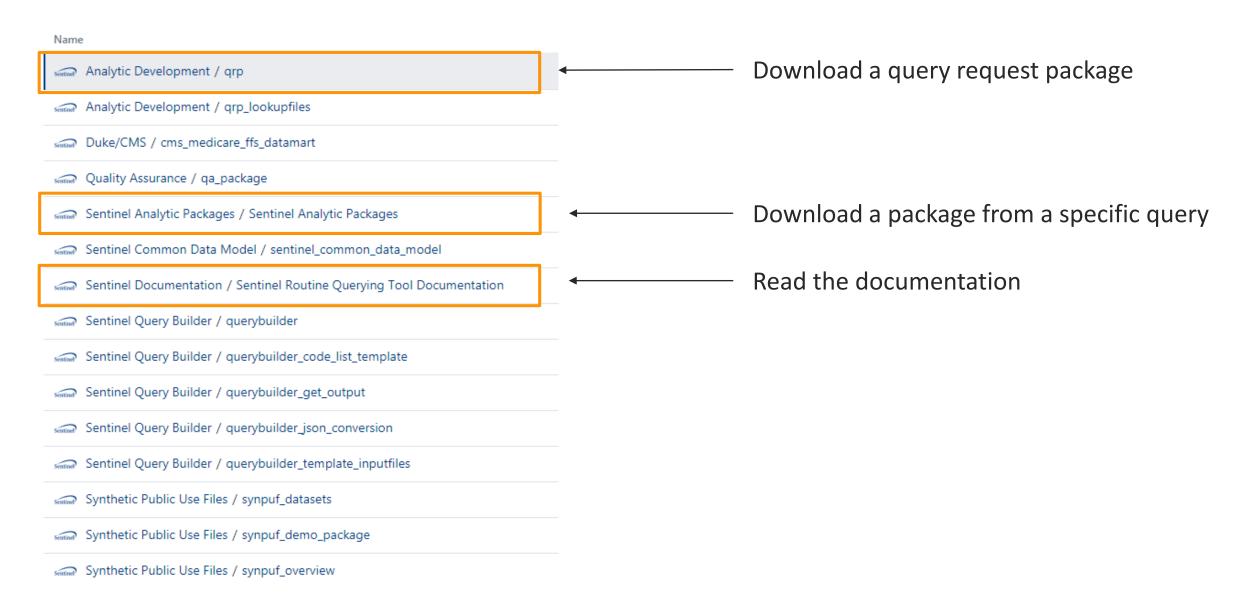
Total Number of Eligible Pregnant Women: 2,776,562										
	Number of Pregnancy Episodes with Product Use									
	During Any Period ¹	90 Days Before Pregnancy Start	Any Trimester	1st Trimester	2nd Trimester	3rd Trimester	All Trimesters	Only During 1st Trimester	Only During 2nd Trimester	Only During 3rd Trimester
Number of Eligible Pregnancy Episodes	3,373,369	3,373,369	3,373,369	3,373,369	3,373,369	3,368,587	3,368,587	3,373,369	3,373,369	3,368,587
Any PDE5 Inhibitor	139	91	96	88	21	21	16	71	3	4
Sildenafil	127	83	85	81	13	12	10	70	2	2
Tadalafil	14	8	12	7	8	10	6	1	1	3
Vardenafil	1	1	0	0	0	0	0	0	0	0
Avanafil	0	0	0	0	0	0	0	0	0	0


PDE5 Inhibitor use among women with live birth deliveries


Table 4. Percentage of Prevalent Episodes of Phosphodiesterase Type 5 (PDE5) Inhibitor Use with Related Conditions and Indications Among Women with Live Birth Deliveries in the Sentinel Distributed Database between January 1, 2001 and March 31, 2018

	Any PDE5 Inhibitor	Sildenafil	Tadalafil	Vardenafil	Avanafil
Total Episodes ¹	148	133	18	1	0
Conditions and Indications ²					
Cardiovascular implications	3.4%	2.3%	11.1%	0.0%	0.0%
Cutaneous implications	9.5%	9.8%	5.6%	0.0%	0.0%
Gastrointestinal implications	0.0%	0.0%	0.0%	0.0%	0.0%
Neurological implications	2.0%	0.8%	11.1%	0.0%	0.0%
Pulmonary arterial hypertension	15.5%	10.5%	61.1%	0.0%	0.0%
Pulmonary implications	2.0%	1.5%	11.1%	0.0%	0.0%
Reproductive implications	38.5%	37.6%	50.0%	0.0%	0.0%
Sexual implications	2.7%	3.0%	0.0%	0.0%	0.0%
Urogenital implications	4.7%	3.8%	16.7%	0.0%	0.0%
Fetal growth retardation	25.0%	26.3%	16.7%	0.0%	0.0%
Preeclampsia	31.1%	29.3%	50.0%	0.0%	0.0%
Diabetes	6.1%	6.8%	0.0%	0.0%	0.0%
Lupus	6.8%	5.3%	16.7%	0.0%	0.0%
None of the conditions of interest	35.1%	35.3%	22.2%	100.0%	0.0%

PDE5 Inhibitor use among women with live birth deliveries


Figure 1. Utilization of Phosphodiesterase Type 5 (PDE5) Inhibitors Among Women with Live Birth Deliveries in the Sentinel Distributed Database between January 1, 2001 and March 31, 2018, by Delivery Year

Sentinel's Public Documentation and SAS Program Depot

Public Repositories - https://dev.sentinelsystem.org/

Data Quality Review and Characterization Programs

Quality Assurance (QA) Package

Overview

This document describes the program package used to perform quality assurance (QA) review and characterization of data in the Sentinel Common Data Model (SCDM) format. This program package helps to ensure the data meets the necessary standards for data transformation consistency and quality.

Analytic programs that are executed against data that is not in SCDM format will likely yield errors. Successful execution of the QA package indicates that the source data adheres to SCDM rules. Note that data must be in the form of SAS® datasets in order to use these analytic programs.

Folder Structure

- docs: is where specifications are saved; specifications provide details about the request parameters and functionality of the QA package
- dplocal: is where datasets with patient identifiers are saved. For more information about Sentinel's privacy standards, please refer to The Sentinel System Principles and Policies.
- inputfiles: is the subfolder containing all input files and lookup tables needed to execute a request. Input files contain information on what tables should be output and the type of analyses conducted on the variables in each table
- msoc: is where aggregated program results are saved
- sasprograms: contains the file(s) to be executed

Requirements

- UNIX/Linux or Windows environment
- SAS version 9.3 or higher
- SCDM formatted data (Medicare Claims Synthetic Public Use Files are available in the Sentinel Common Data Model Format here)

Cohort Identification and Descriptive Analysis (CIDA)

SENTINEL ROUTINE QUERYING SYSTEM OVERVIEW

The purpose of this repository is to document version 8.0.3 of the Sentinel Routine Querying System, also known as the Query Request Package (QRP). This system is comprised of cohort identification and analytic modules.

This documentation describes QRP capabilities and provides the information required to build guery packages (i.e., input and output specifications) to address guestions of interest.

COHORT IDENTIFICATION AND DESCRIPTIVE ANALYSIS (CIDA) MODULE

QRP's Cohort Identification and Descriptive Analysis Module (CIDA) identifies and extracts cohorts of interest from the Sentinel Distributed Database based on requester-defined options (e.g., exposures, outcomes, continuous enrollment requirements, incidence criteria, inclusion/exclusion criteria, relevant age groups, demographics).

CIDA calculates descriptive statistics for the cohort(s) of interest and outputs datasets that may be useful for additional analyses.

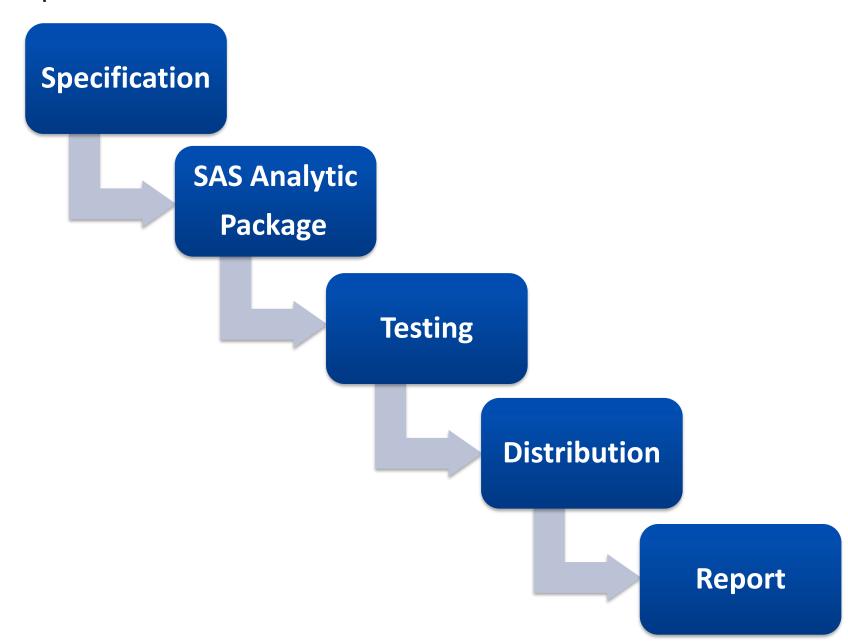
CIDA Cohort Identification Strategies

- Type 1: Extract information to calculate background rates
- Type 2: Extract information on exposures and follow-up time
- Type 3: Extract information for a self-controlled risk interval design
- Type 4: Extract information for medical product use during pregnancy
- Type 5: Extract information for medical product utilization
- Type 6: Extract information on manufacturer-level product utilization and switching patterns

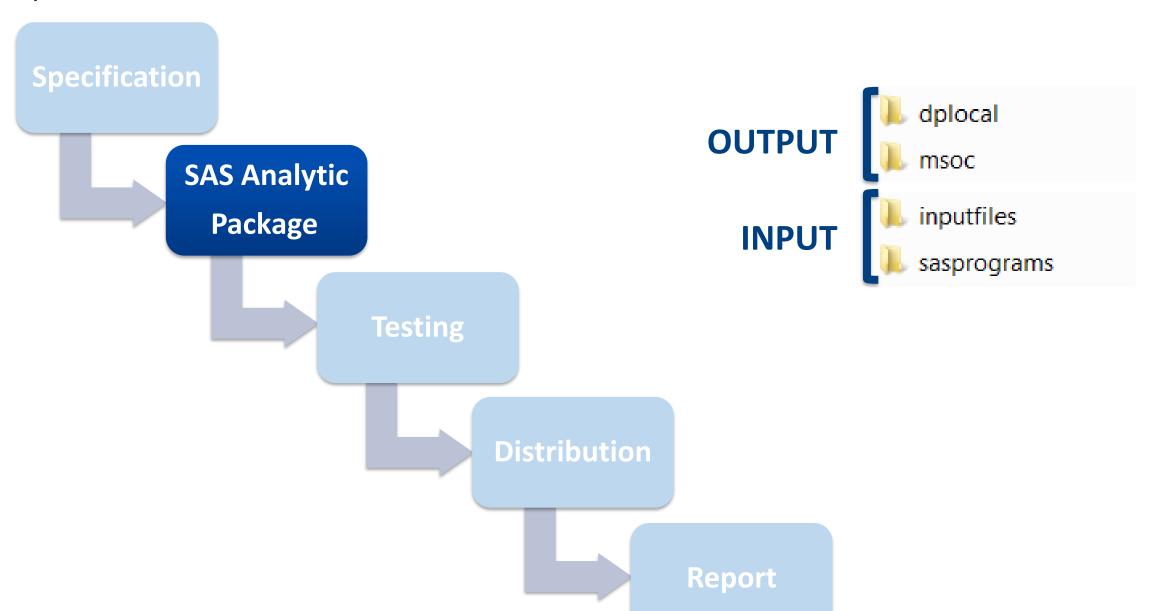
Downloading Sentinel Analytic Packages **Sentinel Analytic Packages**

Overview

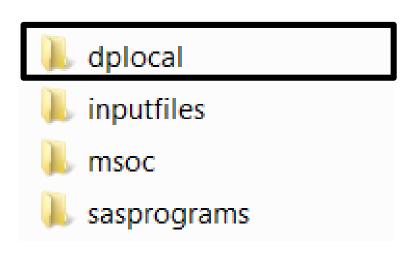
A Sentinel analytic package is a standard folder structure containing detailed user-defined specifications, input files, SAS® macros, and SAS programs used to conduct Sentinel's routine querying analyses. A package allows the user to select the cohort(s) of interest in order to examine their health profile and outcomes.


