Welcome to the Sentinel Innovation and Methods Seminar Series

The webinar will begin momentarily

• Please visit www.sentinelinitative and for recordings of past sessions and details on upcoming webinars.

• Note: closed-captioning for today's webinar will be available on the recording posted at the link above.

Advanced Approaches for Evaluating Drug Safety in Pregnancy

Krista F. Huybrechts, MS PhD

Associate Professor of Medicine, Harvard Medical School Associate Professor of Epidemiology, Harvard T.H. Chan School of Public Health Co-Director Harvard Program in Perinatal and Pediatric Pharmacoepidemiology

> Sentinel Innovation and Methods Seminar April 26, 2021

- Pregnant women are de facto excluded from most clinical trials to protect the fetus from research-related risks.
- A drug's structure and function does not predict its teratogenicity.
- Animal studies are seriously limited in their ability to predict human teratogenesis.
- When a new drug enters the market, there is little to no information about its safety during pregnancy.
- Urgent need to develop evidence in a timely manner so that serious problems can be quickly detected, or concerns alleviated.

"The last therapeutic orphan"*

and Phai

Division of Pharmacoepidemiology

iomics

Approaches to Drug Safety Surveillance in Pregnancy

Pregnancy Registry	Healthcare Utilization Database
Prospective data if enrolled before outcome	Prospective data recording
Ad hoc collection takes time and \$\$	Data exist (economy of cost and time)
Selected group of volunteers, limited follow up	Real world experience, dynamic population
Information on one, or few, drugs	Information on multiple drugs
Real use, outpatient and inpatient, Rx and OTC	Usually outpatient filling of prescription
Information on outcomes of interest	Information on multiple outcomes if reimbursed
Incomplete ascertainment of pregnancy losses	Incomplete ascertainment of pregnancy losses
Validation usually part of the design	May have access to validation
Key clinical factors collected in detail	Broad range of clinical factors, with less granularity
Can collect information on socio-demographics	Little information on socio-demographics
May have laboratory data if collected	May have laboratory data in subsample
Can collect key factors (e.g., gestational age, family history)	Key characteristics may be missing, e.g., LMP, no claims for it, use algorithm
Some use external reference, few allow CER	Internal control groups allow CER
Small populations	Huge source population
Can target new drugs (need to recruit users)	No information on new drugs

Huybrechts et al. Pharmacoepidemiol Drug Saf. 2019;28(7):906-922.

Approaches to Drug Safety Surveillance in Pregnancy

Huybrechts et al. Pharmacoepidemiol Drug Saf. 2019;28(7):906-922.

Approaches to Drug Safety Surveillance in Pregnancy

Pregnancy Registry	Healthcare Utilization Database
Prospective data if enrolled before outcome	Prospective data recording
Ad hoc collection takes time and \$\$	Data exist (economy of cost and time)
Selected group of volunteers, limited follow up	Real world experience, dynamic population
Information on one, or few, drugs	Information on multiple drugs
Real use, outpatient and inpatient, Rx and OTC	Usually outpatient filling of prescription
Information on outcomes of interest	Information on multiple outcomes if reimbursed
Incomplete ascertainment of pregnancy losses	Incomplete ascertainment of pregnancy losses
Validation usually part of the design	May have access to validation
Key clinical factors collected in detail	Broad range of clinical factors, with less granularity
Can collect information on socio-demographics	Little information on socio-demographics
May have laboratory data if collected	May have laboratory data in subsample
Can collect key factors (e.g., gestational age, family history)	Key characteristics may be missing, e.g., LMP, no claims for it, use algorithm
Some use external reference, few allow CER	Internal control groups allow CER
Small populations	Huge source population
Can target new drugs (need to recruit users)	No information on new drugs

Huybrechts et al. Pharmacoepidemiol Drug Saf. 2019;28(7):906-922.

