Assessing Natural History, Drug Use and Treatment Impact for COVID-19 in the Sentinel System

Robert Ball MD, MPH, ScM
Deputy Director, Office of Surveillance and Epidemiology
Center for Drug Evaluation and Research, FDA
5-14-2020
FDA/Center for Drug Evaluation and Research

Use Cases

- Monitor for shortages of drugs used for treatment of COVID-19 and its complications in hospitalized patients

- COVID-19 natural history cohorts
 - To aid interpretation of, or as external control for, single-arm clinical trials
 - Serve as a basis for creating cohorts for studies of impact of drug use on COVID-19 outcomes
 - Cohort of hospitalized patients to study drug treatment impact
 - e.g. hydroxychloroquine
 - Cohort of hospitalized patients using certain drugs chronically to evaluate whether use of these drugs predict COVID-19 outcomes
 - e.g. ACE inhibitors
 - Subcohorts with unique characteristics, e.g. cancer patients
Sentinel System

Launched in 2008 in response to the FDA Amendments Act (FDAAA) 2007

NETWORK OF COLLABORATORS

- Numerous data partnerships with private and public data holders
- Access to healthcare claims, EHRs, medical records
- Network with academia, health insurers, research organizations

DATA AT A GLANCE

- >300 million patient identifiers
- 70 million members currently accruing new data
- Data partners retain physical and operational control of their data behind their own firewalls

METHODS

- Rapid, parameterizable, flexible, reusable tools
- Propensity score and other advanced analytics
- Capable of signal detection, refinement, and evaluation
Sentinel System Projects

- **Drug shortages**
 - The goal of the first Sentinel COVID-19 project is to set up a sequential drug monitoring capability with an emphasis on in-hospital (especially critical care) drugs in up to 20 data partners for drug use data for 60 priority drugs by state and week.
 - Partners with inpatient EHR data can generate counts of prescriptions/administrations by day/week by state

- **Natural history cohorts**
 - **HCA Healthcare** cohort using inpatient EHR data from large hospital system
 - Get a first, descriptive look at characteristics and outcomes of hospitalized COVID-19 patients
 - **TriNetX**
 - Data can be queried interactively in real-time to investigate COVID-19 treatment, natural hx, medical care use, and outcomes
 - **In development**
 - Integrated Data Systems, PCORnet, and other EHR partners
Sentinel System Projects

- **Question** to help understand likely demand for drugs for serious COVID-19 patients

 - For a cohort of hospitalized COVID-19 patients what are the proportions of patients with tachypnea (respiratory rate ≥ 24 breaths/min) or requiring supplemental oxygen or a SpO2 ≤ 94% on room air, or requiring mechanical ventilation?

 — The greatest interest is for patients requiring supplemental oxygen and requiring mechanical ventilation
REAL-WORLD DATA

- Demographics
- Diagnoses
- Procedures
- Medications
- Lab Results
- Vitals
- Oncology
- Genomics
- Cardiology
- Pulmonology
- Patient Location
- Mortality

USE CASES

Clinical Trial Optimization
- Protocol Design
- Site Identification
- Path to Patients

Real-World Evidence Generation
TRINETX’S APPROACH TO REAL-WORLD DATA CAPTURE

VARIOUS AND DISPARATE DATA

Healthcare Org.

3rd Party Data

BYOD

MAPPED TO INDUSTRY STANDARD TERMINOLOGIES

TriNetX

Demographics
Diagnoses
Procedures
Lab Results
Vitals
Medications
Cardiology
Genomics
Oncology
Pulmonology
Patient Location
Mortality