Sentinel's analytic request packages are intended to run on data formatted in accordance with the Sentinel Common Data Model (SCDM). Note that data must be in SAS datasets to use these analytic programs.

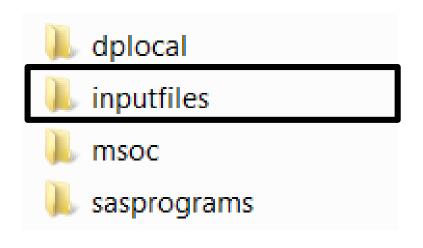
Analytic Request Packages Available for Download


Request ID	Summary
cder_mpl2p_wp011	Osteoporotic Fractures following Lupron Depot-PED Use: A Multiple Factor Matched Analysis
cder_mpl2p_wp016	Non-Melanoma Skin Cancer following Hydrochlorothiazide Use: A Propensity Score Matched Analysis
cder_mpl2p_wp007	Severe Uterine Bleed following Novel Oral Anticoagulants Use: A Propensity Score Matched Analysis
cder_mpl2r_wp008	Acute Myocardial Infarction and Hospitalized Heart Failure following Saxagliptin or Sitagliptin Use: A Propensity Score Matched Analysis
cder_mpl2p_wp009	Stroke, Gastrointestinal Bleeding, and Intracranial Hemorrhage following Apixaban or Warfarin Use in Patients with Non-Valvular Atrial Fibrillation: A Propensity Score Matched Analysis
cder_mpl2p_wp006	Seizure following Ranolazine Use: A Self-Controlled Risk Interval Analysis (an update to cder_mpl2p_wp002)
cder_mpl2p_wp005	Stroke following Atypical Antipsychotic or Z-Hypnotic Use in Patients with Prior Use of Selective Serotonin Reuptake Inhibitors (SSRIs): A Propensity Score Matched Analysis
cder_mpl2p_wp001	Venous Thromboembolism following Continuous or Extended Cycle Contraceptive Use: A Propensity Score Matched Analysis
cder_mpl2p_wp004	Stroke following Typical or Atypical Antipsychotic Use in non-Elderly Patients: A Propensity Score Matched Analysis
cder_mpl2p_wp002	Seizure following Ranolazine Use: A Self-Controlled Risk Interval Analysis

Query Request Package (QRP)


Operations Center Process Flow

Operations Center Process Flow



Query Request Package: folder structure

- [empty before distribution]
- Will contain patient-level data
- Will NOT be returned by DP

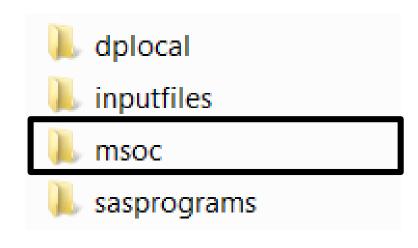
Query Request Package: folder structure

← Macros for running standardized programs Parameterized files created specific to each request

Input Files: user-created with query parameters and codes

la macros	1/14/2020 4:18 PM	File folder	
📴 comorbcodes.sas7bdat	10/30/2019 2:55 PM	SAS Data Set	192 KB
📴 drugclass.sas7bdat	11/18/2019 7:43 PM	SAS Data Set	9,216 KB
readme.md	9/16/2019 9:05 AM	MD File	1 KB
🔻 run_programs.sas	1/14/2020 4:25 PM	SAS System Progr	4 KB
wp013_cohort_r01.sas7bdat	12/27/2019 12:04	SAS Data Set	128 KB
wp013_cohort_r02.sas7bdat	12/27/2019 12:04	SAS Data Set	128 KB
wp013_cohortcodes.sas7bdat	12/27/2019 12:08	SAS Data Set	384 KB
wp013_combo.sas7bdat	12/27/2019 12:07	SAS Data Set	128 KB
wp013_combocodes.sas7bdat	12/27/2019 12:06	SAS Data Set	128 KB
wp013_comorb.sas7bdat	12/27/2019 12:09	SAS Data Set	128 KB
wp013_comparison.sas7bdat	12/27/2019 12:09	SAS Data Set	504 KB
wp013_covar.sas7bdat	12/27/2019 12:09	SAS Data Set	20,928 KB
wp013_exclusions.sas7bdat	12/27/2019 12:08	SAS Data Set	12,480 KB
wp013_micohort.sas7bdat	12/27/2019 12:05	SAS Data Set	128 KB
wp013_monitoring.sas7bdat	12/27/2019 12:04	SAS Data Set	128 KB
wp013_pregdur.sas7bdat	12/27/2019 12:09	SAS Data Set	128 KB
wp013_strata_r01.sas7bdat	12/27/2019 12:09	SAS Data Set	128 KB
wp013_strata_r02.sas7bdat	12/27/2019 12:09	SAS Data Set	128 KB
yp013_subgroup.sas7bdat	12/27/2019 12:09	SAS Data Set	128 KB
wp013_type4.sas7bdat	12/27/2019 12:04	SAS Data Set	128 KB
wp013_util.sas7bdat	12/27/2019 12:09	SAS Data Set	128 KB

Input Files

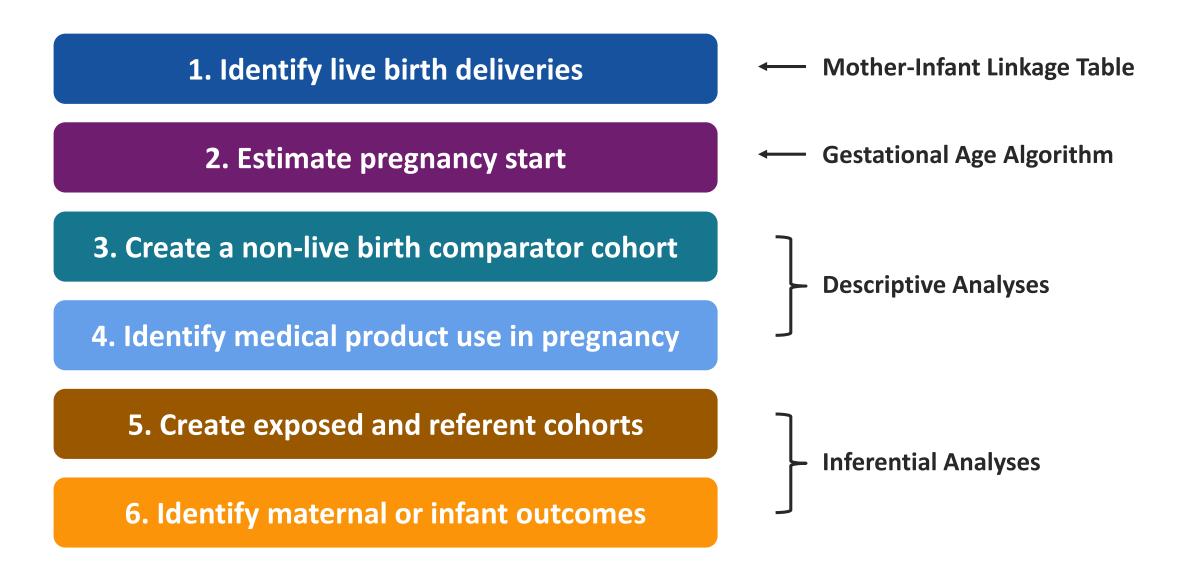

- Varied from request to request / analyst to analyst
- Some are required
- Some are optional

