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Outline

» Rationale for development of phenotyping approaches using EHR

* Brief background of ML for phenotyping

e Supervised vs unsupervised

* Unsupervised approaches for phenotyping w/ EHR data
e Strengths and limitations
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Who has rheumatoid arthritis (RA) in the
EHR?

Table 4. Comparison of performance characteristics from validation of the complete classification algorithm (narrative and
codified) with algorithms containing codified-only and narrative-only data*

RA by
algorithm or PPV Sensitivity Difference in PPV
Model criteria, no. (95% CI), % (95% CI), % (95% CI), %1t

Algorithms

Narrative and codified (complete) 3,585 94 (91-96) 63 (51-75) Reference

Codified Dnly 3,046 88 (84-92) 51 (42-60) 6 (2—-9)%

NLP only 3,341 89 (86-93) 56 (46—66) 5 (1-8)%
Published administrative codified criteria

>3 [CD-9 RA codes 7,960 56 (47-64) 80 (72-88) 38 (29-47)+

>1 ICD-9 RA codes plus =1 DMARD 7,799 45 (37-53) 66 (57—76) 49 (40-57)%

* The complete classification algorithm was also compared with criteria for RA used in published administrative database studies. RA = rheumatoid
arthritis; PPV = positive predictive value; 95% CI = 95% confidence interval; NLP = natural language processing; ICD-9 = International Classification
of Diseases, Ninth Revision; DMARD = disease-modifying antirheumatic drug.

t Difference in PPV = PPV of complete algorithm — comparison algorithm or criteria.

T Significant difference in PPV compared with the complete algorithm.

Liao, et al., Arth Care Res 2010



Figure. The Tapestry of Potentially High-Value Information Sources That May be Linked to an Individual for Use in Health Care
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Types of EMR data

Structured data
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Liao, Cai, et al., BMJ 2015



Natural language processing (NLP)

Computational method for text processing based on the rules of
linguistics



NLP

|  saw  the girl with the ophthalmoscope.

wl w2 w3 w4 w5 w6 w7/

pronoun  verb article noun prep article noun

Slide adapted from Drs. Guergana Savova and Wendy Chapman



NLP = “find” command in Word

* Negation
* The patient has no erosions in the MCPs.

* Inverted syntax
* Colon, ascending and descending, biopsy

e Relation
e Tamoxifen is used in the treatment of breast cancer

* Morphologic variations
* Tobacco, 30 pack years, past smoker, +tob — smoking



I[llustrative dataset
D | Age | Sex | Dxcode | Lab_

M

10 45 F 1 31
11 75 F 1 40
12 67 M 0

13 56 M 0 56
14 54 F 0 11
15 81 F 1 42
16 48 F 0 5

Training set
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Pattern recognition

+200 subjects

"0 | hge | Sex | Dxcode | lab
9 22 0 -

10 45
11 75
12 67
13 56
14 54
15 81
16 48
Training set

M
F
F
M
M
F
F
F

0
1 31 1
1 40 1
0 0
0 56 1
0 11 0
1 42 1
0 5 0

+1000 features



Pattern recognition

 More potential “features” may
enable more accurate algorithms
* Features can also add noise

e Challenge to identify the
important features and their

patterns +200 subjects

"0 | hge | Sex | Dxcode | lab
9 22 0 -

10 45
11 75
12 67
13 56
14 54
15 81
16 48
Training set

M 0
F 1 31 1
F 1 40 1
M 0 - 0
M 0 56 1
F 0 11 0
F 1 42 1
F 0 5 0

+1000 variables



Artificial Intelligence & Machine Learning

* Artificial intelligence (Al)
* Intelligence demonstrated by machines
e Contrast to human intelligence

* Machine learning (ML) = subset of Al

* Requires training set
* Focus on prediction (vs causality)
* Does not address why or how to change outcomes
e Learning structure from data
* Pattern recognition
* Examples
* Least absolute shrinkage and selection operator (LASSO) regression
* Support vector machine (SVM)



Types of EHR data
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Approach to developing phenotype
algorithms using EHR data

 Chart review- not feasible

e Rule-based

* Relies on human expertise to identify important features
* Algorithm is a combination of AND, NOT, OR

* Machine learning
* Data driven method to select features and develop algorithm



Machine learning, NLP, and EHR

Pipeline for phenotyping

ﬂﬁ Filter

Feature Learning Tralning & Valldation
(3)
\3)T ] |GoldsStandard
Patient-Level
Data Table

Unsupervised  Supervised Algorithm |\~

Zhang, Cai, Yu, et al., Nat Protocols 2019

ID Prob | Y/N
1 088 | Y
4 083 | Y
1000 | 006 | N
20001 | 005 | N




Limitations of supervised ML approaches
for phenotyping

* Require gold standard labels through manual chart review

* Notes not always available
* Time and resource intensive
* Not scalable

* Inefficient
* Large amount of unlabeled data contains "noisy labels”



Comparison of EHR phenotype algorithm
approaches

Characteristics Supervised or Unsupervised

semi-supervised

Manual chart review for labels Y N
Feature selection Manual or automated Automated
Rule-based, e.g. 2 ICD + 1 Rx Option N
Machine learning Option Y
Efficiency Varies High

Accuracy Data available Needs validation




Unsupervised approaches for
phenotyping w/ EHR data
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PheNorm: Assumption

Surrogate disease labels S; (i.e. ICD-9 codes) normalized by a patient’s
healthcare utilization U, (i.e. count of patient notes) are log-normally
distributed with mean u, dependent on the patient’s true disease
status Y;

log (Sz) ~ Norm (,uy + clog (Uz))

