

Signal Identification Methods in the Sentinel System

Judith C. Maro, PhD Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA

Agenda

- Regulatory Background
- Sentinel Data
- Sentinel Tools and Methods

Sentinel and the United States Food and Drug Administration's (FDA) Mandate

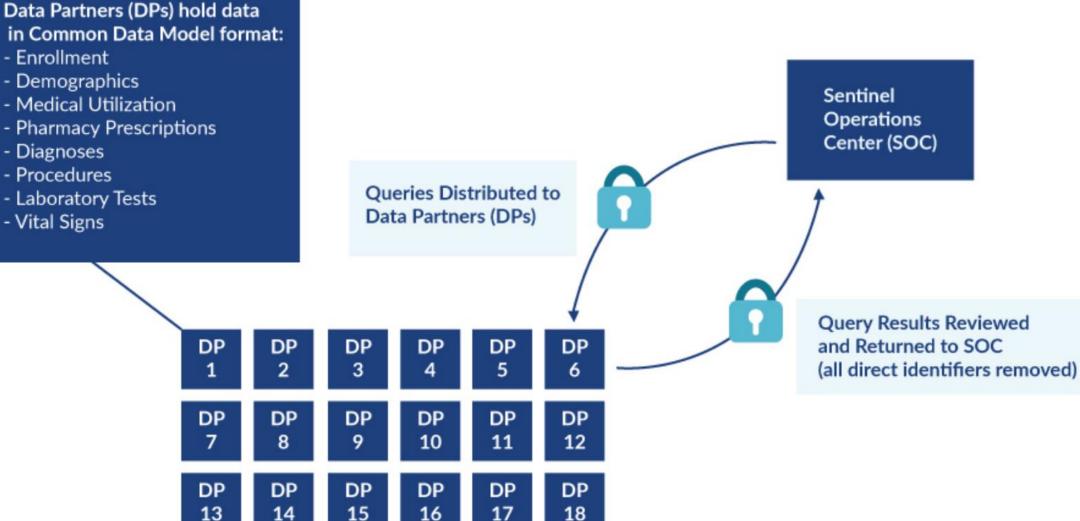
Section 905 Mandates creation of Sentinel

Section 901

New Food and Drug Administration Amendments Act (FDAAA) Postmarketing Requirements (PMR) authority

"The Secretary may not require the responsible person to conduct a study under this paragraph, unless the Secretary makes a determination that the reports under subsection (k)(1) and the <u>active postmarket risk</u> <u>identification and analysis system</u> as available under subsection (k)(3) will not be <u>sufficient</u> to meet the purposes set forth in subparagraph (B)."

Sentinel Design Requirements



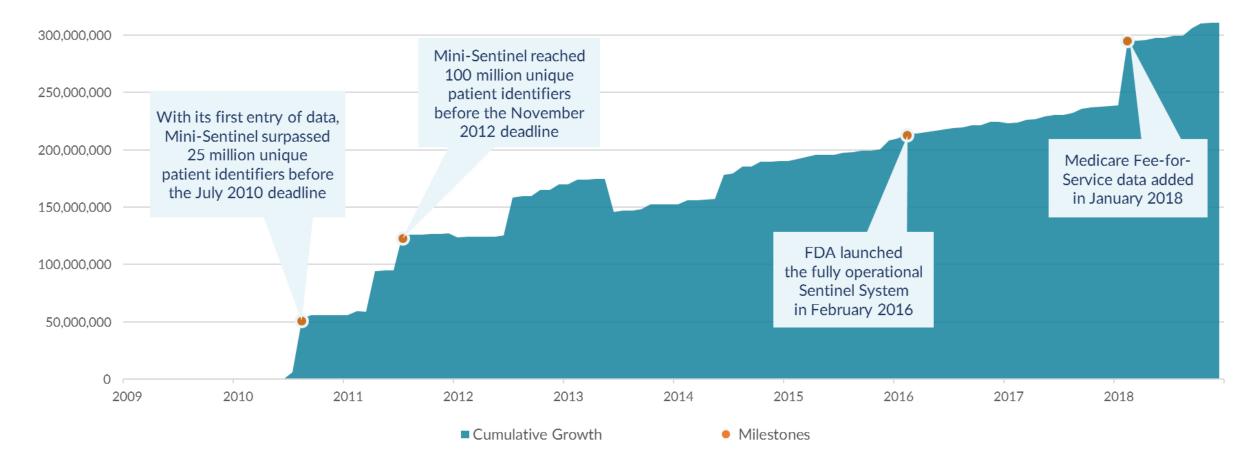
- Electronic health data for >100M persons
 - Include special populations (pregnant women, elderly)
 - Ability to link to external sources, e.g., National Death Index
 - Ability to access full text medical records
- Expertise in the way health care delivery and payment influence electronic healthcare data
- Rapid answers to many FDA safety questions
- Accuracy sufficient to support regulatory decision making
- Federal Information Security Management Act (FISMA)-compliant data security
- Ability to protect non-public information and to keep records on all data requests for public record-keeping