Input Files: standard macros

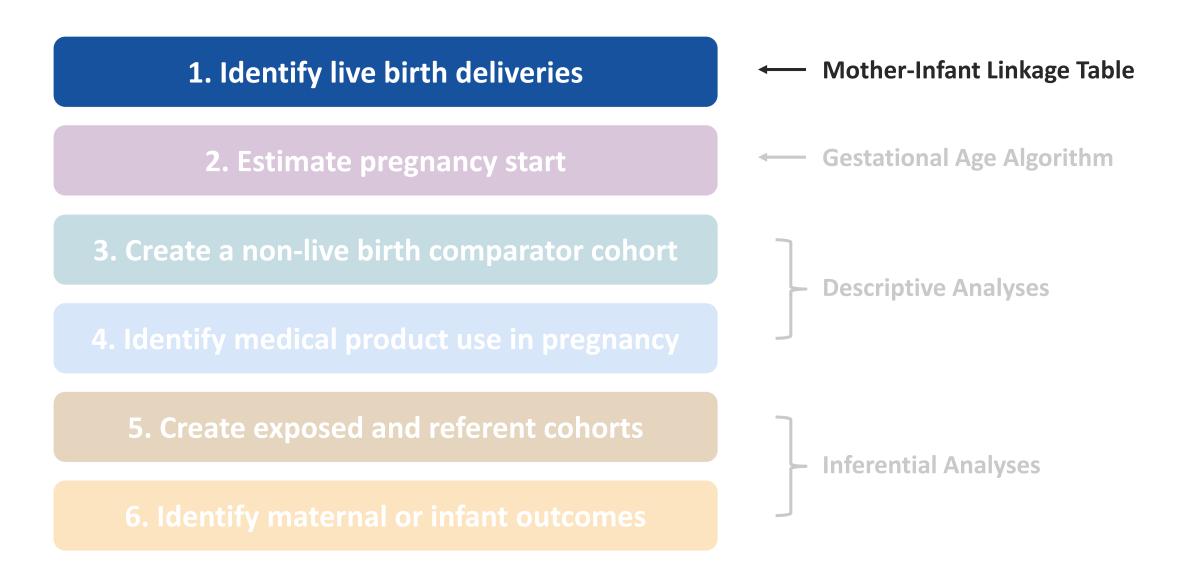
l reportmacros	9/27/2018 4:06 PM	File folder	
combo.sas	5/1/2018 4:01 PM	SAS System Progr	65 KB
matchtables.sas	5/1/2018 4:01 PM	SAS System Progr	36 KB
s ms_agestrat.sas	8/6/2018 4:16 PM	SAS System Progr	6 KB
s ms_appendfiles.sas	5/1/2018 4:01 PM	SAS System Progr	4 KB
s ms_attrition.sas	8/6/2018 4:16 PM	SAS System Progr	33 KB
s ms_caresettingprincipal.sas	5/1/2018 4:01 PM	SAS System Progr	4 KB
s ms_cci_elix.sas	5/1/2018 4:01 PM	SAS System Progr	18 KB
s ms_cidacov.sas	8/6/2018 4:16 PM	SAS System Progr	69 KB
s ms_cidadenom.sas	8/6/2018 4:16 PM	SAS System Progr	62 KB
s ms_cidanum.sas	8/6/2018 4:16 PM	SAS System Progr	48 KB
s ms_cidatables.sas	8/6/2018 4:16 PM	SAS System Progr	21 KB
ms_cidatablest3.sas	8/6/2018 4:16 PM	SAS System Progr	41 KB
s ms_cidatablest4.sas	8/6/2018 4:16 PM	SAS System Progr	42 KB
ms_cidatablest5.sas	8/6/2018 4:16 PM	SAS System Progr	43 KB
s ms_codedistribution.sas	8/6/2018 4:16 PM	SAS System Progr	11 KB
ms_covariate_adjustment.sas	8/6/2018 4:16 PM	SAS System Progr	65 KB
s ms_createcat.sas	5/1/2018 4:01 PM	SAS System Progr	4 KB
ms_createcensortable.sas	8/6/2018 4:16 PM	SAS System Progr	8 KB
s ms_createclaimepi.sas	5/1/2018 4:01 PM	SAS System Progr	4 KB
ms_createcontrolgroup.sas	8/6/2018 4:16 PM	SAS System Progr	27 KB
ms_createpov1.sas	8/6/2018 4:16 PM	SAS System Progr	10 KB
ms_createpov1t4.sas	8/6/2018 4:16 PM	SAS System Progr	7 KB
ms_createpov2.sas	8/6/2018 4:16 PM	SAS System Progr	3 KB
ms_createpov3.sas	8/6/2018 4:16 PM	SAS System Progr	12 KB
ms_createpov4.sas	8/6/2018 4:16 PM	SAS System Progr	6 KB
s ms_createpov4t4.sas	5/1/2018 4:01 PM	SAS System Progr	3 KB
ms_createpov56.sas	8/6/2018 4:16 PM	SAS System Progr	13 KB

CIDA Macros

Query Request Package: folder structure


- ← [empty before distribution]
- Will contain aggregated DP-level data
- WILL be returned by DP

Query Request Package: folder structure



Conducting Pregnancy Analyses in Sentinel

Creating and analyzing a cohort of deliveries

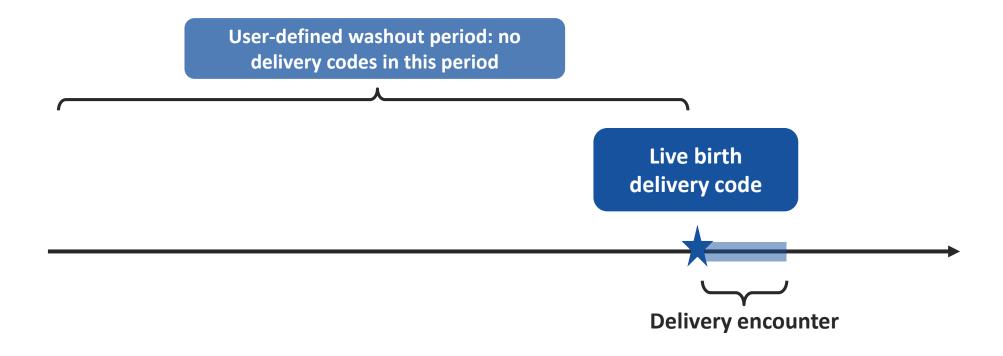
Creating and analyzing a cohort of deliveries

Identifying pregnancies in Sentinel Data

- Data available for identifying deliveries: insurance claims data
- This does NOT include: registry data, electronic health record data, birth certificate data, etc.
- Live birth deliveries and pregnancy episodes are identified using validated algorithms
- Currently, only live birth deliveries are identified
- Identification of non-live birth outcomes (miscarriage, stillbirth) is of interest, but is challenging in US insurance claims data
 - Accuracy of codes to identify non-live birth outcomes is questionable
 - Estimates of gestational age are uncertain

Methods for identifying a live birth cohort

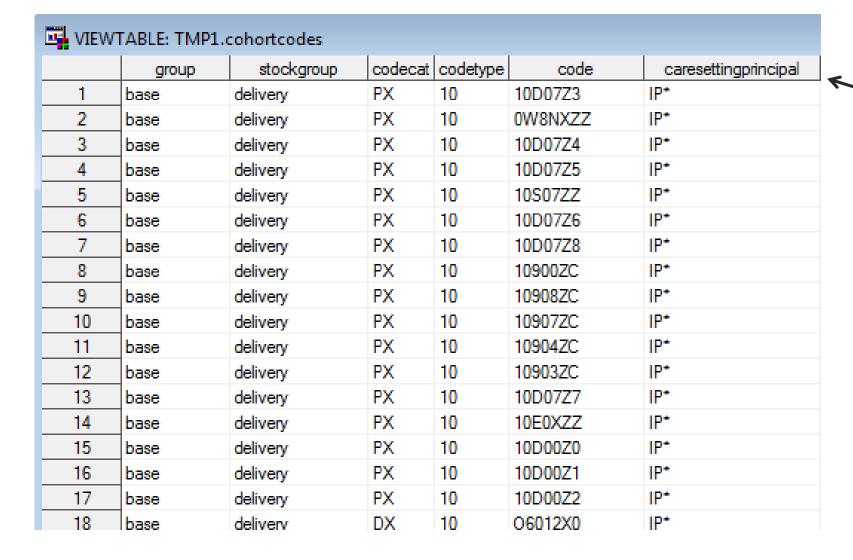
Live birth deliveries and pregnancy episodes are identified using validated algorithms


Any live birth delivery

- Identified using ICD-9 and ICD-10 diagnosis and procedure codes
- Can be implemented at all Data Partners

Live birth delivery linked to an infant

- Identified using the Mother-Infant Linkage Table
- Can be implemented only at Data Partners that maintain a Mother-Infant Linkage Table (currently 6)


Live birth deliveries: codes

User-specified: Live birth delivery encounter type

Live birth delivery date = admission date for delivery encounter

Live birth deliveries: codes

This variable does two things:

- Specifies encounter type
- Specifies the position of discharge diagnosis codes

IP* = diagnosis code can be in the principle or secondary diagnosis position

Specifying IPP would result in:

- Including only delivery codes that occur in the inpatient setting
- Including only diagnosis codes that are the principle discharge codes

Mother-Infant Linkage Table

Mother-Infant Linkage Data

Mother-Infant Linkage

Mother ID

Mother Birth Date

Encounter ID & Type

Admission & Discharge Date

Child ID

Child Birth Date

Mother-Infant Match Method

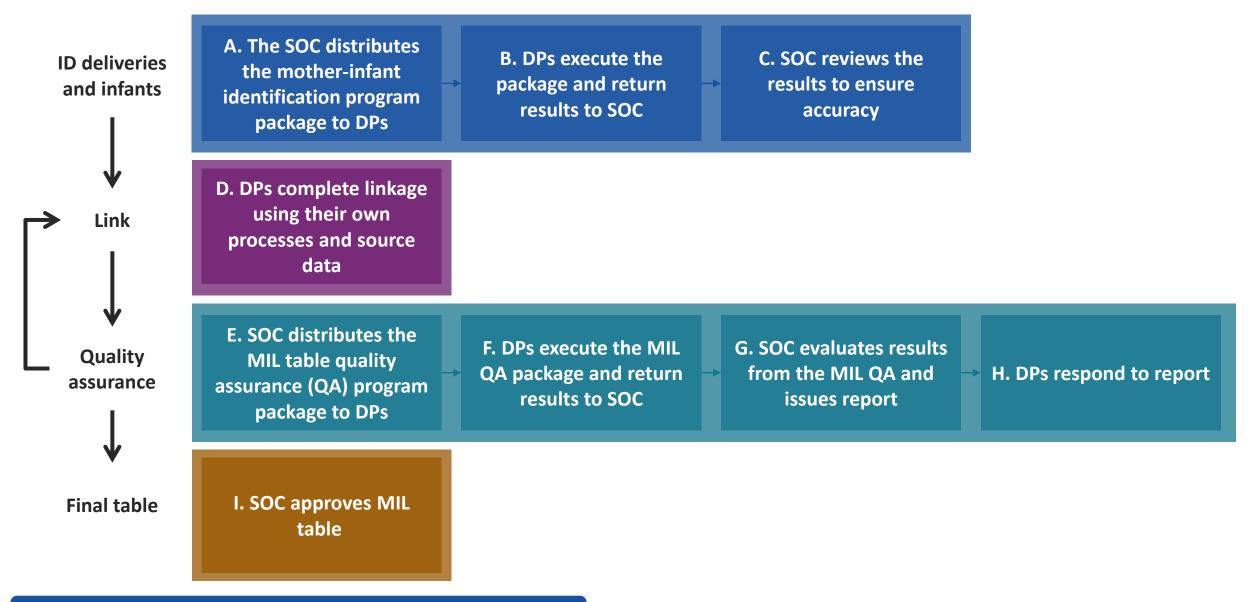
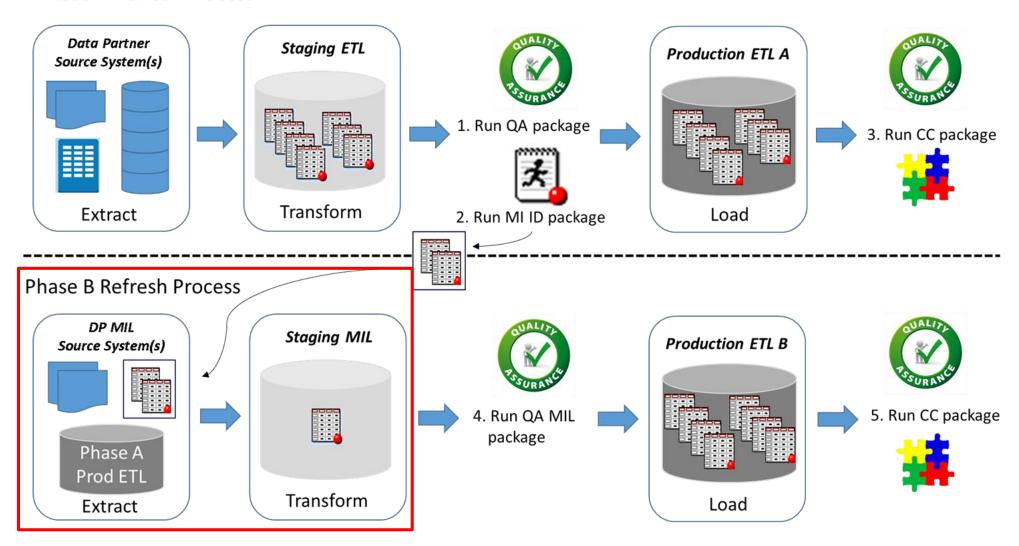
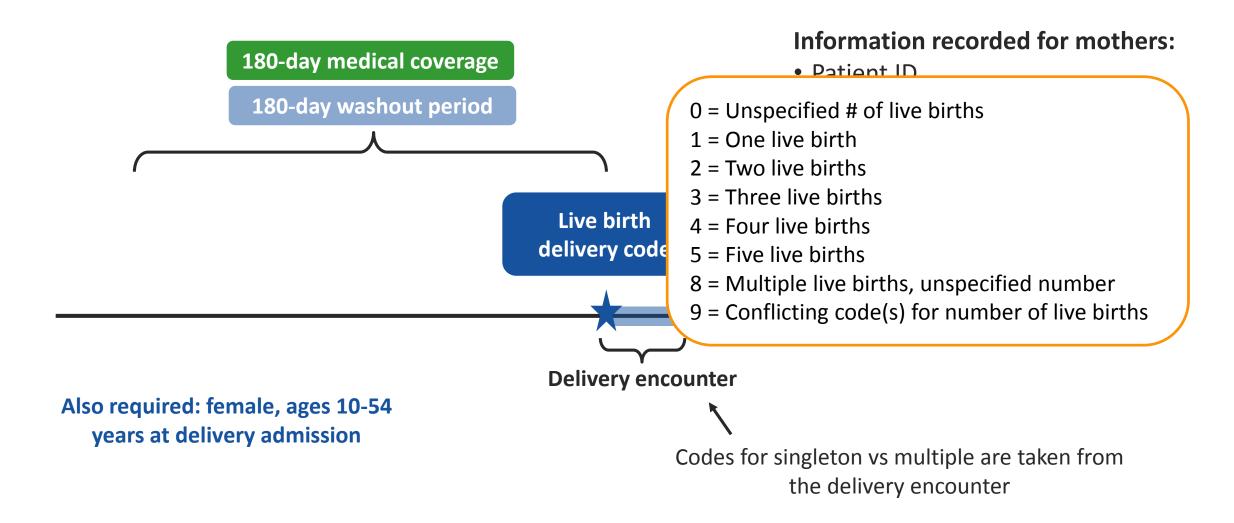