MAPPED TO INDUSTRY STANDARD TERMINOLOGIES

• HL7
• ICD-10, ICD-9
• CPT
• RxNorm, NDF-RT
• LOINC
• NAACCR, ICD-O
• HGNC, HGVS, ClinVar, dbSNP

MASTER TERMINOLOGY / INTELLIGENT SYNONYM SEARCH

MUST Have
HbA1c

CANNOT Have
Search Term…

Code
TNX:LAB:9037

Term Description
Hemoglobin a1c/hemoglobin.total in blood

Patients
3,294,500

ADD TO QUERY

D
Demographics

Dx
Diagnoses

G
Genomics

L
Labs

M
Medications

P
Procedures
COVID-19 CODING TRENDS
PATIENTS WITH COVID-19-RELATED DIAGNOSES PER 100,000 PERSONS PER WEEK IN THE USA NETWORK

January 1, 2019 through April 15, 2020

- **B34.2** – Coronavirus infection, unspecified
- **B97.21** – SARS-associated coronavirus as the cause of diseases classified elsewhere
- **B97.29** – Other coronavirus as the cause of diseases classified elsewhere
- **J12.81** – Pneumonia due to SARS-associated coronavirus
- **U07.1** – COVID-19

January 1, 2020 through April 15, 2020

- January 21 – First confirmed case of COVID-19 in the US
- February 20 – CDC releases guidance around coding COVID-19-related encounters
- March 18 – CDC announces new ICD-10-CM diagnosis code “U07.1” effective April 1
- April 1 – Effective date for new “U07.1” code for reporting COVID-19
CHANGES IN AGE DISTRIBUTIONS OF DIAGNOSED PATIENTS

The age distributions of patients coded with non-specific COVID-19-related diagnoses, such as diagnosis codes B34.2, B97.29, and J12.81, substantially changed in 2020. Below, we can see that J12.81 was more commonly used among pediatrics before January 1, 2020. After January 1, 2020, adults make up the majority of the J12.81-defined population.

Before January 1, 2020

After January 1, 2020

<table>
<thead>
<tr>
<th>Total Patients</th>
<th>Minimum Age</th>
<th>Maximum Age</th>
<th>Mean Age</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>480</td>
<td>0</td>
<td>90</td>
<td>28</td>
<td>29</td>
</tr>
</tbody>
</table>

J12.81 – Pneumonia due to SARS-associated coronavirus
Patients with B97.29, used to diagnose other coronavirus as the cause of diseases classified elsewhere, recorded along with a specific respiratory related diagnosis:

- J20 Acute bronchitis
- J22 Other viral pneumonia
- J22 Unspecified acute lower respiratory infection
- J22 Other specified respiratory infections
- J22 Other specified respiratory disorders
- J24 Acute respiratory distress syndrome

Patients with Z20.828, used to code for suspected exposure to a viral communicable disease, coupled with a key symptom:

- J05 Cough
- J06 Shortness of breath
- J07 Chest pain on breathing
- J07 Other chest pain
- J08 Fever, unspecified
- J07 Other chest pain
- J07 Chest pain, unspecified
BASE QUERY FOR COVID-19 PATIENT IDENTIFICATION

Initial query logic used by TriNetX as of April 3, 2020:

Inclusion requirements: coronavirus codes used in EMRs for COVID-19
- B34.2 and J12.81 used more before CDC guidelines
- B97.29 used more after CDC guidelines released
- U07.1 new code specific to COVID-19
- Any code must be present Jan 20, 2020 or after to yield patients

Exclusion requirement: ICD-9 other specified viral infection code
- Mapped to B34.2 and B97.29
- Still used occasionally as ‘catch all’ code for 50+ viral infections

<table>
<thead>
<tr>
<th>Network</th>
<th>Number of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>1,330</td>
</tr>
</tbody>
</table>

Network Number of Patients

USA 1,330
BASE QUERY FOR COVID-19 PATIENT IDENTIFICATION

Current query logic used by TriNetX as May 13, 2020:

<table>
<thead>
<tr>
<th>Network</th>
<th># of Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>USA</td>
<td>31,070</td>
</tr>
</tbody>
</table>