13 14 13 10

https://www.sentinelinitiative.org/sentinel/data/distributed-database-common-data-model

Sentinel Distributed Database

Collaborating Organizations



Growth of the Sentinel Distributed Database

70 million members currently accruing new data

The area above depicts the cumulative number of unique patient identifiers in the Sentinel Distributed Database from 2010 to present. If patients move health plans, they may have more than one patient identifier.

Sentinel Common Data Model Guiding Principles

- Includes claims, electronic health record (EHR), and registry data and flexible enough to accommodate new data domains (e.g., free text).
 - Typically, we do not include empty tables we expand as needed when fit for purpose.
- Data are stored at most granular/raw level possible with minimal mapping.
 - Distinct data types should be kept separate (e.g., prescriptions, dispensings)
 - Construction of medical concepts (e.g., outcome algorithms) from these elemental data is a project-specific design choice.
 - Sentinel stores these algorithms in a library for future use.
- Appropriate use and interpretation of local data requires the Data Partners' local knowledge and data expertise.
 - − Not all tables are populated by all Data Partners → site-specificity is allowed.
- Designed to meet FDA needs for analytic flexibility, transparency, and control.

Available Data Elements

		Administra	ative Da	ta			Clinica	al Data
Enrollment	Demographic	Dispensing	Εηςοι	unter	Diagnosis	Procedure	Lab Result	Vital Signs
Patient ID	Patient ID	Patient ID	Patie	nt ID	Patient ID	Patient ID	Patient ID	Patient ID
Enrollment Start &	Birth date	Dispensing Date	Service	Date(s)	Service date(s)	Service Date(s)	Result & Specimen	Measurement Dat
End Dates	Sex	National Drug Code	Encour	nter ID	Encounter ID	Encounter ID	Collection Dates	& Time
Drug Coverage	Zip code	(NDC)	Encounter	r Type and	Encounter Type a	nd Encounter Type and	Test Type, Immediacy &	Height & Weight
Medical Coverage	Etc.	Days Supply	Prov	/ider	Provider	Provider	Location	Diastolic & Systoli
Medical Record Availability		Amount Dispensed	Faci Et		Diagnosis Code Type	& Procedure Code & Type	Logical Observation Identifiers Names	BP Tobacco Use & Typ
				Principle Discharge Etc.		and Codes (LOINC [®])	Etc.	
					Diagnosis		Etc.	
	Registry D	-1-						
	Registry D	ata			Inpatier	nt Data	Mother-Infant	t Linkage Dat
Death	Cause of Dea		cine	Inpatio	Inpatier ent Pharmacy	nt Data Inpatient Transfusion		t Linkage Dat
Death Patient ID					-		Mother-Inf	
	Cause of Dea	th State Vac Patient	ID	F	ent Pharmacy	Inpatient Transfusion	Mother-Inf Moth	ant Linkage
Patient ID	Cause of Dea Patient ID	th State Vac Patient	ID n Date	F	ent Pharmacy Patient ID	Inpatient Transfusion Patient ID	Mother-Inf Moth Mother E	f <mark>ant Linkage</mark> ner ID
Patient ID Death Date	Cause of Dea Patient ID Cause of Deat	th State Vac Patient h Vaccination	ID Date Date	F Admini	ent Pharmacy Patient ID stration Date &	Inpatient Transfusion Patient ID Administration Start &	Mother-Inf Moth Mother E Encounter	f <mark>ant Linkage</mark> her ID Birth Date
Patient ID Death Date Source	Cause of Dear Patient ID Cause of Deat Source	th State Vac Patient h Vaccination Admission	ID Date Date & Type	F Admini En	Patient ID Stration Date & Time counter ID nal Drug Code	Inpatient Transfusion Patient ID Administration Start & End Date & Time Encounter ID Transfusion	Mother-Inf Moth Mother E Encounter Admission & E	Fant Linkage ner ID Birth Date r ID & Type
Patient ID Death Date Source Confidence	Cause of Deat Patient ID Cause of Deat Source Confidence	th State Vac Patient h Vaccination Admission Vaccine Code	ID Date Date & Type	F Admini En	Patient ID Stration Date & Time counter ID nal Drug Code (NDC)	Inpatient Transfusion Patient ID Administration Start & End Date & Time Encounter ID Transfusion Administration ID	Mother-Inf Moth Mother E Encounter Admission & I Chil	Fant Linkage her ID Birth Date r ID & Type Discharge Date
Patient ID Death Date Source Confidence	Cause of Deat Patient ID Cause of Deat Source Confidence	th State Vac Patient h Vaccination Admission Vaccine Code Provide	ID Date Date & Type	F Admini En	Patient ID Patient ID stration Date & Time counter ID nal Drug Code (NDC) Route	Inpatient Transfusion Patient ID Administration Start & End Date & Time Encounter ID Transfusion	Mother-Inf Moth Mother E Encounter Admission & D Child Bi	Fant Linkage her ID Birth Date r ID & Type Discharge Date
Patient ID Death Date Source Confidence	Cause of Deat Patient ID Cause of Deat Source Confidence	th State Vac Patient h Vaccination Admission Vaccine Code Provide	ID Date Date & Type	F Admini En	Patient ID Stration Date & Time counter ID nal Drug Code (NDC)	Inpatient TransfusionPatient IDAdministration Start & End Date & TimeEncounter IDTransfusion Administration IDTransfusion Product	Mother-Inf Moth Mother E Encounter Admission & I Child Bi Mother-Infant	Fant Linkage her ID Birth Date r ID & Type Discharge Date Id ID irth Date