Etc.

Table in the Sentinel Common Data Model, populated by six Data Partners

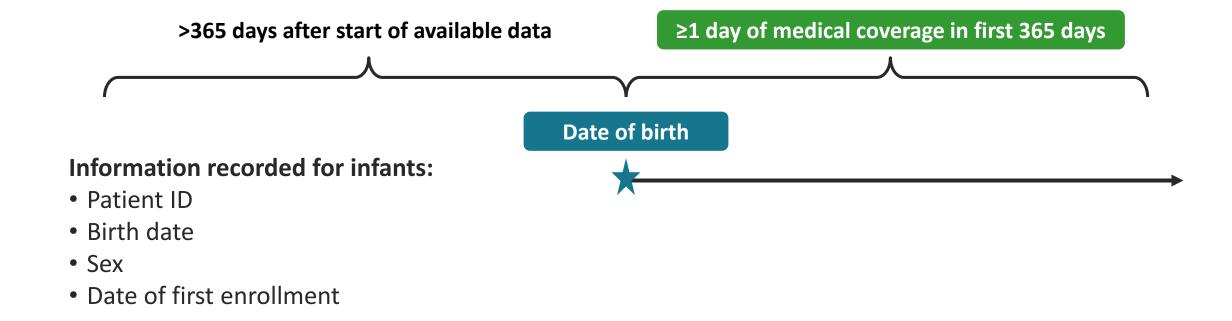
- 4 national claims insurers
- 1 Medicaid data source
- 1 regional claims insurer

Mother-Infant Linkage Table is used to identify linked mother-infant pairs for further analysis

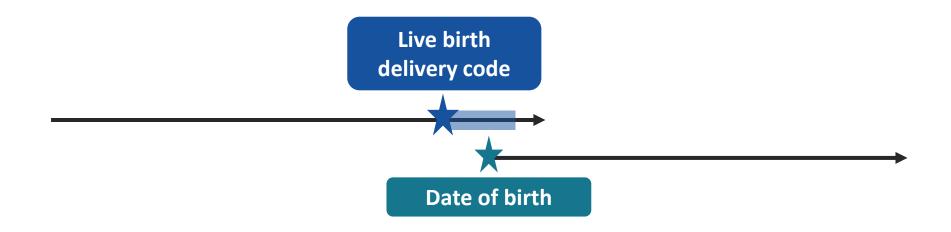

Steps for creating the MIL table


1. Identify live birth deliveries: MIL

Process of building MIL at each Data Partner


Phase A Refresh Process

Identifying deliveries for the MIL table


Identifying infants for the MIL table

Linking mothers to infants

- Linkage process and source data is determined by each Data Partner
- Most matches were deterministic and relied on subscriber IDs; probabilistic matching was also used by some Data Partners
- Multiple infants could be linked to the single delivery, but only one linkage was allowed per infant

Linking mothers to infants

New variable for MatchMethod:

BC = Birth Certificate

RE = DP maintained birth registry

SI = health plan subscriber or family number

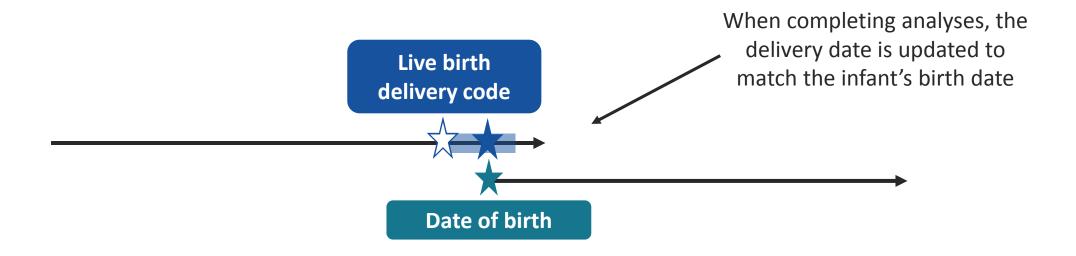
LA = exact or probabilistic last name and address

match based upon health plan administrative data

OT = other

Values of MatchMethod if no link is made:

N1 = No subscriber/family IDs available for linkage


N2 = No name/address available for linkage

N3 = Neither subscriber/family IDs nor

name/address available for linkage

NA = no linkage

Linking mothers to infants

New variable for MatchMethod:

BC = Birth Certificate

RE = DP maintained birth registry

SI = health plan subscriber or family number

LA = exact or probabilistic last name and address

match based upon health plan administrative data

OT = other

Values of MatchMethod if no link is made:

N1 = No subscriber/family IDs available for linkage

N2 = No name/address available for linkage

N3 = Neither subscriber/family IDs nor

name/address available for linkage

NA = no linkage

Mother Infant Linkage – Latest Data

Approximately 4 million linked deliveries available in the SCDM currently – updated regularly

	Total
Deliveries	5,637,969
Infants	7,849,566
Linked deliveries	4,094,436
Linkage rate	72.62%

Things that impact linkage rates –

- Mothers and infants insured under different plans
- Requirements for identifying deliveries was strict and require enrollment – an infant may have been identified but not the mother because only part of her pregnancy was observed
- Data partners only linked when they had confidence in the link – more linkages could have been possible with looser criteria, but with the cost of incorrect linkages

Linkage Rates by Birth Types

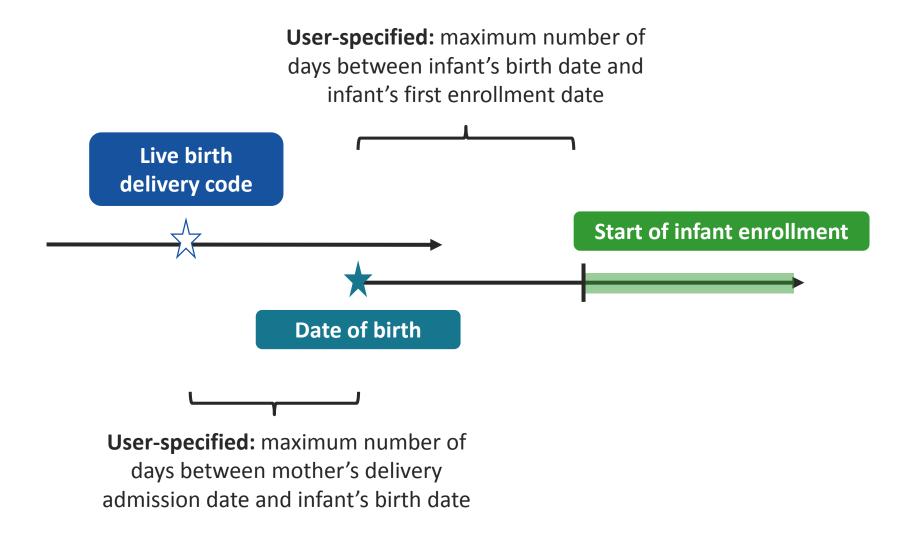
		Birth type								
	No indicator of # of live births	One live birth	Two live births	Conflicting codes on # of live births	Total					
Deliveries	492,437	5,021,394	101,266	17,462	5,637,969					
Linked Deliveries	152,306	3,849,340	76,441	13,280	4,094,436					
Linkage Rate	30.93%	76.66%	75.49%	76.05%	72.62%					

Linkage by age and encounter type

	Maternal age at delivery							
	10-19	20-44	45-54	Total				
Deliveries	253,183	5,342,563	42,223	5,637,969				
Linked Deliveries	116,419	3,966,493	11,524	4,094,436				
Linkage Rate	45.98%	74.24%	27.29%	72.62%				

	Encounter type of delivery									
	Inpatient Hospital Stay (IP)	Emergency Department (ED)	Non-Acute Institutional Stay (IS)	Ambulatory Visit (AV)	Other Ambulatory Visit (OV)	Total				
Deliveries	5,312,558	8,215	4,457	219,646	93,093	5,637,969				
Linked Deliveries	4,053,454	784	2,880	21,787	15,531	4,094,436				
Linkage Rate	76.30%	9.54%	64.62%	9.92%	16.68%	72.62%				

Linkage Rates By Year

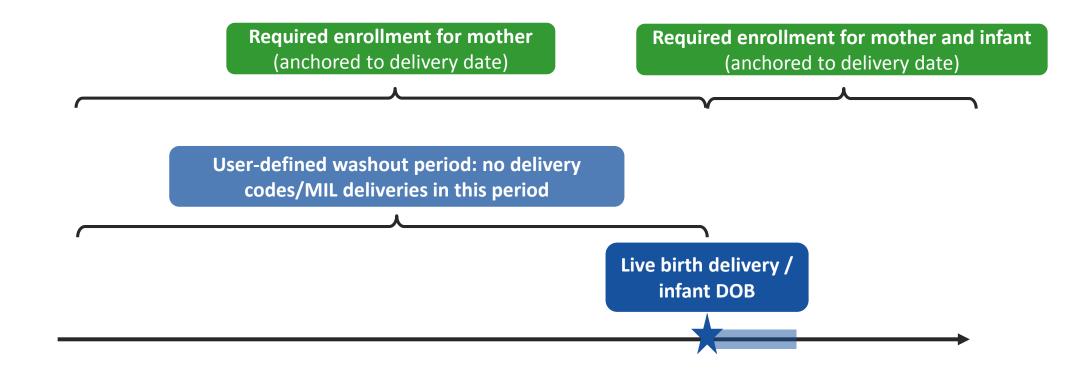

- Data are less complete in later years esp. for annual updaters
- Infants may not have yet acquired their own information (enrollment spans)

