Unsupervised approaches for phenotyping using electronic health record data

July 29, 2020 | Sentinel Innovation Center Seminar

Katherine P. Liao, MD, MPH

Associate Professor of Medicine | Assistant Professor of Biomedical Informatics Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System

- Rationale for development of phenotyping approaches using EHR
- Brief background of ML for phenotyping
 - Supervised vs unsupervised
- Unsupervised approaches for phenotyping w/ EHR data
 - Strengths and limitations

i2b2 Informatics for Integrating Biology & the Bedside

A National Center for Biomedical Computing

Who has rheumatoid arthritis (RA) in the EHR?

 Table 4. Comparison of performance characteristics from validation of the complete classification algorithm (narrative and codified) with algorithms containing codified-only and narrative-only data*

Model	RA by algorithm or criteria, no.	PPV (95% CI), %	Sensitivity (95% CI), %	Difference in PPV (95% CI), %†
Algorithms				
Narrative and codified (complete)	3,585	94 (91–96)	63 (51–75)	Reference
Codified only	3,046	88 (84–92)	51 (42-60)	6 (2-9)‡
NLP only	3,341	89 (86–93)	56 (46-66)	5 (1-8)‡
Published administrative codified criteria				
≥3 ICD-9 RA codes ≥1 ICD-9 RA codes plus ≥1 DMARD	7,960 7,799	56 (47–64) 45 (37–53)	80 (72–88) 66 (57–76)	38 (29–47)‡ 49 (40–57)‡

* The complete classification algorithm was also compared with criteria for RA used in published administrative database studies. RA = rheumatoid arthritis; PPV = positive predictive value; 95% CI = 95% confidence interval; NLP = natural language processing; ICD-9 = International Classification of Diseases, Ninth Revision; DMARD = disease-modifying antirheumatic drug.

+ Difference in PPV = PPV of complete algorithm – comparison algorithm or criteria.

‡ Significant difference in PPV compared with the complete algorithm.

Figure. The Tapestry of Potentially High-Value Information Sources That May be Linked to an Individual for Use in Health Care

Weber et al, JAMA 2014

Types of EMR data

Liao, Cai, et al., BMJ 2015

Natural language processing (NLP)

Computational method for text processing based on the rules of linguistics

NLP

the girl with the ophthalmoscope. saw w2 w3 w4 w5 w6 w7 w1 verb article article pronoun noun prep noun

NLP ≠ "find" command in Word

- Negation
 - The patient has no erosions in the MCPs.
- Inverted syntax
 - Colon, ascending and descending, biopsy
- Relation
 - Tamoxifen is used in the treatment of breast cancer
- Morphologic variations
 - Tobacco, 30 pack years, past smoker, +tob \rightarrow smoking

Illustrative dataset

ID	Age	Sex	Dx code	Lab	Dis+
9	22	Μ	0	-	0
10	45	F	1	31	1
11	75	F	1	40	1
12	67	Μ	0	-	0
13	56	М	0	56	1
14	54	F	0	11	0
15	81	F	1	42	1
16	48	F	0	5	0

Training set

Pattern recognition

ID	Age	Sex	Dx code	Lab	Dis+
9	22	Μ	0	-	0
10	45	F	1	31	1
11	75	F	1	40	1
12	67	Μ	0	-	0
13	56	Μ	0	56	1
14	54	F	0	11	0
15	81	F	1	42	1
16	48	F	0	5	0

+200 subjects

Training set

+1000 features

Pattern recognition

- More potential "features" *may* enable more accurate algorithms
 - Features can also add noise
- Challenge to identify the important features and their patterns +200 subjects

ID	Age	Sex	Dx code	Lab	Dis+		
9	22	Μ	0	-	0		
10	45	F	1	31	1		
11	75	F	1	40	1		
12	67	Μ	0	-	0		
13	56	Μ	0	56	1		
14	54	F	0	11	0		
15	81	F	1	42	1		
16	48	F	0	5	0		
Training set							

+1000 variables

Artificial Intelligence & Machine Learning

- Artificial intelligence (AI)
 - Intelligence demonstrated by machines
 - Contrast to human intelligence
- Machine learning (ML) \rightarrow subset of AI
 - Requires training set
 - Focus on prediction (vs causality)
 - Does not address why or how to change outcomes
 - Learning structure from data
 - Pattern recognition
 - Examples
 - Least absolute shrinkage and selection operator (LASSO) regression
 - Support vector machine (SVM)

Types of EHR data

Approach to developing phenotype algorithms using EHR data

- Chart review- not feasible
- Rule-based
 - Relies on human expertise to identify important features
 - Algorithm is a combination of AND, NOT, OR
- Machine learning
 - Data driven method to select features and develop algorithm