Etc.

https://www.sentinelinitiative.org/sentinel/data/distributed-database-common-data-model

Single Patient Example Data in Model

Е

DEMOGRAPHIC							
PATID	BIRTH_DATE	SEX	HISPANIC		RACE	zip	
PatID1	2/2/196	54 F	Ν			5	32818
	D	ISPEN	ISING				
PATID	RXDATE	NDC		RXS	UP	RXAN	/IT
PatID1	10/14/2005	0000607	4031		30		30
PatID1	10/14/2005	0018509	4098		30		30
PatID1	10/17/2005	0037801	.5210		30		45
PatID1	10/17/2005	5409203	9101		30		30
PatID1	10/21/2005	0017307	3001		30		30
PatID1	10/21/2005	4988407	4311		30		30
PatID1	10/21/2005	5817702	6408		30		60
PatID1	10/22/2005	0009372	0656		30		30
PatID1	10/23/2005	0031002	7510		30		15

ENROLLMENT						
PATID	ENR_START	ENR_END	MEDCOV	DRUGCOV		
PatID1	7/1/2004	12/31/2004	Y	N		
PatID1	1/1/2005	12/31/2005	Y	Υ		
	DEATH					
PATID	DEATHDT	DTIMPUTE	SOURCE	CONFIDENCE		