Year	Deliveries	Linked Deliveries	Linkage Rate
2007	210,411	163,324	77.6%
2008	230,638	180,807	78.4%
2009	574,267	466,248	81.2%
2010	552,878	451,358	81.6%
2011	561,007	449,315	80.1%
2012	563,277	428,430	76.1%
2013	570,823	431,943	75.7%
2014	569,901	439,447	77.1%
2015	572,415	439,543	76.8%
2016	570,223	412,536	72.3%
2017	417,434	18,314	4.4%
	5,637,969	4,094,436	72.6%

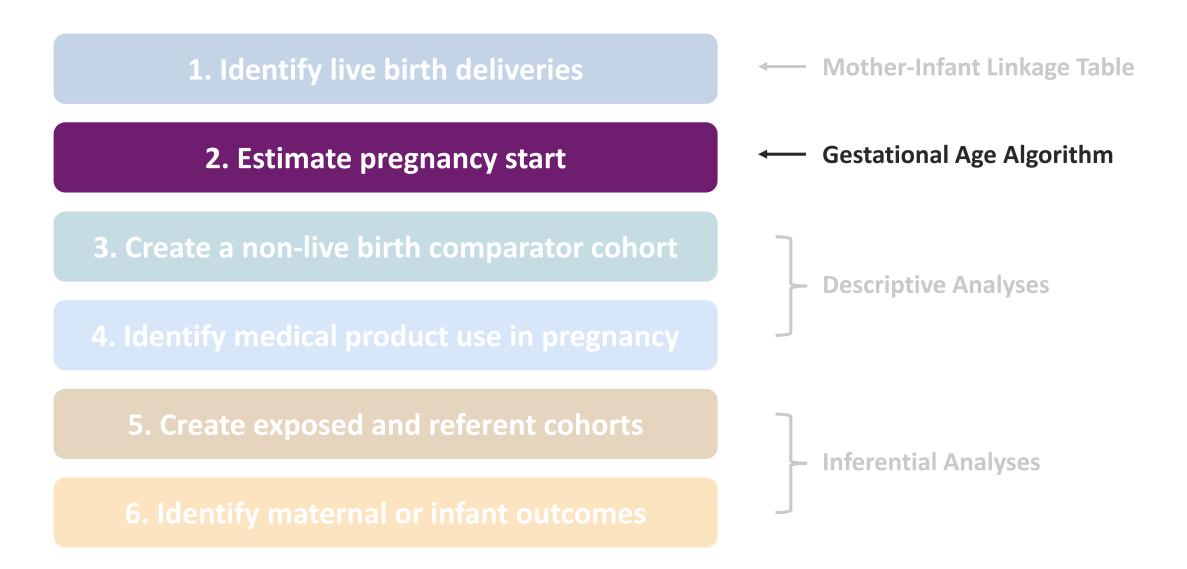
Selecting deliveries from the MIL table

User-specified: MatchMethod

- BC = Birth Certificate
- RE = DP maintained birth registry
- SI = health plan subscriber or family number
- LA = exact or probabilistic last name and address match based upon health plan administrative data
- OT = other


Live birth deliveries: MIL table

	group	stockgroup	codecat	codetype	code
1	allpregnancies	delivery	MI	M	BC1
2	allpregnancies	delivery	MI	M	RE1
3	allpregnancies	delivery	MI	M	SI1
4	allpregnancies	delivery	MI	M	LA1
5	allpregnancies	delivery	MI	M	OT1



- Specifying the linkage types to include in the cohort
- Singleton infants only

Refining the cohort of deliveries

Creating and analyzing a cohort of deliveries

Gestational age algorithm

LMP is not available in US insurance claims data, therefore gestational age needs to be estimated

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2013; 22: 524–532 Published online 21 January 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.3407

ORIGINAL REPORT

Validation of an algorithm to estimate gestational age in electronic health plan databases[†]

Qian Li^{1,2}, Susan E. Andrade³, William O. Cooper⁴, Robert L. Davis⁵, Sascha Dublin⁶, Tarek A. Hammad⁷, Pamala A. Pawloski⁸, Simone P. Pinheiro⁷, Marsha A. Raebel⁹, Pamela E. Scott⁷, David H. Smith¹⁰, Inna Dashevsky², Katherine Haffenreffer², Karin E. Johnson⁶ and Sengwee Toh^{2*}

Current algorithm is a modification of this algorithm and includes both ICD-9 and ICD-10 codes

Gestational age algorithm: Li et al. results

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2013; 22: 524–532 Published online 21 January 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.3407

ORIGINAL REPORT

Validation of an algorithm to estimate gestational age in electronic health plan databases[†]

Qian Li^{1,2}, Susan E. Andrade³, William O. Cooper⁴, Robert L. Davis⁵, Sascha Dublin⁶, Tarek A. Hammad⁷, Pamala A. Pawloski⁸, Simone P. Pinheiro⁷, Marsha A. Raebel⁹, Pamela E. Scott⁷, David H. Smith¹⁰, Inna Dashevsky², Katherine Haffenreffer², Karin E. Johnson⁶ and Sengwee Toh²*

Underestimates the true prevalence of preterm birth

Using birth certificates as the gold-standard, classification of preterm birth (<259 days):

Sensitivity: 45.5%

Specificity: 98.3%

PPV: 83.0%

NPV: 90.9%

77% of estimated gestational durations were within ±14 days of the true duration

Gestational age algorithm: Li et al. results

Classification of first trimester fluoxetine exposure status:

Sensitivity: 96.9%

Specificity: 99.9%

PPV: 96.1%

NPV: 99.9%

Accurately dates chronic medication exposure when classifying by overlapping day supply, despite misclassification in gestational age

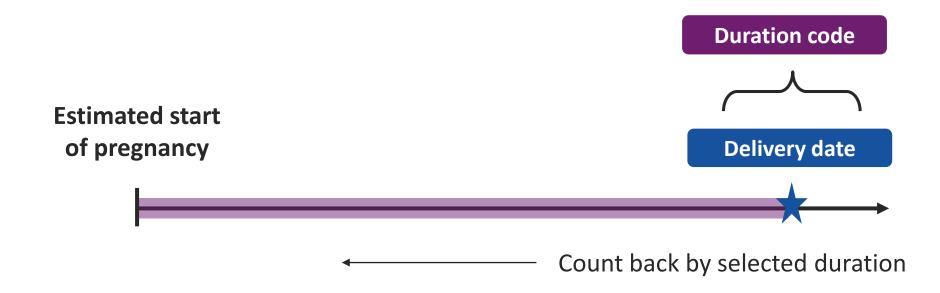
Examples of ICD-9-CM and ICD-10-CM GA Codes

If multiple conflicting gestational age codes are found in the record, a priority ranking is used to determine the final gestational age:

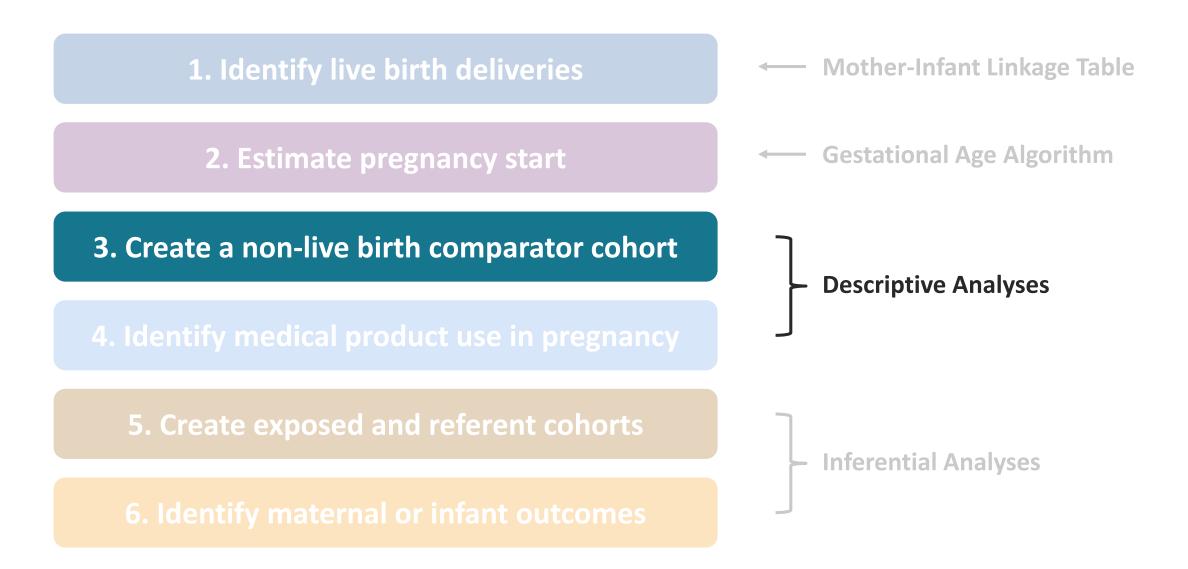
- Gestational week specific codes: Z3A codes and P07 codes
- "Vague" codes that do not specify gestational age but suggest pre-term status
- "Vague" codes that do not specify gestational age but suggest post-term status

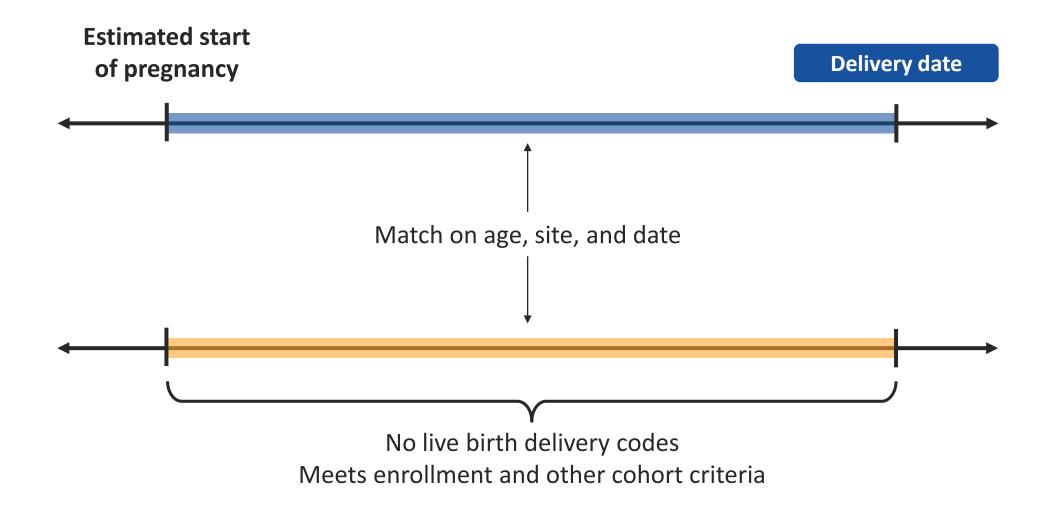

If there are no gestational age codes, a user-defined default gestational age is assigned – typically 273 days