Event 1A: The terms in this event occurred on or after Jan 20, 2020

- B34.2 Coronavirus infection, unspecified: 53,030
- B97.29 Other coronavirus as the cause of diseases classified elsewhere: 76,660
- J12.81 Pneumonia due to SARS-associated coronavirus: 650
- U07.1 2019-nCoV acute respiratory disease (WHO): 17,890
- U07.2 COVID-19, virus not identified (WHO): 0
- 9088 SARS coronavirus 2 and related RNA [Presence]: 132,350
- 879.89 Other specified viral infection: 42,880

Inclusion requirements: coronavirus codes used in EMRs for COVID-19
- Same inclusions as prior query
- Added new U07.1 and U07.2 diagnosis codes
- Many lab tests ‘rolled up’ as 9088 and added

Exclusion requirement: ICD-9 other specified viral infection code
- Same exclusion as prior query
COVID-19
USE CASES

#1 – INPATIENT QUERY & VENTILATION OUTCOMES
APRIL 5, 2020
SPECIFIED COVID-19 QUERY: INPATIENT COHORT

ID’s 580 patients

- US Network
- Age ≥12 years
- Same base query logic
- Inpatient code required 2 weeks before or anytime after COVID-19 diagnosis
INPATIENT COHORT OUTCOME: MECHANICAL VENTILATION

Selected inputs:
- Mechanical ventilation CPT or ICD-10-PCS codes
- Must occur on the same day to 1 month after both COVID-19 diagnosis and inpatient status

Results:
COVID-19 USE CASES

#2 – ASSESSING POSSIBLE DIALYSATE SHORTAGES DUE TO UNEXPECTED KIDNEY FAILURE OUTCOMES
APRIL 19, 2020
DIALYSIS PATIENT ATTRITION FUNNEL

COVID patients
- 8,820 patients as of April 19, 2020

COVID patients with an inpatient visit
- 2,580 patients (Cohort #1)

Of cohort #1, how many have evidence of an ICU stay?
- 940 patients (Cohort #2)

Of cohort #1, how many patients have evidence of continuous renal replacement therapy?
- 170 patients

How many of #2 (COVID+ICU) have evidence of dialysis in the ICU?
- 70 patients

Inpatient status may be enough vs getting more granular with ICU status considering the overcrowding and other unit conversions to handle the intensive care demands.
COVID-19 USE CASES

#3 – ASSESSING SUPPLEMENTAL O2 USE
MAY 1, 2020 & MAY 13, 2020
RESPIRATORY SUB COHORT ATTRITION FUNNELS

For a cohort of hospitalized COVID patients can we get counts on tachypnea (respiratory rate ≥ 24 breaths/min) or requiring supplemental oxygen or a SpO2 ≤ 94% on room air, or requiring mechanical ventilation?

<table>
<thead>
<tr>
<th>Event</th>
<th>Patients</th>
<th>HCOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachypnea (26%)</td>
<td>83,520,140</td>
<td>60</td>
</tr>
<tr>
<td>Base Population</td>
<td>20,300 (-100%)</td>
<td>44</td>
</tr>
<tr>
<td>Population Any age / Any sex</td>
<td>20,300 (0%)</td>
<td>44</td>
</tr>
<tr>
<td>Event 1A: The terms in this event occurred on or after Feb 20, 2020</td>
<td>5,880 (-71%)</td>
<td>41</td>
</tr>
<tr>
<td>Event 2A: The terms in this event occurred on or after Feb 20, 2020 Must Have: Visit</td>
<td>1,550 (-74%)</td>
<td>27</td>
</tr>
</tbody>
</table>

O2 Saturation (43%)	83,520,140	60
Base Population	20,300 (-100%)	44
Population Any age / Any sex	20,300 (0%)	44
Event 1A: The terms in this event occurred on or after Feb 20, 2020	5,880 (-71%)	41
Event 2A: The terms in this event occurred on or after Feb 20, 2020 Must Have: Visit	2,550 (-57%)	32

Supplemental O2 (3%)	83,520,140	60
Base Population	20,300 (-100%)	44
Population Any age / Any sex	20,300 (0%)	44
Event 1A: The terms in this event occurred on or after Feb 20, 2020	5,880 (-71%)	41
Event 2A: The terms in this event occurred on or after Feb 20, 2020 Must Have: Visit	190 (-97%)	28