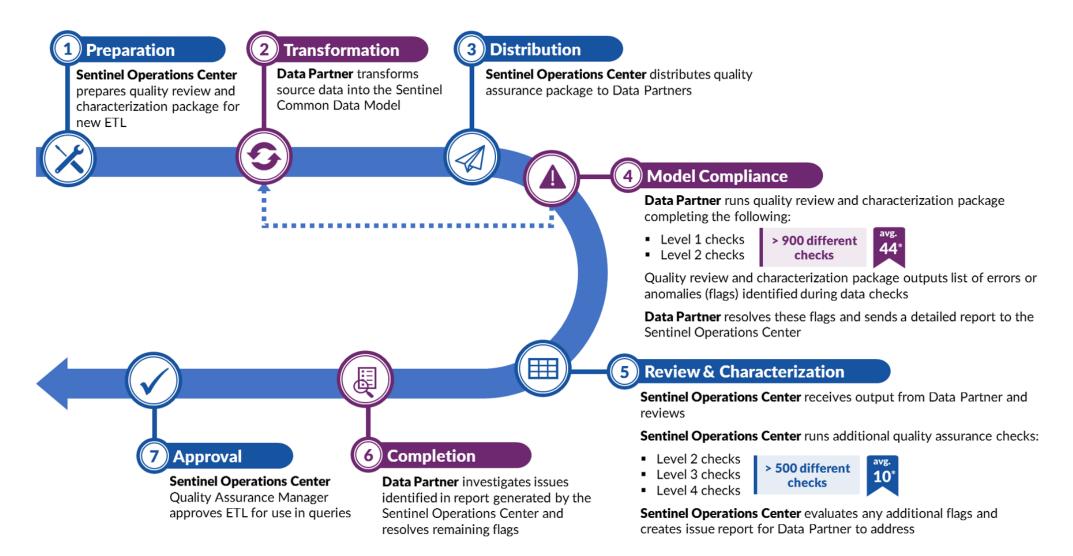
S

Ν

12/27/2005

PatID1

			ENCOUNT	ER				
PATID	ENCOUNTERID	А	DATE		DDATE		ENCTYPE	
PatID1	EncID1		10/1	8/2005		10/20	0/2005 IP	
	DIAGNOSIS							
PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYP	E [XC	DX_CODETYPE	PDX
PatID1	EnclD1	10/18/2005	6 Provider1	IP		296.2		9 P
PatID1	EncID1	10/18/2005	6 Provider1	IP		300.02		9 S
PatID1	EnclD1	10/18/2005	Provider1	IP		305.6		9 S
PatID1	EnclD1	10/18/2005	Provider1	IP		311		9 P
PatID1	EnclD1	10/18/2005	Provider1	IP		401.9		9 S
PatID1	EnclD1	10/18/2005	Provider1	IP		493.9		9 S
PatID1	EnclD1	10/18/2005	Provider1	IP		715.9		9 S


		РК	OCEDURE			
PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYPE	РХ	PX_CODETYPE
PatID1	EncID1	10/18/2005	Provider1	IP	84443	C4
PatID1	EncID1	10/18/2005	Provider1	IP	99222	C4
PatID1	EncID1	10/18/2005	Provider1	IP	99238	C4
PatID1	EncID1	10/18/2005	Provider2	IP	27445	C4

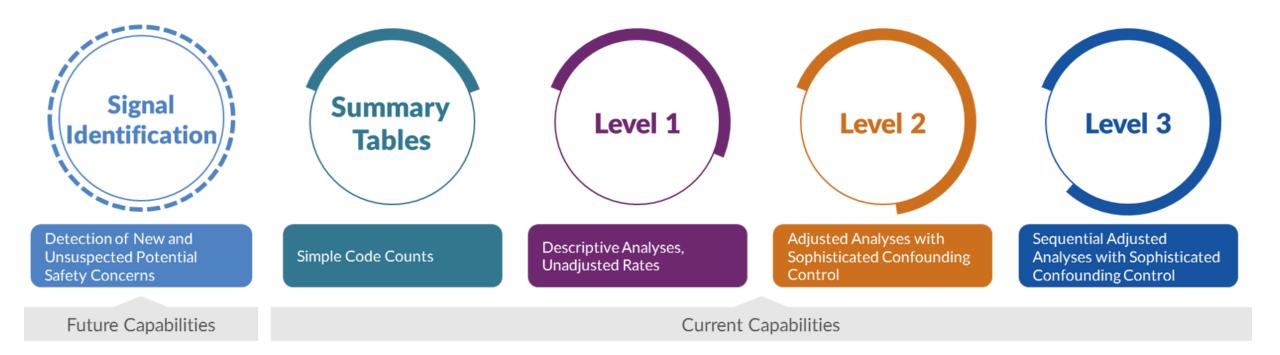
DDOCEDUDE

CAUSE OF DEATH								
PATID	COD	CODETYPE	CAUSETYPE	SOURCE	CONFIDENCE			
PatID1								

Data Quality Review and Characterization Process

* On average, there are 44 flags identified by the program and 10 additional flags identified by the Sentinel Operations Center per ETL

Data Quality Checks and Examples



Level 1 Checks	 Completeness ✓ Admission date is not missing value Validity ✓ Admission date is in date format 	Sentinel Common Data Model Compliance
Level 2 Checks	 Accuracy ✓ Admission date occurs before the patient's discharge date Integrity ✓ Admission date occurs within the patient's active enrollment period 	Cross-Variable and Cross-Tabular
Level 3 Checks	 Consistency of Trends ✓ There is no sizable percent change in admission date record counts by month-year 	Cross-ETLs
Level 4 Checks	Plausibility ✓ There is no sizable percent change in the number of prostate cancer encounters by sex* 	Cross-ETLs

https://www.sentinelinitiative.org/sentinel/data-quality-review-and-characterization

Active Risk Identification and Analysis (ARIA)

- Template computer programs with standardized questions
- Parameterized at program execution
- Pre-tested and quality-checked
- Standard output

Cohort Identification and Descriptive Analysis (CIDA) Sentinel

OVERVIEW

The purpose of this repository is to document version 7.3.0 of the Sentinel Routine Querying System. Functional documentation sections describe the capabilities of the tools in the system. Technical documentation sections specify the tools' inputs and outputs and provide the information required to build analytic packages to address research questions of interest.