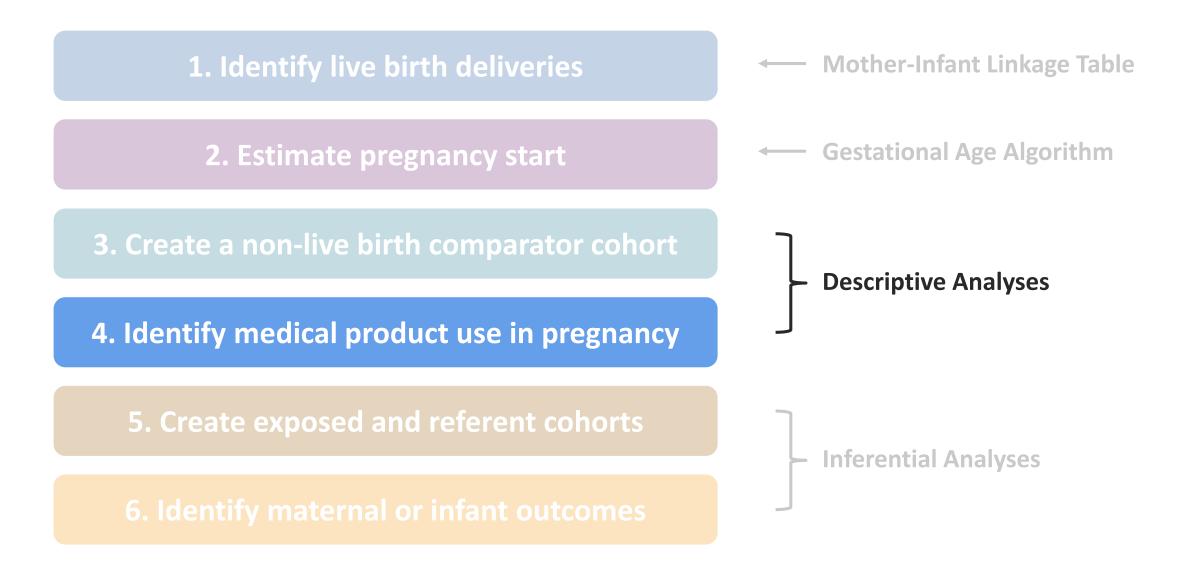
Code	Description	Duration (weeks)	Duration (days)
765.24	27-28 completed weeks of gestation	28	196
Z3A.35	35 weeks gestation of pregnancy	35.5	249
644.21	Onset of delivery before 37 completed weeks of gestation	35	245
O60.12XX	Preterm labor 2 nd trimester with preterm delivery 2 nd trimester	24	168
645.10-645.13	Post-term pregnancy	41	287
O480	Post-term pregnancy	41	287


Pregnancy duration input file

group	stockgroup	codecat	codetype	code	caresettingprincipal	PriorityGroup1	PriorityGroup2	priority	duration
allpregnancies	allpregnancies	DX	10	0481	'IP*'	0	1	1	294
allpregnancies	allpregnancies	DX	10	P0822	'IP*'	0	1	1	294
allpregnancies	allpregnancies	DX	10	Z3A49	'IP*'	1	0	1	301
allpregnancies	allpregnancies	DX	10	O480	'IP*'	0	1	2	287
allpregnancies	allpregnancies	DX	10	P0821	'IP*'	0	1	2	287
allpregnancies	allpregnancies	DX	10	Z3A42	'IP*'	1	0	2	298
allpregnancies	allpregnancies	DX	10	Z3A41	'IP*'	1	0	3	291
allpregnancies	allpregnancies	DX	10	Z3A40	'IP*'	1	0	4	284
allpregnancies	allpregnancies	DX	10	Z3A39	'IP*'	1	0	5	277
allpregnancies	allpregnancies	DX	10	Z3A38	'IP*'	1	0	6	270
allpregnancies	allpregnancies	DX	10	Z3A37	'IP*'	1	0	7	263
allpregnancies	allpregnancies	DX	10	P0739	'IP*'	1	0	8	256
allpregnancies	allpregnancies	DX	10	Z3A36	'IP*'	1	0	8	256
allpregnancies	allpregnancies	DX	10	P0738	'IP*'	1	0	9	249
allpregnancies	allpregnancies	DX	10	Z3A35	'IP*'	1	0	9	249
allpregnancies	allpregnancies	DX	10	P0737	'IP*'	1	0	10	242
allpregnancies	allpregnancies	DX	10	Z3A34	'IP*'	1	0	10	242
allpregnancies	allpregnancies	DX	10	P0736	'IP*'	1	0	11	235
allpregnancies	allpregnancies	DX	10	Z3A33	'IP*'	1	0	11	235
allpregnancies	allpregnancies	DX	10	P0735	'IP*'	1	0	12	228
allpregnancies	allpregnancies	DX	10	Z3A32	'IP*'	1	0	12	228


Identifying duration codes


Identifying duration codes


Creating and analyzing a cohort of deliveries

Create non-live birth comparator cohort

Creating and analyzing a cohort of deliveries

Classifying medical product use by timing during pregnancy

Defining medical product exposure episodes

Classified as first trimester exposure if using overlapping days supply:

Classified as first trimester exposure if using dispensing date:

Example – utilization in pregnant and non-pregnant cohorts

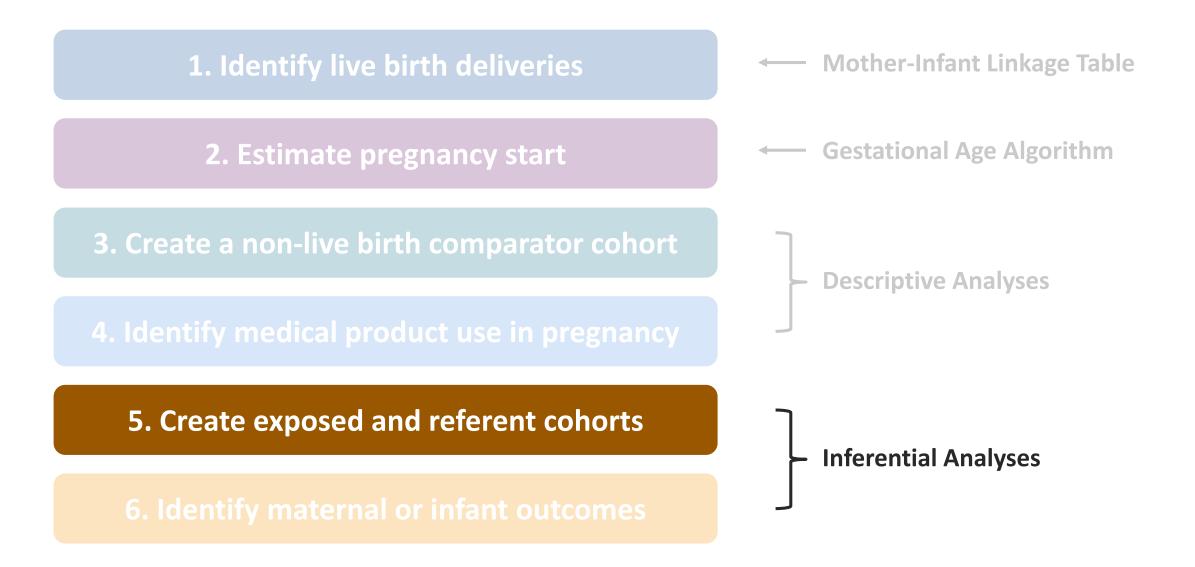
Submit Comment **Use of Multiple Sclerosis Drugs Among Pregnant** Women Use of Multiple Sclerosis Drugs Among Pregnant Women **Project Title** Date Posted Thursday, December 6, 2018 Project ID cder_mpl1p_wp009 Status Complete Deliverables Sentinel Modular Program Report: Use of Multiple Sclerosis Drugs Among Pregnant Women Related Links 2018 ICPE Presentation: Use of Multiple Sclerosis Drugs Among Live Birth Pregnancies in the United States Description This report contains estimates of multiple sclerosis (MS) drug use before, during, and after pregnancies resulting in a live-born delivery, among women in the Sentinel Distributed Database (SDD). Data from January 1, 2001 to August 31, 2017 from 16 Data Partners contributing to the SDD were included in this report. This request was distributed to Data Partners on November 20, 2017.

Prevalence of MS drugs among live birth deliveries

Table 1. Prevalence of Multiple Sclerosis (MS) Drug Use among Women with Live-Birth Deliveries in the Sentinel Distributed Database, by Trimester

Pregnant Cohort	Use in the 183 - 91 Days Pre-pregnancy	Use in the 90 Days Pre-pregnancy	Any Use During Pregnancy	Any Use, 1st Trimester	Any Use, 2nd Trimester	Any Use, 3rd Trimester	Use in the 90 Days Post-pregnancy	Use in the 91 - 183 Days Post-pregnancy
	2,205,383	2,205,383	2,205,383	2,205,383	2,205,383	2,203,324	2,205,383	2,205,383
Total Pregnancies	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%%)	(100.0%)	(100.0%)
Drug of Interest								
Any multiple sclerosis drugs	1,407 (0.06%)	1,243 (0.06%)	1,011 (0.05%)	944 (0.04%)	269 (0.01%)	246 (0.01%%)	958 (0.04%)	1,330 (0.06%)
Dalfampridine	9 (0.00%)	10 (0.00%)	6 (0.00%)	6 (0.00%)	1 (0.00%)	0 (0.00%%)	7 (0.00%)	14 (0.00%)
Dimethyl fumarate	58 (0.00%)	54 (0.00%)	51 (0.00%)	45 (0.00%)	9 (0.00%)	11 (0.00%%)	63 (0.00%)	113 (0.01%)
Fingolimod	33 (0.00%)	26 (0.00%)	20 (0.00%)	20 (0.00%)	2 (0.00%)	2 (0.00%%)	30 (0.00%)	60 (0.00%)
Glatiramer acetate	602 (0.03%)	564 (0.03%)	501 (0.02%)	470 (0.02%)	171 (0.01%)	164 (0.01%%)	427 (0.02%)	538 (0.02%)
Interferon beta-1a with or without albumin	502 (0.02%)	421 (0.02%)	307 (0.01%)	283 (0.01%)	61 (0.00%)	51 (0.00%%)	302 (0.01%)	419 (0.02%)
Interferon beta-1b	126 (0.01%)	104 (0.00%)	78 (0.00%)	74 (0.00%)	10 (0.00%)	5 (0.00%%)	72 (0.00%)	104 (0.00%)
Peginterferon beta-1a	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%%)	2 (0.00%)	6 (0.00%)
Teriflunomide	2 (0.00%)	3 (0.00%)	2 (0.00%)	2 (0.00%)	2 (0.00%)	2 (0.00%%)	3 (0.00%)	7 (0.00%)
Alemtuzumab	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%%)	0 (0.00%)	1 (0.00%)
Natalizumab	99 (0.00%)	91 (0.00%)	61 (0.00%)	55 (0.00%)	14 (0.00%)	11 (0.00%%)	81 (0.00%)	120 (0.01%)
Daclizumab	1 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%%)	0 (0.00%)	0 (0.00%)
Mitoxantrone	3 (0.00%)	1 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%%)	1 (0.00%)	1 (0.00%)