ve ri i

Approaches to Drug Safety Surveillance in Pregnancy

Preg	nancy Exposure Registry	Healthcare Utilization Database				
Prosp	ective data if enrolled before outcome	Prospective data recording				
Ad ho	c collection takes time and \$\$	Data exist (economy of cost and time)				
Selec	Complomento	ry Approachae				
Infor	Complementary Approaches					
Real		~				
Infor						
Incor	Today's Focus: Unique op	portunities to advance the				
Valid						
Key c	field of perinatal pharmaco	epidemiology supported by				
Can d	hoolthooro utiliz	ation databases				
May I	nealtricare utiliz	ation databases				
Can co	Can collect key factors (e.g., gestational age, family history) Key characteristics may be missing, e.g., LMP, no clain it, use algorithm					
Some	use external reference, few allow CER	Internal control groups allow CER				
Small	populations	Huge source population				
Can ta	arget new drugs (need to recruit users)	No information on new drugs				

Huybrechts et al. Pharmacoepidemiol Drug Saf. 2019 ;28(7):906-922.

9 Exposure Classification

Etiologically relevant time window

- Many studies ignore the precise gestational timing of exposure
 - Use at any time
 - Use during a broad window
- Reasons:
 - Uncertainty about the biological mechanism
 - Uncertainty about timing
 - Lack of power
- Ascertaining exposure during the wrong window → exposure misclassification → bias towards a null finding
- ⇒ Pregnancy Etiologically Relevant Interval scoping (PERIscoping): A method to detect risk associated with exposure at specific time points in pregnancy, without a priori specification of the etiologically relevant window

PERIscoping

- Compare observed number of outcomes for women exposed in a give risk window to expected counts under the null
 - Expected counts: Reassign observed outcomes to observed prescription histories through random permutation
 - Exposure risk windows: e.g., each separate day in pregnancy, consecutive windows
 or overlapping windows
- Inference based on Monte Carlo hypothesis testing that adjusts for the multiple testing
 - Generate *window-specific test statistic T* for observed data and 9,999 random replicates; rank according to *T*
 - p-value: rank of the observed data / 10,000
 - Overall test statistic T is the minimum p-value across all potential risk windows

PERIscoping

STRENGTHS	LIMITATIONS
Approach 1: Exposed in a given w Exposure duration st	indow vs exposed in a different window
 Confounding by indication rem restriction to women exposed a in pregnancy Confounding by disease severi through stratification by durati exposure 	oved through at some time ty addressed
Approach 2: Exposed vs unexpose Risk window specific	ed in a given window propensity score weighting
Greater power	 Greater potential for unmeasured confounding by disease indication and severity

Negative and Positive Control Test Case

Simulated negative control dataset

Simulated positive control dataset

Data permuted to create a true increase in risk by assigning a higher proportion of outcomes on gestational day 157

Division of Pharmacoepidemiology and Pharmacoeconomics

Opioid Use and the Risk of Neonatal Abstinence Syndrome

Division of Pharmacoepidemiology

and Pharmacoeconomics

Outcome Ascertainment

15

Types of outcomes
 Outcome validation
 Scanning approach
 Exposure
 Outcome

Long-term outcomes

* Includes autism spectrum disorder, ADHD, learning disability, developmental speech/language disorder, developmental coordination disorder, intellectual disability, behavioral disorder

16

Outcome Validation Studies

Validity of Claims-Based Algorithms

Outcome	N Records Reviewed	N True Positives	PPV (95% CI)
Autism	50	47	0.94 (0.83 - 0.99)
ADHD	50	44	0.88 (0.76 - 0.95)
Learning Difficulty	50	49	0.98 (0.89 - 1.00)
Developmental Speech or Language Disorder	50	49	0.98 (0.89 - 1.00)
Intellectual disability	50	41	0.82 (0.69 - 0.91)
Developmental Coordination Disorder (DCD)	50	19 45	0.38 (0.25 - 0.53) 0.90 (0.82 - 0.98)
Behavioral Disorder	50	46	0.92 (0.81 - 0.98)

Division of Pharmacoepidemiology

and Pharmacoeconomics

Outcomes: Comprehensive Safety Surveillance

Most research focuses on a single or selected outcomes

- By design
 - As a result of selective publication of associations in the context of multiple comparisons

Need for a safety surveillance approach that allows for the <u>simultaneous</u> evaluation of a <u>comprehensive</u> range of adverse maternal, fetal and neonatal outcomes.