SENTINEL ROUTINE QUERYING SYSTEM TOOLS

Sentinel's Routine Querying System includes three tools:

The **COHORT IDENTIFICATION AND DESCRIPTIVE ANALYSIS (CIDA) TOOL** identifies and extracts cohorts of interest from the Sentinel Distributed Database based on requester-defined options (e.g., exposures, outcomes, continuous enrollment requirements, incidence criteria, inclusion/exclusion criteria, relevant age groups, demographics).

The CIDA tool calculates descriptive statistics for the cohort(s) of interest and outputs datasets that may be useful for additional analyses. The CIDA tool may be used alone or in conjunction with the Propensity Score Analysis Tool or the Multiple Factor Matching Tool.

There are six cohort identification strategies available:

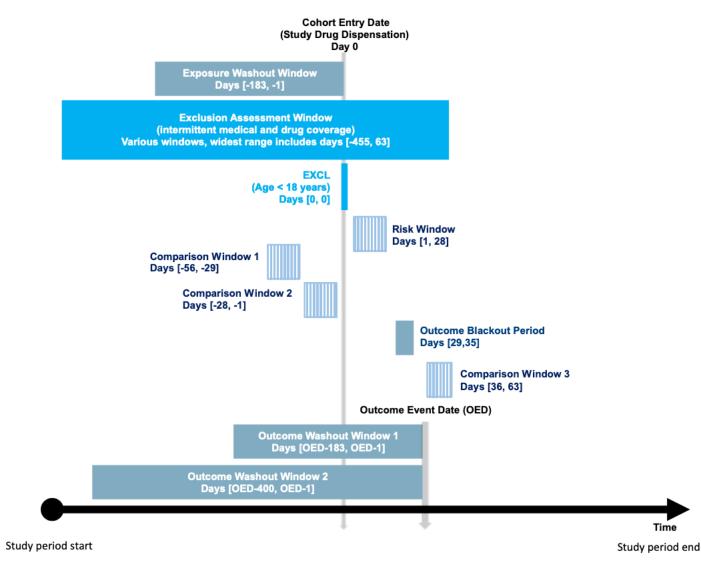
- Type 1: Extract information to calculate background rates
- Type 2: Extract information on exposures and follow-up time
- Type 3: Extract information for a self-controlled risk interval design
- Type 4: Extract information for medical product use during pregnancy
- Type 5: Extract information for medical product utilization
- Type 6: Extract information on manufacturer-level product utilization and switching patterns

Signal Identification Methods and Future Tools

Signal Identification in the Sentinel System

The Food and Drug Administration Amendments Act (FDAAA) of 2007 mandated that FDA "create a robust system to identify adverse events and potential drug safety signals." Federal Food, Drug, and Cosmetic Act Section 505(k)(3)(C)(i)(3)(cc) (21 U.S.C. 355(k)(3)(C)(i)(III)(cc)). FDA defines signal identification as a process of systematically evaluating potential adverse events related to the use of medical products without prespecifying an outcome of interest. Several statistical approaches exist in Sentinel that can be applied to the electronic healthcare data to detect new and unsuspected potential safety concerns. These analytic tools are not intended to establish causal associations between medical products and potential adverse events. These approaches provide information about unexpected elevated frequencies of a health outcome after product exposure and should always be followed by clinical review and/or safety studies specifically designed to quantify the magnitude of effect with confounding control targeted at the specific outcome of interest.