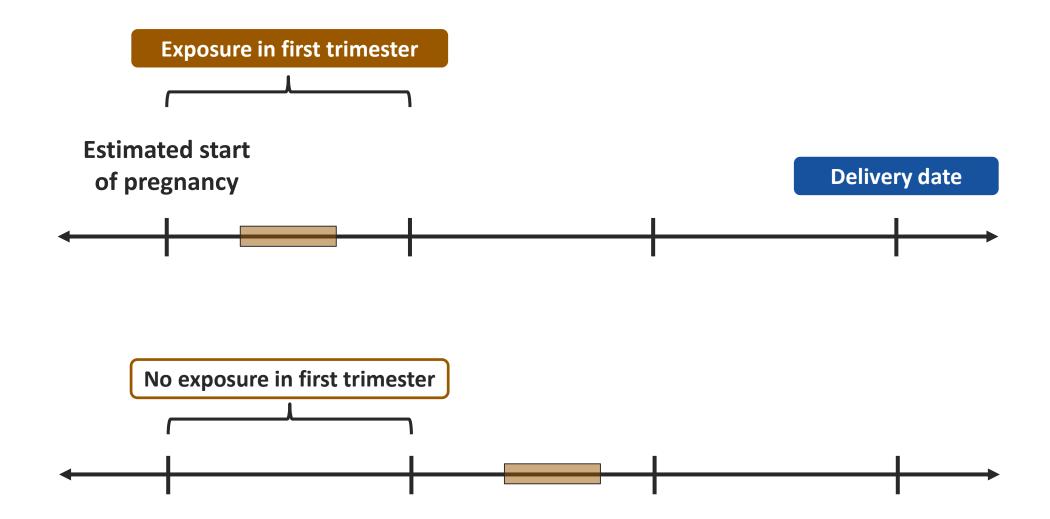
Prevalence of MS drugs in non-pregnant comparator cohort

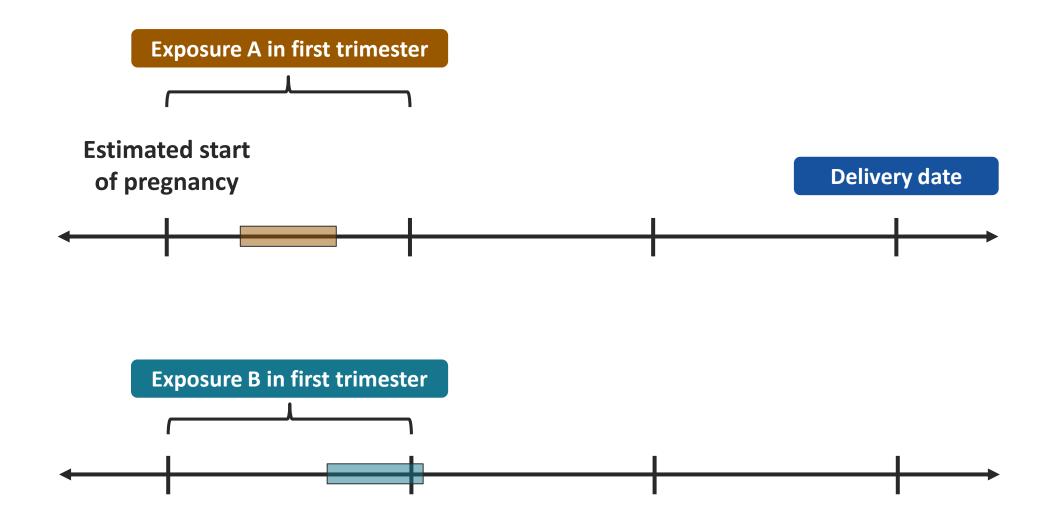

Table 2. Prevalence of Multiple Sclerosis (MS) Drug Use among Non-Pregnant Cohort in the Sentinel Distributed Database, by Matched Comparator's Trimester

Non-Pregnant Cohort ^{1,2}	Use in the 183 - 91 Days Pre-pregnancy	Use in the 90 Days Pre-pregnancy	Any Use During Pregnancy	Any Use, 1st Trimester	Any Use, 2nd Trimester	Any Use, 3rd Trimester	Use in the 90 Days Post-pregnancy	Use in the 91 - 183 Days Post-pregnancy
	2,205,383	2,205,383	2,205,383	2,205,383	2,205,383	2,203,324	2,205,383	2,205,383
Total of Episodes	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%)	(100.0%%)	(100.0%)	(100.0%)
Drug of Interest								
Any multiple sclerosis drugs	2,673 (0.12%)	2,772 (0.13%)	3,503 (0.16%)	3,000 (0.14%)	3,101 (0.14%)	3,188 (0.14%%)	3,226 (0.15%)	3,273 (0.15%)
Dalfampridine	31 (0.00%)	30 (0.00%)	59 (0.00%)	38 (0.00%)	50 (0.00%)	51 (0.00%%)	53 (0.00%)	60 (0.00%)
Dimethyl fumarate	135 (0.01%)	164 (0.01%)	298 (0.01%)	195 (0.01%)	227 (0.01%)	263 (0.01%%)	279 (0.01%)	296 (0.01%)
Fingolimod	122 (0.01%)	126 (0.01%)	212 (0.01%)	158 (0.01%)	175 (0.01%)	195 (0.01%%)	200 (0.01%)	224 (0.01%)
Glatiramer acetate	898 (0.04%)	931 (0.04%)	1,214 (0.06%)	979 (0.04%)	1,023 (0.05%)	1,038 (0.05%%)	1,050 (0.05%)	1,070 (0.05%)
Interferon beta-1a with or without albumin	1,086 (0.05%)	1,089 (0.05%)	1,349 (0.06%)	1,171 (0.05%)	1,175 (0.05%)	1,158 (0.05%%)	1,144 (0.05%)	1,135 (0.05%)
Interferon beta-1b	260 (0.01%)	272 (0.01%)	353 (0.02%)	289 (0.01%)	294 (0.01%)	296 (0.01%%)	278 (0.01%)	267 (0.01%)
Peginterferon beta-1a	0 (0.00%)	0 (0.00%)	7 (0.00%)	0 (0.00%)	4 (0.00%)	7 (0.00%%)	10 (0.00%)	13 (0.00%)
Teriflunomide	7 (0.00%)	12 (0.00%)	30 (0.00%)	18 (0.00%)	21 (0.00%)	27 (0.00%%)	28 (0.00%)	33 (0.00%)
Alemtuzumab	0 (0.00%)	0 (0.00%)	2 (0.00%)	1 (0.00%)	1 (0.00%)	0 (0.00%%)	3 (0.00%)	2 (0.00%)
Natalizumab	217 (0.01%)	237 (0.01%)	331 (0.02%)	256 (0.01%)	254 (0.01%)	278 (0.01%%)	293 (0.01%)	304 (0.01%)
Daclizumab	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%)	0 (0.00%%)	0 (0.00%)	0 (0.00%)
Mitoxantrone	13 (0.00%)	15 (0.00%)	23 (0.00%)	17 (0.00%)	17 (0.00%)	10 (0.00%%)	10 (0.00%)	9 (0.00%)

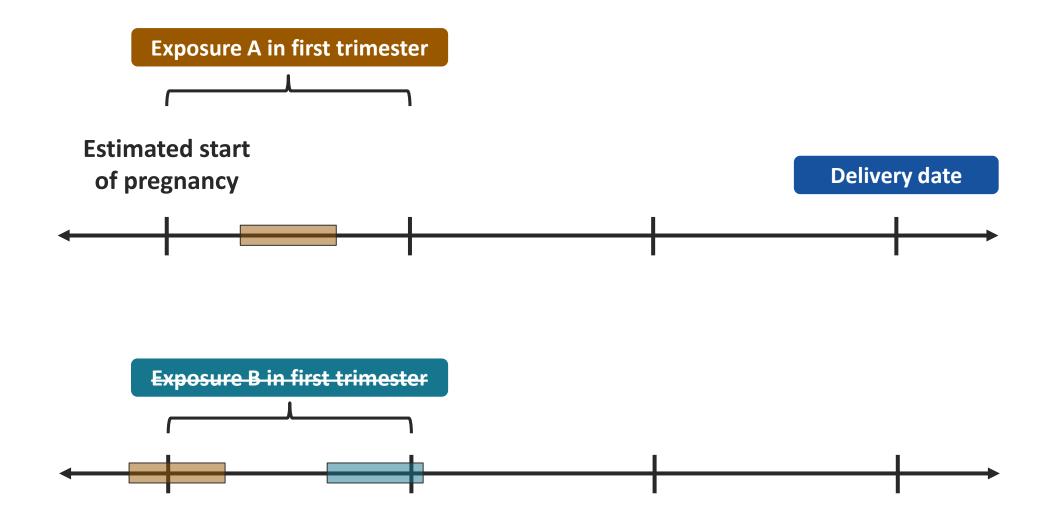
Comparing utilization between pregnant and non-pregnant women طالعانط مردنا Nigo live birth

Live birth delivery	Non-live birth delivery
(100.0%)	(100.0%)
1,011 (0.05%)	3,503 (0.16%)
6 (0.00%)	59 (0.00%)
51 (0.00%)	298 (0.01%)
20 (0.00%)	212 (0.01%)
501 (0.02%)	1,214 (0.06%)
307 (0.01%)	1,349 (0.06%)
78 (0.00%)	353 (0.02%)
0 (0.00%)	7 (0.00%)
2 (0.00%)	30 (0.00%)
0 (0.00%)	2 (0.00%)
61 (0.00%)	331 (0.02%)
0 (0.00%)	0 (0.00%)
0 (0.00%)	23 (0.00%)
	delivery (100.0%) 1,011 (0.05%) 6 (0.00%) 51 (0.00%) 20 (0.00%) 501 (0.02%) 307 (0.01%) 78 (0.00%) 0 (0.00%) 0 (0.00%) 61 (0.00%) 0 (0.00%)