1A

/N
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Abbreviations

* Main Features

* X;cp: #1CD-9 codes of target phenotype for each patient

* xy1p: # positive NLP mentions only, e.g. not negated, remove mention from family
hx, of target phenotype from all notes for a given patient

* XicpNLP = XicptXNLP

* Healthcare utilization: x,,,;e = # notes for each patient

* Additional potential features: x1 ... X,

* Counts of medication, mentions of signs and symptoms in the notes, etc
* Can be curated through prior knowledge or via data-driven approaches

22



PheNorm Step 1: Normalization
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PheNorm/Step 2\: Denoising w other\features
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Table 1. AUCs of the raw feature x, the normalized feature z, the PheNorm scores using SAFE feature for denoising with a dropout rate of
0.3, PheNormy e, the supervised algorithms trained with SAFE features with N= 100, 200, or 300 labels, as well as the XPRESS and Anchor

algorithms.
CAD RA CD UC

XICD 0.844 0.868 0.824 0.812
2icp 0.875001. 0.90155353 0.8770633 0.8590017

0.024* 0.028* 0.033* 0.041%
PheNormicp 0.8990 004 0.929 009 0.911¢ 005 0.9000.005 Comparison is with
XNLP 0.840 0.898 0.906 0.904 the previous step;

0.025* 0.025* 0.041* 0.026* asterisk indicates
INLP 0.8647 011 0.9235011 0.947 007 0.931,00¢ positive increment
PheNormyy p 0.8840:91%" 0.937001% 0.9480:901 0.9355:904 at the significance
XICDNLP 0.865 0.903 0.902 0.901 level of 0.05.
JICDNLP 0.8950 008 0.9350605 0.9447:068 0.933060%
PheNormicpnLp 0.8990:904° 0.9369:003 0.9455-002 0.9350:003

PheNorm e

0.899

0.937

0.945

0.933




MAP: a refinement of PheNorm

* Limitations of PheNorm
* Output linear score vs predicted probability of disease
* Does not identify threshold value for classifying subjects as cases

* MAP (multi-mmodal automated phenotyping)

* Fit a sequence of mixture models = predicted probabilities for all patients &
estimates of disease prevalence from each fitting

* Synthesize information via model averaging
 Classifying as a case if predicted probabilities exceed threshold



Step 1: Assemble NLP & ICD data for each

PheWAS group

* Mappings
e |CD9 codes in a Phecode group - UMLS CUls
e |CD9 code - UMLS CUI
e |CD9 string - UMLS CUI
e PheWAS string - UMLS CUI

UMLS= Unified Medical Language System
CUl= concept unique identifier



phenotype group
rheumatoid arthritis

ICD9_ Str

CUI
ICD9

CUI
ICD9_ String

CUI
Code_ String

ICD9g Counts: ICD_RA

rheumatoid arthritis Co0003873 Co0003873 Co0003873
Rheumatoid Felty's syndrome Coo15773 Co015773 Co003873
s 714.1
arthritis
Other rheumatoid arthritis with
visceral or systemic involvement (0157914 0157914 0003873
Chronic postrheumatic arthropathy ~ C0152084 Co152084 Co157913
Rheumatoid arthritis Other specified 1nﬂar.nmatory Co157919 Co157919 Co157913
and other 12 polyarthropathies
inflammatory Other specified inflammatory Co1~701 Co1=701 Co17701
polyarthropathies polyarthropathies 57919 57919 57913
Rheumatoid arthritis and other Co1~701 Co17701 Co1~701
inflammatory polyarthropathies 07913 57913 57913

NLP Counts: NLP RA



Step 2: Joint Analysis of NLP & ICD

« Fit multiple Poisson and log-normal mixture models to {NLP,ICD} counts -

probabilities of phenotype(+)

 Adjust for healthcare utilization

Distribution of log Distribution of log
o . ICD+NLP counts ICD+NLP counts by RA
status

1.0

0.5

0.0

[
0

T I T I I ! [ I I I ] I 1
1 2 3 4 5 6 0 1 2 3 4 5 6

Log ICD+NLP counts Log ICD+NLP counts




Step 3: Synthesize information from all model fittings

 Each fitted model provides a predicted probability of
phenotype for each patient

 The final predicted probability of phenotype(+) is the average
predicted probabilities from all fitted models

Step 4: Cut-off estimate based on population prevalence p

« Fitted mixture models < estimated phenotype prevalence

« Classify p% patients with highest predicted probabilities as
phenotype(+) (as opposed to the standard method based on
ICD code thresholding)

soseaIoul AJIqeqord



Performance of phenotype algorithms
acCross condltlons
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Applications: Phenomics Library

* Veterans Affairs Health Centers

e ~22 million veterans nationwide
* Million Veteran Program (MVP)

* Ported and validated supervised and unsupervised approaches

336,377
Lifestyle
‘ S
798I637 Corl:]rVI(:\;Sed *All participants with
Baseline 707,107 P completed Lifestyle
Surveys Enrolled 4> Surveysand genotyped
Completed specimens are enrolled
/ 462,397
Specimens
Genotyped
441,260




EHR research platform for translational
studies

VA EHR data




Summary

* Phenotyping approaches designed for prevalent conditions
e Optimized for EHR data
* Robust and portable

e Supervised vs unsupervised based on downstream use
e Cohort creation
* Phenotype screens, e.g. PheWAS
* Association studies

* Future directions
* Algorithms for incident or recurrent conditions
* Can existing algorithms catch incident conditions within a time window?
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Thank you
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