TreeScan[™] Approach in a Nutshell

- Scan a hierarchical tree of (groups of clinically related) outcomes for associations with the exposure of interest
- Account for the multiple testing of correlated hypotheses
- Highlight potential problems that warrant further, thorough investigation.
 - Adverse event "signal" ≠ causal relationship

The "tree" in TreeScan

- Classification system that hierarchically groups coded clinical concepts into clinically related categories
 - ICD, Multi-Level Clinical Classification (MLCC) for ICD codes, Medical Dictionary for Regulatory Activities (MedDRA) classification system
- Each grouping represents an outcome "node" in the hierarchical tree
- Maximizes power to detect clinically related outcomes

The "scan" in TreeScan

- Test statistic
- Different probability models for different data types
 - E.g., conditional and unconditional versions for Bernoulli/binomial and Poisson generated data
- Test hypothesis:
 - H₀: no difference in risk of adverse events in any outcome node in the tree
 - H₁: there is at least one node in the tree where the risk of adverse events is higher in the exposed group than in the comparator group (one-sided)
- Multiplicity-adjusted p-values that accurately reflect the type I error rate Huybrechts et al. Am J Epidemiol. 2021 Jan 11:kwaa288.

Statistical Alert ≠ Safety Signal

- Statistical alerts help prioritize associations unlikely to have occurred by chance
- Residual confounding can produce spurious alerts
- Potential signals of concern should be followed by a tailored cohort study:
 - Step 1: Using the original data source to assess whether the observed association remains with tailored design and confounding adjustment
 - Step 2: For associations that persist, further evaluate robustness of the finding by implementing the study in independent data

Test Case: Prescription opioids and Neonatal Abstinence Syndrome

		Opioids			
	Exposure	Late pregn	ancy exposure, relatively common		
	Expected outcome	Neonatal a	bstinence syndrome, relatively common		
	Confounding adjustment method	Propensity	score matching		
ology	Scan statistic	Unconditional Bernoulli			
oidemi cs	Hierarchical outcome tree	Pruned Mu	Ilti-level Clinical Classification Software, no birth defects		
armacoepidemiology oeconomics	Washout to identify incident outcomes	0 days	Pruned the tree; removed: - Congenital malformations		
l of Ph armac	Outcome counts	Any unique position wit			
Division 54	Huybrechts et al. Am J Epidemiol. 2021 Jan 11:kwaa288.		 Conditions with long latency/induction periods (e.g., cancer). 		

Test Case: Prescription opioids and Neonatal Abstinence Syndrome

	Opioids
Exposure	Late pregnancy exposure, relatively common
Expected outcome	Neonatal abstinence syndrome, relatively common
Confounding adjustment method	Propensity score matching
Scan statistic	Unconditional Bernoulli
Hierarchical outcome tree	Pruned Multi-level Clinical Classification Software, no birth defects
Washout to identify incident outcomes	0 days
Outcome counts	Any unique occurrence of a code in any care setting or diagnosis position within 90 days on or following delivery
	Tested 9,044 hierarchical outcome
	nodes at every level of the tree above
Huybrechts et al. Am J Epidemiol. 2021 Jan 11:kwaa288.	the leaf level

Results: Opioids

- Source cohort: N = 53,771 exposed; N = 1,360,039 unexposed
- After 1:5 PS matching: N = 24,080 exposed; N = 120,400 unexposed
- The only tree branch on which there were statistical alerts at p<0.05 were related to the expected safety concerns of drug withdrawal in the newborn
- No false positive alerts at the statistical alerting threshold of 0.05.