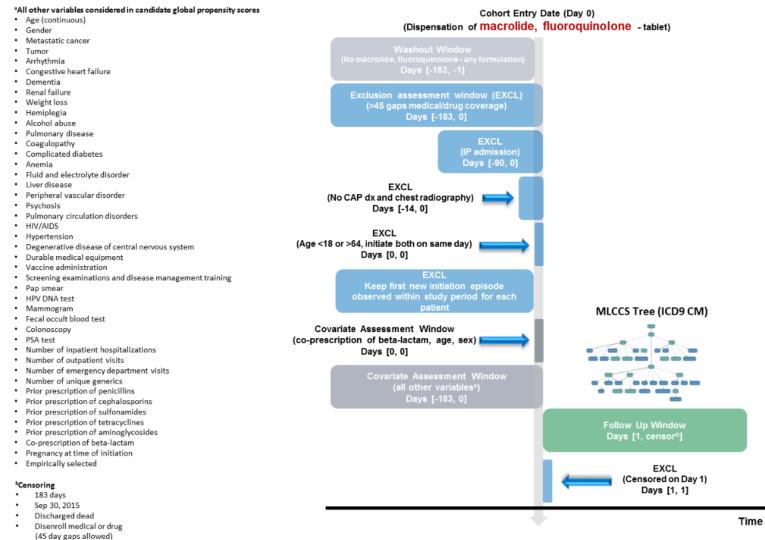
Detection of New and Unsuspected Potential Safety Concerns


Overview of Signal Identification Techniques Utilized by the Sentinel System

Method	Study Design or Contrast	Test Statistic	Control for Multiple Testing	Adjustment for Trends in Healthcare Utilization
Information Component Temporal Pattern Discovery	Compares the rate of events in multiple prespecified control and risk windows relative to the timing of a first dispensing using a self-controlled design, while adjusting for general dispensing patterns across the database	Ranks alerts based on the delta in Information Component between the risk and control windows	No, however, uses a shrinkage estimator to reduce false positives due to random variability or rare events	Yes
Propensity Score Based TreeScan	Compares the rate of events in a prespecified risk window between persons newly exposed to a drug of interest who are matched by propensity score to a cohort of new users of a comparator drug	Ranks alerts based on the log-likelihood ratio, a measure of observed vs. expected counts, using a	Yes, via Monte Carlo hypothesis testing	No
Self-Controlled TreeScan	Compares the rate of events in prespecified control and risk windows within the same person	Bernoulli probability model		Optional
Sequence Symmetry Analysis	Compares whether an event occurs more frequently after exposure to a medication than before medication exposure using a self-controlled design	Ranks alerts based on magnitude of absolute difference in sequence orders and presented unadjusted p-values from chi-square tests	No	No
Tree-temporal TreeScan	Compares the rate of events across multiple risk and control windows within the same person that do not require explicit pre-specification of the windows. Effectively combines the benefits of TreeScan with a temporal scan of many possible risk windows	Ranks alerts based on the log-likelihood ratio, a measure of observed vs. expected counts	Yes, via Monte Carlo hypothesis testing	Optional