Mechanical Ventilation (15%)	880	34
Base Population	20,300 (-100%)	44
Population Any age / Any sex	20,300 (0%)	44
Event 1A: The terms in this event occurred on or after Feb 20, 2020	5,880 (-71%)	41
Event 2A: The terms in this event occurred on or after Feb 20, 2020 Must Have: Visit	880 (-85%)	34
IDENTIFYING PATIENTS ON SUPPLEMENTAL OXYGEN

- Initial codes used the following diagnosis to identify 190 patients:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z99.51</td>
<td>Dependence on supplemental oxygen</td>
<td>453,690</td>
</tr>
<tr>
<td>7885</td>
<td>Oxygen</td>
<td>10,780</td>
</tr>
</tbody>
</table>

- Expanded codes list used the following diagnosis to now identify 320 patients

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z99.51</td>
<td>Dependence on supplemental oxygen</td>
<td>453,690</td>
</tr>
<tr>
<td>7885</td>
<td>Oxygen</td>
<td>10,780</td>
</tr>
<tr>
<td>E1398</td>
<td>Oxygen concentrator, single delivery port, capable of delivering 85 percent or greater oxygen concentration at the prescribed flow rate</td>
<td>48,510</td>
</tr>
<tr>
<td>S8128</td>
<td>Oxygen contents, gaseous, 1 unit equals 1 cubic foot</td>
<td>380</td>
</tr>
<tr>
<td>S8121</td>
<td>Oxygen contents, liquid, 1 unit equals 1 pound</td>
<td>70</td>
</tr>
<tr>
<td>E1391</td>
<td>Oxygen concentrator, dual delivery port, capable of delivering 85 percent or greater oxygen concentration at the prescribed flow rate, each</td>
<td>20</td>
</tr>
<tr>
<td>S489</td>
<td>Physiological Systems / Assistance / Respiratory</td>
<td>305,290</td>
</tr>
<tr>
<td>94660</td>
<td>Continuous positive airway pressure ventilation (CPAP), initiation and management</td>
<td>326,760</td>
</tr>
<tr>
<td>S13964</td>
<td>Respiratory Ventilation, Single, Nonmechanical</td>
<td>1,670</td>
</tr>
<tr>
<td>E8681</td>
<td>Continuous positive airway pressure (cpap) device</td>
<td>58,580</td>
</tr>
</tbody>
</table>

Updated Supplemental O2 (5%)

<table>
<thead>
<tr>
<th>Patients</th>
<th>HCOs</th>
</tr>
</thead>
<tbody>
<tr>
<td>86,784,960</td>
<td>61</td>
</tr>
<tr>
<td>20,300</td>
<td>44</td>
</tr>
<tr>
<td>20,300</td>
<td>44</td>
</tr>
<tr>
<td>5,880</td>
<td>41</td>
</tr>
<tr>
<td>320</td>
<td>33</td>
</tr>
</tbody>
</table>

Legend:

- **Patients:** Number of patients identified
- **HCOs:** Number of healthcare providers (HCOs) involved
RATIONAL FOR SUPPLEMENTAL OXYGEN CODING

Supplemental oxygen may not be coded in a patient's EHR accurately and/or in structured manner

- Initial query did not include non-invasive ventilation codes (i.e. – CPAP) for supplemental O2 as they don’t specify if an oxygen condenser was used or not, but making assumption along with additional codes increased patients on O2 from 3% to 5% of cohort
- Adding hypoxia is another consideration. While not specifically stating O2 was administered, added to the query it identifies that 25% of patients in the cohort were in need of supplemental O2.