BWH	Node Identifier	Node Description	P-value	Risk (R) Rf		RR	RD	Obser	Outcomes bserved (O), Expected (E)		O/E	0 - E	
VE RI TS				R_{Exp}	R_{Ref}			0	O Exp	\mathbf{O}_{Ref}	E _{Exp}		
	05	Mental IIIness	0.001	72.0	32.6	2.2	39.4	2,857	875	1,982	571	1.5	303.6
100 A	05.12	Substance-Related Disorders	0.001	52.8	12.3	4.3	40.4	1,390	641	749	278	2.3	363
VE BI IS	05.12.00	Substance-Related Disorders	0.001	52.8	12.3	4.3	40.4	1,390	641	749	278	2.3	363
	05.12.00.00	Substance-Related Disorders	0.001	52.8	12.3	4.3	40.4	1,390	641	749	278	2.3	363
	7795	Drug Withdrawal Syndrome In Newborn	0.001	35.2	5.8	6.1	29.5	778	428	350	156	2.8	272.4
	76072	Placenta Or Breast Milk Drug Withdrawal	0.001	19.6	3.6	5.4	16	458	238	220	92	2.6	146.4
	2920		0.001	4.8	1.1	4.5	3.7	123	58	65	25	2.4	33.4
>	30400	Opioid Type Dependence Unspecified Use	0.001	1.0	0.0	20.0	0.9	15	12	<11	3	4.0	9.0
00 0	06	Diseases of the nervous system and sense organs											
nio	06.08	Ear conditions							253	749	200	1.3	
sder	06.08.03	Other ear and sense organ disorders											52.6
epi nic	06.08.03.00	Other ear and sense organ disorders				2.3 1.7	× 8.5	1,002					
of Pharmacoepid rmacoeconomics	3899	Unspecified Hearing Loss	0.07	20.8	12.3								
TM 8	15	Conditions originating in the perinatal period											
Pharmacoepidemiology acoeconomics	15.07	Other perinatal conditions											
of P rma	15.07.04	Other and unspecified perinatal conditions											
Division o and Pharr	15.07.04.00	Other and unspecified perinatal conditions											
	76079	Other Noxious Influences Affecting Fetus Or Newborn Via Placenta Or Breast	0.15	15.5	8.9	1.7	6.6	726	188	538	145	1.3	42.8
27	Huybrechts et al. ,	Am J Epidemiol. 2021 Jan 11:kwaa288.										4	P

Considerations

- False Positives
- Cannot dismiss potential adverse effects identified simply because a known biological explanation has not been established:
 - Pathophysiology of many adverse pregnancy outcomes is not fully understood
 - Biologic mechanisms for many accepted human teratogens remain unknown
- Approach controls the overall error rate:
 - Current practice of no adjustment for multiple testing, results in a much higher type I error rate than the experiment-wide alpha level
- P-values are used as a means to rank and prioritize alerts for further investigation, not to decide whether there is a causal association

False Negatives

- Multiplicity adjustment less conservative than for other methods (e.g., Bonferroni)
- Optimize tree:
 - Targeted towards pregnancy outcomes
 - Importance of "pruning" tree
- Do not strictly focus on statistical significance threshold
 - Outcomes that do not alert may still have low likelihood under the null
 - Evaluate pattern of outcomes unlikely to be observed if there was no relationship with exposure

Conclusion

- Based on this initial evaluation, TreeScan based approaches in pregnancy appear promising
- Consider further refinement of the methods:
 - Outcome trees with hierarchical groupings informed by embryology or shared disease processes
 - Improved confounding control
 - Methods to deal with different pregnancy durations

Division of and Pharm

Pharmacoepidemiolog

Jomics

30 Confounding Adjustment

Confounding Adjustment

Pharmacoepidemiology

of

Division

and Pharmacoeconomics

- Use the richness of the data to identify large number of potential risk factors for the outcome or proxies for them \rightarrow summary confounding score
- Lack robust information on certain variables (e.g., BMI, OTC medications, smoking, illicit drug use, SES, lifestyle factors)
- Attempt to mitigate through the generous inclusion of potential proxies