Self-Controlled Designs

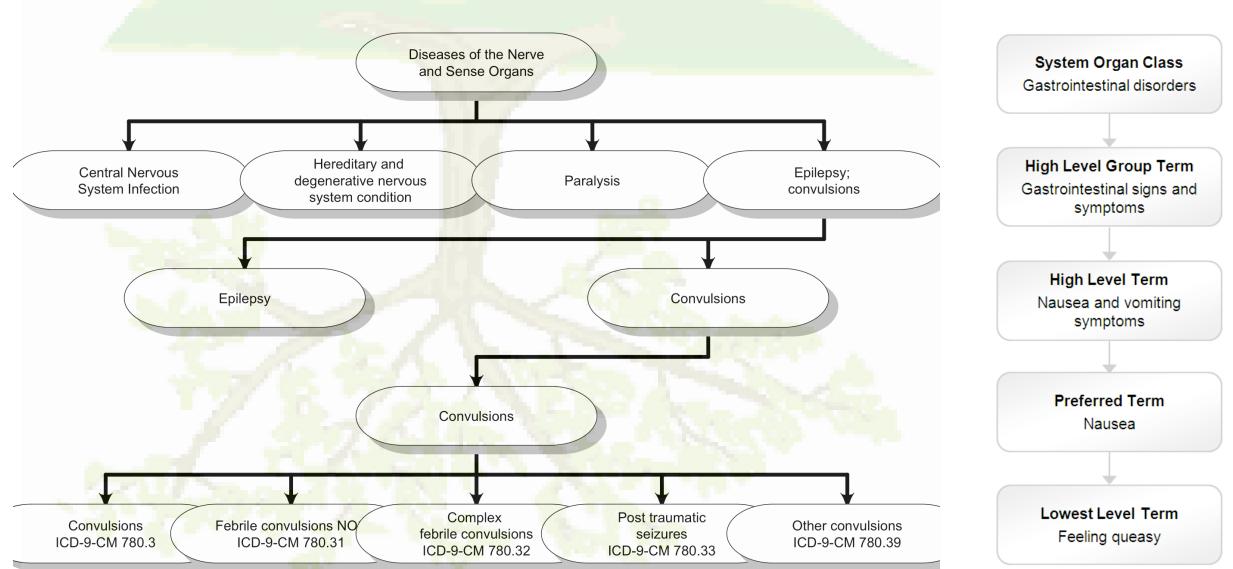
Figure 1. Design Diagram



Propensity-Score Matched Designs

Example 1

Tree-Based Scan Statistics are Enabled by:


- A signal detection / data-mining method
- Automatically adjusts for multiple hypothesis testing
- Scans electronic health data that are grouped into hierarchical tree structures

http://www.treescan.org

Data Arranged in a Tree Structure

Study Designs Compatible with TreeScan Analytics

				TreeScan A	nalytics		
		Poisson I	Model	Bernoulli M	Model	Tree-Tempo	ral Model
		Unconditional	Conditional	Unconditional	Conditional	Unconditional	Conditional
	Self- Controlled Design			X	X	X	X
Study Designs	Propensity Score or other Fixed Ratio Match Design			X			
	Stratified Cohort Design	X	X				

Unconditional means the null hypothesis relies on an external input about the expected outcomes. Conditional means the null hypothesis is determined by the characteristics of the incoming data set.

How has TreeScan been evaluated thus far?

Simulated Datasets

Advantages

- Artificially inject "excess risk" of variable specific sizes
- Allows quantitative assessment of method under "experimental conditions" where "truth is known"

Limitations

 Simulated data has a range of realistic representations. Early simulations are quite artificial

Empiric Assessments

Advantages

- Empiric testing with real data
- Allows assessment of method under real life conditions
- Can be effective method to assess performance if test case is well characterized

Limitations

- Can be challenging to interpret unexpected results
- Need additional information to investigate unexpected results

Self-Controlled Designs

		O Dharmagaanidami		Sentinel
	PD	S Pharmacoepidemie & Drug Safety	Ology Official Journa International Soci Pharmacoepiden	iety for
PC	original ri Mening Vaccine	Assessment Papillomavi Controlled T	Signal Detection	Three Self-Controlled Methods for on: TreeScan, Sequence Symmetry Analysis, on Component Temporal Pattern Discovery
Prep Kulle	method	Signal-Dete	Project Title	Evaluation of Three Self-Controlled Methods for Signal Detection: TreeScan, Sequence Symmetry Analysis, and Information Component Temporal Pattern Discovery
	Dengvia Liv	System 👌	Date Posted	Wednesday, April 24, 2019
	Rongxia Li 🔀 Stanley Xu,	W Katherine Yih ⊠, J	Status	In progress
	-	Carolyn Balsbaugh, [Deliverables	Evaluation of Three Self-Controlled Methods for Signal Detection: TreeScan, Sequence Symmetry Analysis, and Information Component Temporal Pattern Discovery Protocol
	First publish	Martin Kulldorff	Description	The aim of this methods project is to compare the relative performance of three analytic methods, TreeScan, Sequence Symmetry Analysis (SSA), and Information Component Temporal Pattern Discovery (ICTPD) in signal detection capability (both type I and type II error) using a simulated
		American Journal of I		dataset as well as concordance in alerting when using an empiric dataset. The Workgroup will use the
		1269–1276, https://d		same dataset(s) to examine health outcomes of interest using all three methods. The Workgroup will select at least one drug evaluation example with a well-known safety profile for
		Published: 23 Febru		evaluation of TreeScan, SSA, and ICTPD.