Reality of RWD may be that oxygen supplementation may be noted in the patient’s chart instead of being coded, especially if it’s not a long-term supplement
Reagan-Udall Foundation - Covid-19 Lab Presentation

Translating early observations to scalable RWD/RWE
Proportion of patients requiring supplemental oxygen

8 Georgia hospitals (7 in Atlanta); data summarized via medical record–abstraction for adult patients with laboratory-confirmed COVID-19 admitted in March 2020.

- Any supplemental oxygen: 76%
- Nasal cannula: 72%
- Non-invasive ventilation: 3.6%
- Invasive mechanical ventilation: 30%
Oxygen Support – Preliminary Results from Inpatient EHRs

<table>
<thead>
<tr>
<th>Oxygen delivery</th>
<th>Hospitalizations with coronavirus or COVID-19 diagnosis codes (B97.29, U07.1, or B34.2) (N=360)</th>
<th>Hospitalizations with CDC recommended COVID-19 codes (B97.29 or U07.1) (N=339)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1/1/20 – 4/6/20</td>
<td>1/1/20 – 4/6/20</td>
</tr>
<tr>
<td></td>
<td>2/20/20 – 4/6/20</td>
<td>2/20/20 – 4/6/20</td>
</tr>
<tr>
<td>Supplemental O2 on admission*</td>
<td>28.5% 15.8%</td>
<td>27.6% 15.9%</td>
</tr>
<tr>
<td>Supplemental O2 after admission*</td>
<td>43.5% 25.3%</td>
<td>42.1% 24.8%</td>
</tr>
<tr>
<td>Mechanical ventilation on admission*</td>
<td>8.5% 4.4%</td>
<td>8.2% 4.7%</td>
</tr>
<tr>
<td>Mechanical ventilation after admission*</td>
<td>13.9% 12.5%</td>
<td>14.2% 13.3%</td>
</tr>
<tr>
<td>Any mechanical ventilation during the hospitalization**</td>
<td>18.4% 15.0%</td>
<td>18.5% 15.9%</td>
</tr>
</tbody>
</table>

*One hospitalization could contribute to both rows if the patient had relevant codes ‘on admission’ and also ‘after admission’

**There is no “any supplemental oxygen during the hospitalization” in the current report
Proportion of patients requiring supplemental oxygen

Worst Severity in COVID-19 Patients

<table>
<thead>
<tr>
<th>Age</th>
<th>Class One Obesity</th>
<th>Class Two Obesity</th>
<th>Class Three Obesity</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-84</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not Obese</td>
<td>23.4%</td>
<td>21.1%</td>
<td>28.5%</td>
</tr>
<tr>
<td>Class One</td>
<td>21.3%</td>
<td>22.3%</td>
<td>12.5%</td>
</tr>
<tr>
<td>Class Two</td>
<td>26.3%</td>
<td>22.2%</td>
<td>12.9%</td>
</tr>
<tr>
<td>Class Three</td>
<td>23.2%</td>
<td>24.5%</td>
<td>15.3%</td>
</tr>
</tbody>
</table>

85+			
Not Obese	31.4%	20.1%	29.3%
Class One	28.8%	21.4%	10.8%
Class Two	28.4%	16.9%	15.5%

(Modified from the Epic report)

- Focus on obesity, not O₂ supplementation
- Includes all patients, not just hospitalized
- Different definitions of O₂ supplementation

How to make sense of all the Covid-19 Data?

• COVID-19 creates a perfect storm for the promise and perils of real-world data
• Rapid and real-time information versus definitive studies
• Inpatient electronic health records (EHRs) were initial focus
• Registries and ambulatory EHRs now contributing
• Can health insurance billing data help?
• Easy availability of RWD enabled rapid and prolific generation of real-world information
• But how can we make sense of it all? Which analyses are right? How can the data be used?
Pieces of the Puzzle

• It’s all right and it might all be wrong
• Hard to see all the puzzle pieces or to know what is missing
• Gathering data quickly is akin to organizing the pieces
• Current information helps us ask better questions - putting the puzzle together...*together*
• Flexibility and transparency are critical: Understand what was done
• Formal analyses should focus on matching the right data to right methods to the intended use