High-dimensional PS

- Empirically identify candidate covariates from thousands of codes, prioritize covariates based on confounding potential, and integrate them into a PS (N ≈ 200)
- Demonstrated to improve confounding control in some circumstances

Confounding: hdPS Adjustment

Risk of neonatal drug withdrawal:

Division of Pharmacoepidemiology

and Pharmacoeconomics

Confounding: hdPS Adjustment

Ondansetron and the risk of congenital malformations:

	Exposed to Onda		Unexpos to Ondar			Favors	Favors
Level of Adjustment	No. of Events	Total No. of Infants	No. of Events	Total No. of Infants	RR (95% CI)	Ondansetron Exposure	Ondansetron Nonexposure
Cardiac malformations (primary outcome)							
Unadjusted	835	88467	14577	1727947	1.12 (1.04-1.20)		
Propensity score stratified (level 1)	835	88467	14577	1727947	1.11 (1.03-1.19)		
Propensity score stratified (level 2)	835	88446	14573	1727546	0.99 (0.93-1.06)		-
High-dimensional propensity score stratified	835	88467	14577	1727925	0.98 (0.92-1.05)		_
Oral clefts (primary outcome)							
Unadjusted	124	88467	1921	1727947	1.26 (1.05-1.51)		
Propensity score stratified (level 1)	124	88467	1921	1727947	1.25 (1.04-1.50)		
Propensity score stratified (level 2)	124	88446	1920	1727546	1.24 (1.03-1.48)	(
High-dimensional propensity score stratified	124	88467	1921	1727925	1.25 (1.04-1.50)		
Any congenital malformation (secondary outcome)							
Unadjusted	3277	88467	54174	1727947	1.18 (1.14-1.22)		-
Propensity score stratified (level 1)	3277	88467	54174	1727947	1.15 (1.11-1.19)		-8-
Propensity score stratified (level 2)	3275	88446	54163	1727546	1.01 (0.98-1.05)	-	-
High-dimensional propensity score stratified	3277	88467	54174	1727925	1.02 (0.98-1.05)		

High-dimensional propensity score stratified 3277 88467 54174 1727925 1.02 Huybrechts et al. JAMA 2018;320(23):2429-2437

0.5

1 RR (95% CI)

Multi-Site Collaborations

- When exposure to the specific drug of interest involves a small fraction of the pregnant population, even these large cohorts are constrained in their information.
- Medication Exposure in Pregnancy Risk Evaluation Program (MEPREP)
- International Pregnancy Safety Study (InPreSS) consortium
 - Denmark, Finland, Iceland, Norway, Sweden, US
 - Follow-up on a positive association identified in a single study
 - Common protocol; but allow deviations to take advantage of the best available information in each country's data

InPreSS: Follow-up on positive association

Methylphenidate and Amphetamine Use in Pregnancy and Risk for Congenital Malformations

A Any congenital malformation

Data Source	log(RR)	SE	RR (95% CI)		
United States	0.10436002	0.09987	1.11 (0.91-1.35)		
Nordic	-0.01005034	0.14677	0.99 (0.74-1.32)		
Total (95% CI)			1.07 (0.91-1.26)		
Heterogeneity: χ ²	$P^2 = 0.42_1, P = .52; I^2 = 0.02$	%			
Test for overall effect: $z = 0.83$, $P = .41$					

B Cardiovascular malformations

Data Source	log(RR)	SE	RR (95% CI)
United States	0.2468601	0.15665	1.28 (0.94-1.74)
Nordic	0.2468601	0.21999	1.28 (0.83-1.97)
Total (95% CI)			1.28 (1.00-1.64)

Huybrechts et al. JAMA Psychiatry. 2018;75(2):167-175.