Limitations of supervised ML approaches for phenotyping

- Require gold standard labels through manual chart review
 - Notes not always available
 - Time and resource intensive
 - Not scalable
- Inefficient
 - Large amount of unlabeled data contains "noisy labels"

Comparison of EHR phenotype algorithm approaches

Characteristics	Supervised or semi-supervised	Unsupervised
Manual chart review for labels	Y	N
Feature selection	Manual or automated	Automated
Rule-based, e.g. 2 ICD + 1 Rx	Option	Ν
Machine learning	Option	Y
Efficiency	Varies	High
Accuracy	Data available	Needs validation

Unsupervised approaches for phenotyping w/ EHR data

Unsupervised approaches

Journal of the American Medical Informatics Association, 0(0), 2017, 1–7 doi: 10.1093/jamia/ocx111 Research and Applications

- Anchor, Halpern et al., 2014
- XPRESS, Agarwal et al., 2016
- APHRODITE, Banda et al., 2017
- PheNorm, Yu et al...Cai, 2017
- MAP, Liao, Sun et al...Cai, 2019

Research and Applications

Enabling phenotypic big data with PheNorm

Sheng Yu,^{1,2} Yumeng Ma,³ Jessica Gronsbell,⁴ Tianrun Cai,⁵ Ashwin N Ananthakrishnan,⁶ Vivian S Gainer,⁷ Susanne E Churchill,⁸ Peter Szolovits,⁹ Shawn N Murphy,^{7,10} Isaac S Kohane,⁸ Katherine P Liao,¹¹ and Tianxi Cai⁴

¹Center for Statistical Science, Tsinghua University, Beijing, China, ²Department of Industrial Engineering, Tsinghua University, Beijing, China, ³Department of Mathematical Sciences, Tsinghua University, Beijing, China, ⁴Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA, ⁵Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA, ⁶Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA, ⁷Research Information Science and Computing, Partners HealthCare, Charlestown, MA, USA, ⁸Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA, ⁸Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Cambridge, MA, USA, ¹⁰Department of Neurology, Massachusetts General Hospital, Boston, MA, USA and ¹¹Department of Medicine, Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, Boston, MA, USA

Corresponding Author: Sheng Yu, Center for Statistical Science, Tsinghua University, Weiqinglou Rm 209, Beijing, 100084, China. E-mail: syu@tsinghua.edu.cn. Tel: +86-10-62783842

Received 19 June 2017; Revised 5 August 2017; Editorial Decision 9 September 2017; Accepted 14 September 2017

PheNorm: Assumption

Surrogate disease labels S_i (i.e. ICD-9 codes) normalized by a patient's healthcare utilization U_i (i.e. count of patient notes) are log-normally distributed with mean μ_{γ} dependent on the patient's true disease status Y_i

Abbreviations

- Main Features
 - x_{ICD} : # ICD-9 codes of target phenotype for each patient
 - x_{NLP} : # positive NLP mentions only, e.g. not negated, remove mention from family hx, of target phenotype from all notes for a given patient
 - $x_{ICDNLP} = x_{ICD} + x_{NLP}$
- Healthcare utilization: $x_{note} = #$ notes for each patient
- Additional potential features: $x_1 \dots x_p$
 - Counts of medication, mentions of signs and symptoms in the notes, etc
 - Can be curated through prior knowledge or via data-driven approaches

PheNorm Step 1: Normalization

PheNorm Step 2: Denoising w/ other features

PheNorm workflow

Table 1. AUCs of the raw feature x, the normalized feature z, the PheNorm scores using SAFE feature for denoising with a dropout rate of 0.3, PheNorm_{vote}, the supervised algorithms trained with SAFE features with N = 100, 200, or 300 labels, as well as the XPRESS and Anchor algorithms.

	CAD	RA	CD	UC	
x_{ICD}	0.844	0.868	0.824	0.812	
z_{ICD}	$0.875_{0.010}^{0.031*}$	$0.901^{0.033^*}_{0.008}$	$0.877_{0.013}^{0.053*}$	$0.859_{0.012}^{0.047*}$	
PheNorm _{ICD}	$0.899_{0.004}^{0.024*}$	$0.929_{0.009}^{0.028*}$	$0.911_{0.005}^{0.033^*}$	$0.900_{0.005}^{0.041*}$	Comparison is with
X _{NLP}	0.840	0.898	0.906	0.904	the previous step;
z _{NLP}	$0.864_{0.011}^{0.025*}$	$0.923_{0.011}^{0.025*}$	$0.947_{0.007}^{0.041*}$	$0.931_{0.006}^{0.026*}$	asterisk indicates positive increment
PheNorm _{NLP}	$0.884_{0.003}^{0.019*}$	$0.937_{0.005}^{0.014*}$	$0.948^{0.001}_{0.004}$	$0.935_{0.002}^{0.004*}$	at the significance
XICDNLP	0.865	0.903	0.902	0.901	level of 0.05.
ZICDNLP	$0.895^{0.030^*}_{0.008}$	$0.935_{0.009}^{0.032*}$	$0.944_{0.008}^{0.042*}$	$0.933_{0.007}^{0.032*}$	
PheNorm _{ICDNLP}	$0.899_{0.002}^{0.004*}$	$0.936_{0.002}^{0.001}$	$0.945_{0.002}^{0.001}$	$0.935_{0.002}^{0.002}$	
PheNorm _{vote}	0.899	0.937	0.945	0.933	