Propensity Score Matched Designs

		38 G S I D D I D D D D D D D D D D	
Statistic Shirley V. Wang; Ju	=	t and Evaluation of a Global core for Data Mining with T cs	
Gagne; Elisabetta Sebastian Schnee	Project Title	Development and Evaluation of a Global Propensity Score f Based Scan Statistics	or Data Mining with Tree-
+ Author Informat	Date Posted	Friday, August 10, 2018	
	Status	In progress	
	Deliverables	Development and Evaluation of a Global Propensity Score fo Based Scan Statistics: Protocol	r Data Mining with Tree-

Stratified Cohort Designs with Referent Cohort

Strengths of TreeScan

- 1. Takes advantage of hierarchical nature of clinical concepts in the form of a tree structure.
- 2. Investigator does not need to understand how particular outcomes are coded (i.e., can be indifferent to the granularity of the outcome data)
- 3. Formal control for multiple hypothesis testing (Overall Type 1 error)

Limitations of TreeScan

- 1. All outcomes are treated identically across the tree (8000+) regardless of their time of onset, severity, etc.
- 2. Complex outcomes (algorithms such as 2 codes within X days of each other) are not tested with TreeScan.
- 3. Individual study designs have limitations depending on the design chosen.

Selected Findings from Pilot Work

- Most important decision is ultimately based on study design.
- Self-Controlled Methods
 - Best when applied to stable patients (eg, contraceptives, vaccines)
 - Moderate performance for statins; Better performance possible with more careful exclusion criteria for recently hospitalized / unstable patients
 - Poor performance for acutely ill, unstable patients
- Propensity-Score Adjustment Methods
 - Best when obvious referent product to compare.
 - Even partial degrees of adjustment provide large improvements in performance as compared to no adjustment.

Expansion of TreeScan to a Sequential Framework

Submit Comment

Sequential TreeScan Signal Identification Methods Development

Project Title	Sequential TreeScan Signal Identification Methods Development
Date Posted	Tuesday, December 11, 2018
Status	In progress
Description	The aim of this methods project is to enable and pilot test sequential TreeScan analyses over time. This project will develop adjustments to tree-based scan statistics (Unconditional Bernoulli) that will enable sequential versions of TreeScan for the fixed-window self-controlled and propensity score matched approaches. Sequential TreeScan will also be performed on an agreed-upon example problem (i.e., a test case) in a non-distributed but routinely updated data source (Optum Clinformatics).

General Resources

Trainings and Public Meetings

- Public Sentinel Training at FDA Day 2 of the Tenth Annual Sentinel Initiative Public Workshop
- Implementation of Signal Detection Capabilities in the Sentinel System, Duke Margolis Public Meeting
- 2018 ICPE Presentation: Data Mining for Adverse Drug Events with a Propensity Score Matched Tree-Based Scan Statistic
- 2018 ICPE Presentation: Signal Detection using TreeScan with Drug Classes: Pilot Projects in Sentinel
- 2017 ICPE Workshop: TreeScan[™]: A Novel Data-Mining Tool for Medical Product Safety Surveillance
- 2017 ICPE Presentation: Promises and Challenges of Screening for Adverse Events in Sentinel
- Guidance for Industry: Good Pharmacovigilance Practices and Pharmacoepidemiologic Assessment, March 2005

Projects and Publications

- Evaluation of Three Self-Controlled Methods for Signal Detection: TreeScan, Sequence Symmetry Analysis, and Information Component Temporal Pattern Discovery
- Data Mining for Adverse Drug Events with a Propensity Score Matched Tree-Based Scan Statistic
- The U.S. Food and Drugs Administration's Sentinel Initiative: Expanding the Horizons of Medical Product Safety
- Statistical Power for Postlicensure Medical Product Safety Data-Mining
- Infrastructure for Evaluation of Statistical Alerts Arising from Vaccine Safety Data Mining Activities in Mini-Sentinel
- Drug Adverse Event Detection in Health Plan Data Using the Gamma Poisson Shrinker and Comparison to the Tree-based Scan Statistic

Programming Resources

Submit Comment

TreeExtraction Documentation

Project Title	TreeExtraction Documentation
Date Posted	Friday, June 29, 2018
Status	In progress
Deliverables	Sentinel Reusable Programs: TreeExtraction Program v1.2
	SAS Package Toolkit: TreeExtraction v1.2 Macros and Input Files
	Sentinel Reusable Programs: TreeExtraction Program v1.3
	SAS Package Toolkit: TreeExtraction v1.3 Macros and Input Files
	Sentinel Reusable Programs: TreeExtraction Program v1.4
	SAS Package Toolkit: TreeExtraction v1.4 Macros and Input Files
	CDER Supporting Tree and Mapping Files
	CBER Supporting Tree and Mapping Files

Discussion

Acknowledgements

- Thanks to my many colleagues within the greater Sentinel Initiative including our many collaborating institutions
- Questions: info@sentinelsystem.org