InPreSS: Uncommon exposure

β-blocker Use in Pregnancy and the Risk for Congenital Malformations

1.81 (0.52 to 6.33)

17/16 127 (0.1) 1.97 (0.74 to 5.25)

36/13 232 (0.3) 1.37 (0.58 to 3.25)

Outcome	Events/Tol	tal, n/N (96)	Adjusted RR	
	Exposed	Unexposed	(95% CI)	
Any congenital	malformation			
Nordic	48/682 (7.0)	152/2895 (5.3)	1.22 (0.88 to 1.71)	
US MAX	78/1668 (4.7)	534/13 232 (4.0)	1.01 (0.80 to 1.27)	
Pooled	126/2350 (5.4)	686/16 127 (4.3)	1.07 (0.89 to 1.30)	
Cardiac malform	nations			
Nordic	15/682 (2.2)	55/2895 (1.9)	0.98 (0.52 to 1.84)	
US MAX	37/1668 (2.2)	224/13 232 (1.7)	1.16 (0.82 to 1.63)	
Pooled	52/2350 (2.2)	279/16 127 (1.7)	1.12 (0.83 to 1.51)	
Cleft lip/palate				
Nordic	3/682 (0.4)	4/2895 (0.1)	2.26 (0.47 to 10.8)	

13/13 232 (0.1)

- First trimester exposure to βblockers
- Background: Meta-analysis reported significantly increased risks for cardiac defects, cleft lip or palate, and neural tube defects.
- Cohort: Pregnant women with a diagnosis of hypertension

US MAX

US MAX

Pooled

<11/1668 (<0.7)

<14/2350 (<0.6)

<11/1668 (<0.7)

Central nervous system malformations

InPreSS: Uncommon exposure

β-blocker Use in Pregnancy and the Risk for Congenital Malformations

Outcome	Events/Total, n/N (%) Exposed Unexposed		Adjusted RR (95% CI)			
	Exposed	Onexposed	(35% CI)			1
Any congenit	tal malformation					
Nordic	48/682 (7.0)	152/2895 (5.3)	1.22 (0.88 to 1.71)			-
US MAX	78/1668 (4.7)	534/13 232 (4.0)	1.01 (0.80 to 1.27)			\rightarrow
Pooled	126/2350 (5.4)	686/16 127 (4.3)	1.07 (0.89 to 1.30)			- la
Cardiac malf	ormations					
Nordic	15/682 (2.2)	55/2895 (1.9)	0.98 (0.52 to 1.84)		-	-+-
US MAX	37/1668 (2.2)	224/13 232 (1.7)	1.16 (0.82 to 1.63)			+r
Pooled	52/2350 (2.2)	279/16 127 (1.7)	1.12 (0.83 to 1.51)			+
Cleft lip/pala	te					
Nordic	3/682 (0.4)	4/2895 (0.1)	2.26 (0.47 to 10.8)			\rightarrow
US MAX	<11/1668 (<0.7)	13/13 232 (0.1)	1.81 (0.52 to 6.33)		_	\rightarrow
Pooled	<14/2350 (<0.6)	17/16 127 (0.1)	1.97 (0.74 to 5.25)			+
Central nervo	ous system malformat	tions				
US MAX	<11/1668 (<0.7)	36/13 232 (0.3)	1.37 (0.58 to 3.25)		-	+
				\rightarrow		+
				0.1 0.3	2 0.5	1
				25	1.061	e 16

Decreased Risk Increased Risk

Conclusions

- Goals:
 - 1. Quickly detect problems when they exist
 - 2. Show the absence of strong harmful effects when there are none
- Strength in the use of complementary approaches: pregnancy exposure registries, case-control surveillance, healthcare utilization databases
- Unique opportunities to further advance the field of perinatal pharmacoepidemiology: methods development, multi-site collaborations
- Value of linkages to external databases with additional clinical information: birth/death certificates, laboratory tests, electronic medical records

Acknowledgements

Core Team:

VE RI TAS

Sonia Hernández-Díaz, MD DrPH

Harvard Program in Perinatal and Pediatric Pharmacoepidemiology

- Brian T. Bateman, MD MS
- Yanmin Zhu, MS PhD
- Kathryn Gray, MD, PhD
- Elisabeth Suarez, PhD
- Loreen Straub, MD MSc
- Shirley Wang, PhD ScM
- Martin Kulldorff, PhD