MAP: a refinement of PheNorm

- Limitations of PheNorm
 - Output linear score vs predicted probability of disease
 - Does not identify threshold value for classifying subjects as cases
- MAP (multi-modal automated phenotyping)
 - Fit a sequence of mixture models → predicted probabilities for all patients & estimates of disease prevalence from each fitting
 - Synthesize information via model averaging
 - Classifying as a case if predicted probabilities exceed threshold

Step 1: Assemble NLP & ICD data for each PheWAS group

- Mappings
 - ICD9 codes in a Phecode group \rightarrow UMLS CUIs
 - ICD9 code \rightarrow UMLS CUI
 - ICD9 string \rightarrow UMLS CUI
 - PheWAS string \rightarrow UMLS CUI

UMLS= Unified Medical Language System CUI= concept unique identifier

	Code String	Code	ICD_9	ICD9_Str	CUI ICD9	CUI ICD9_String	CUI Code_String
	Rheumatoid arthritis 7		714.0	rheumatoid arthritis	C0003873	C0003873	C0003873
		714.1	714.1	Felty's syndrome	C0015773	C0015773	Cooo3873
		, .	714.2	Other rheumatoid arthritis with visceral or systemic involvement	C0157914	C0157914	Cooo3873
	Rheumatoid arthritis and other inflammatory polyarthropathies 714		714.4	Chronic postrheumatic arthropathy	C0152084	C0152084	C0157913
			714.8	Other specified inflammatory polyarthropathies	C0157919	C0157919	C0157913
		714	714.89	Other specified inflammatory polyarthropathies	C0157919	C0157919	C0157913
			714	Rheumatoid arthritis and other inflammatory polyarthropathies	C0157913	C0157913	C0157913
						•	
		Counts: IC	CD_RA	NI	NLP Counts: NLP_RA		

phenotype group: rheumatoid arthritis

Step 2: Joint Analysis of NLP & ICD

- Fit multiple Poisson and log-normal mixture models to {NLP,ICD} counts → probabilities of phenotype(+)
- Adjust for healthcare utilization

Step 3: Synthesize information from all model fittings

- Each fitted model provides a predicted probability of phenotype for each patient
- The final predicted probability of phenotype(+) is the average predicted probabilities from all fitted models

Step 4: Cut-off estimate based on population prevalence p

- Fitted mixture models \rightarrow estimated phenotype prevalence
- Classify p% patients with highest predicted probabilities as phenotype(+) (as opposed to the standard method based on ICD code thresholding)

Probability increases

Performance of phenotype algorithms across conditions

Applications: Phenomics Library

- Veterans Affairs Health Centers
 - ~22 million veterans nationwide
 - Million Veteran Program (MVP)
 - Ported and validated supervised and unsupervised approaches

EHR research platform for translational studies

Summary

- Phenotyping approaches designed for prevalent conditions
- Optimized for EHR data
- Robust and portable
- Supervised vs unsupervised based on downstream use
 - Cohort creation
 - Phenotype screens, e.g. PheWAS
 - Association studies
- Future directions
 - Algorithms for incident or recurrent conditions
 - Can existing algorithms catch incident conditions within a time window?

Thank you

BWH

Selena Huang Brittany Weber Austin Cai Zeling He Nicholas Link (VA) Kumar Dahal Dana Weisenfeld Charlotte Golnik Thany Seyok Andrew Cagan Jackie Stratton

DBMI, Harvard Medical School <u>Tianxi Cai</u> Chuan Hong Hajime Uno (DFCI) Junwei Liu (HSPH) Amanda King Isaac Kohane Susanne Churchill

Boston VA Healthcare System/MAVERIC

J. Michael Gaziano Christopher O'Donnell Kelly Cho Paul Monach Anne Ho Jennifer Huffman Lauren Costa Petra Schubert Laura Tarko Ashley Galloway

NIAMS