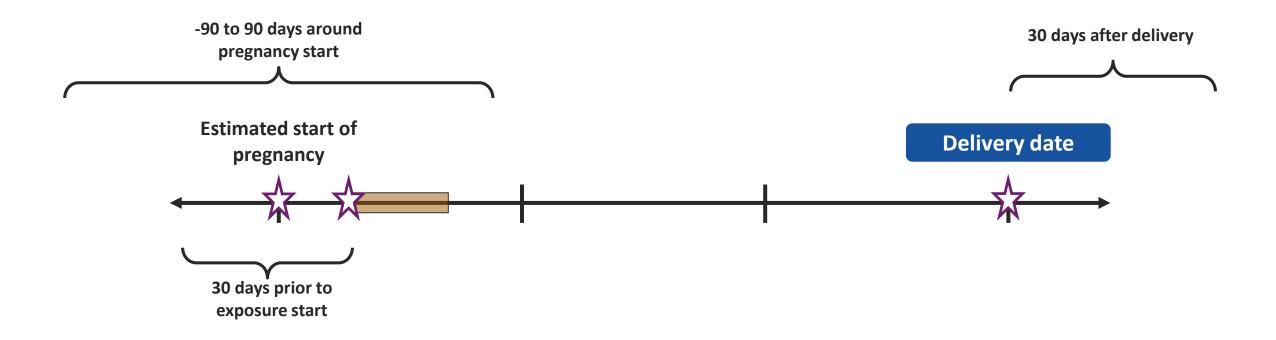

Creating and analyzing a cohort of deliveries


Defining the Exposed and Referent Cohorts

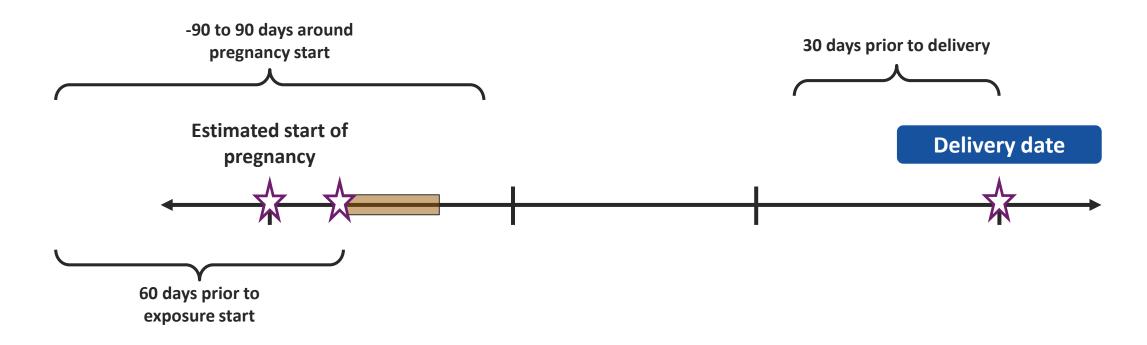
- The exposure window can be specified in trimesters or gestational weeks anchored to the start of pregnancy
 - E.g. first trimester, or gestational weeks 6-12
- If an unexposed referent is used, pregnancy episodes without evidence of the exposure during the entire exposure period will be included
- If an active comparator is used, pregnancy episodes with evidence of the comparator drug during the exposure period will be included
 - Pregnancy episodes with evidence of the exposure drug and the referent drug during the exposure period will be excluded


Defining exposed and unexposed referent groups

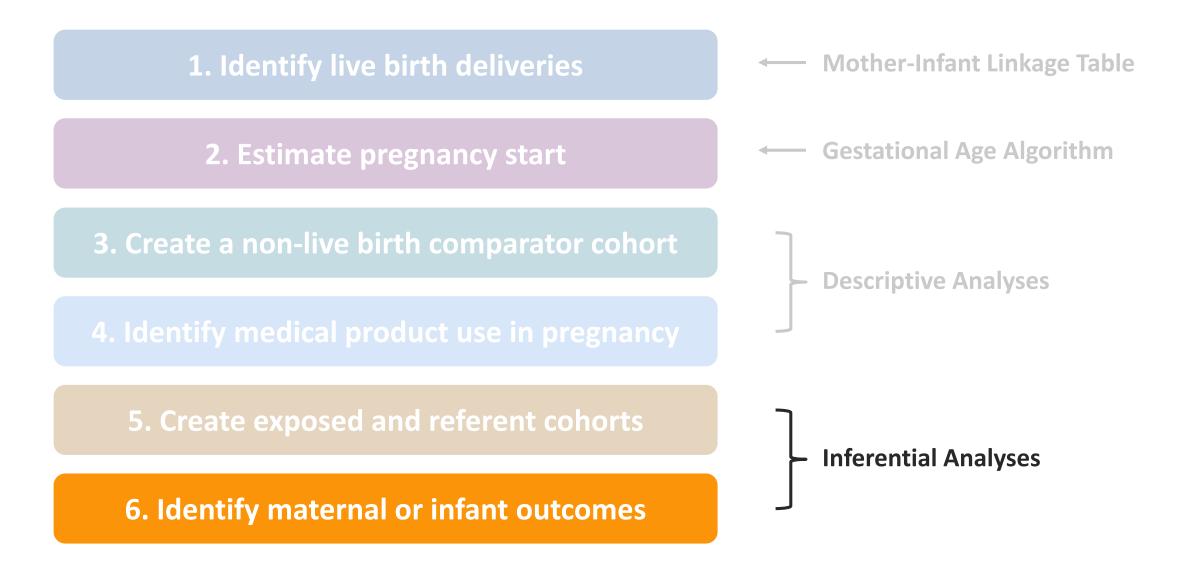
Defining exposed and comparator exposed referent groups



Defining exposed and comparator exposed referent groups

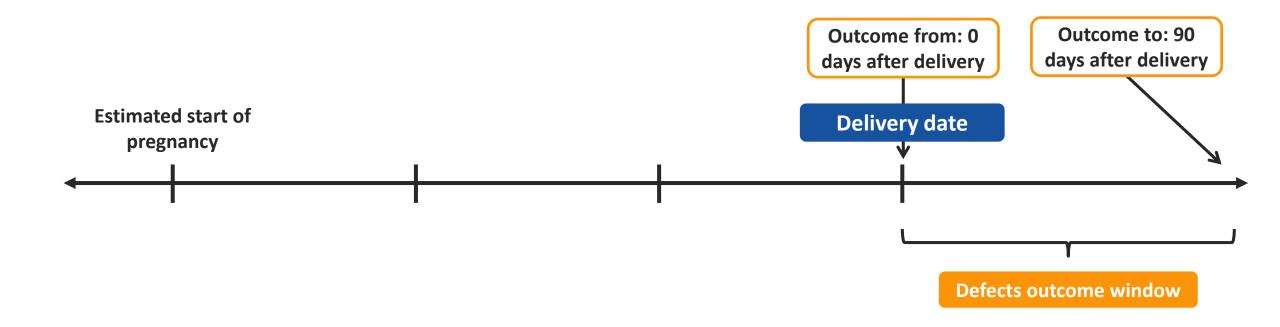

Refine Exposed and Referent Cohorts

- Add Additional Exclusions or Inclusions using 3 potential anchor dates:
 - Estimated Pregnancy Start, Medication Exposure Start (when exposed), Delivery Date
 - Additional enrollment may be enforced for exclusion criteria

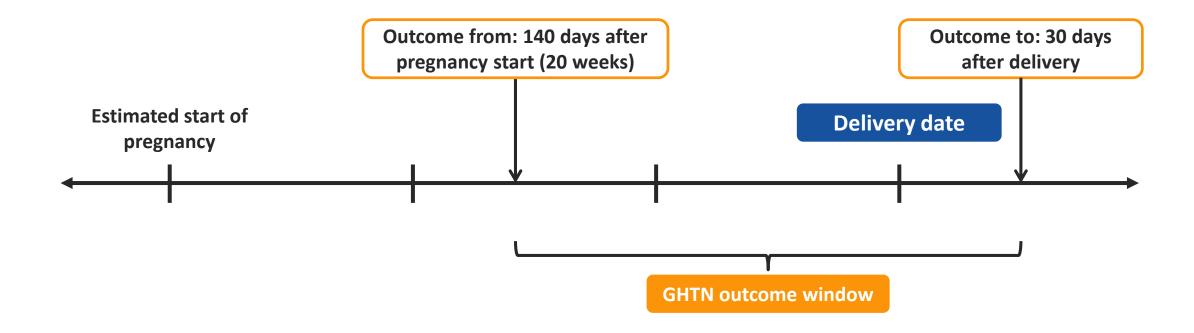


Refine Exposed and Referent Cohorts

- Define window for covariate assessment
 - Estimated Pregnancy Start, Medication Exposure Start (when exposed), Delivery Date
 - Additional enrollment may be enforced for covariate assessment



Creating and analyzing a cohort of deliveries

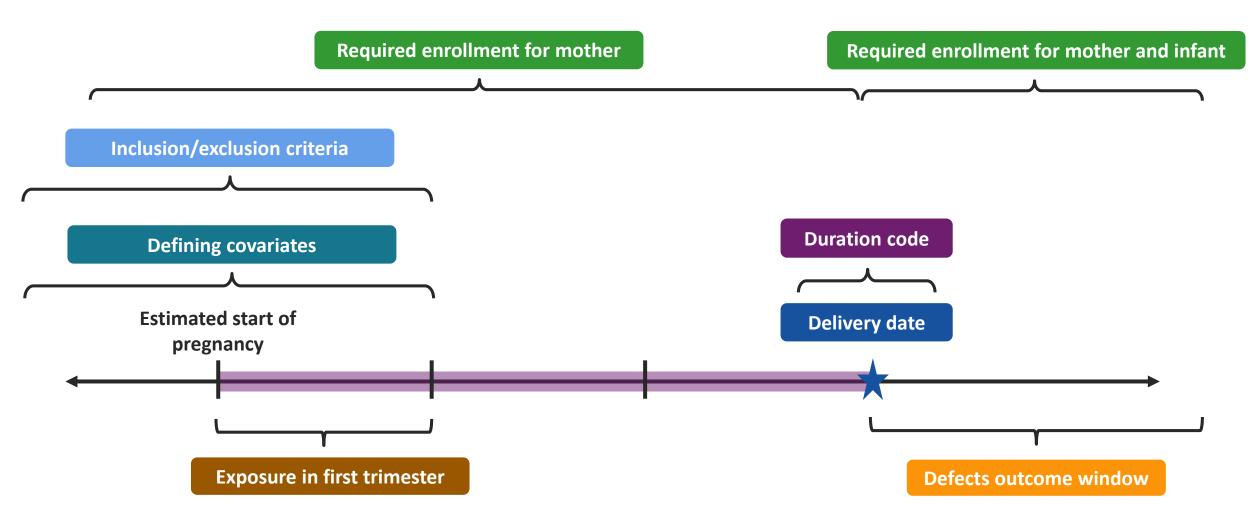

Defining infant outcomes

Outcomes are typically assessed after delivery – for example, cardiac defects

Defining maternal outcomes

Outcomes occur during gestation and after delivery – for example, gestational hypertensive disorders

Maternal vs infant records


- Infants are typically enrolled under parent's insurance within 30-60 days after delivery
- Before enrollment, claims for the infant may appear on the mother's record
- Therefore, infant outcomes are assessed using claims from both the infant's and the mother's record
- To assess outcomes only based on the infant's record would require limiting the cohort to infants that are enrolled at birth — this is very restrictive

Analyzing maternal and infant outcomes

- Sentinel currently utilizes the following methods:
 - Propensity score matched or multifactor matched logistic regression
 - Propensity score matched or multifactor matched TreeScan for signal detection

Putting it all together

Example: Design for assessing infant birth defects in relation to first trimester exposure

Questions?