

Utility of prenatal tests and fertility coding to estimate pregnancy start in the Sentinel Distributed Database

Taylor LG¹, <u>Bird ST¹</u>, Stojanovic D¹, Toh D², Fazio-Eynullayeva E², Petrone A², Rajbhandari R², Lyons JG²

¹Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD

²Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA

Aug 27, 2019

Disclaimer

- The views expressed in this presentation are those of the authors and not necessarily those of the FDA
- No conflicts

Background

- Studies of medication safety during pregnancy are typically limited to live-birth pregnancies (LBP)
 - LBP validate well in claims data (Raebel 2005; Li 2013)
 - Algorithms are available to estimate gestational age (GA) at delivery and to estimate pregnancy start and trimester dates
 - A common approach is to assume a term birth occurs at a GA of 273 days and then use ICD codes, when available, to adjust GA
- GA coding available at delivery
 - ICD-9 era: GA codes for live births only
 - ICD-10 era: GA codes for all pregnancies, but validity largely uninvestigated in U.S. sources
 - Coding for prenatal tests and fertility procedures may represent an avenue to identify GA when this information is not available (*Margulis 2013; Matcho 2018*)

Objectives

- To develop an algorithm to estimate gestational age using diagnostic and procedure codes for clinically-indicated, often routine, prenatal tests/scans and coding for fertility procedures, separately, for live births and stillbirths, in the Sentinel Distributed Database.
- To evaluate performance of the *prenatal test algorithm*:
 - Live Birth Pregnancies
 - Against a traditional *delivery coding algorithm*
 - Stillbirth
 - Against national data on GA at stillbirth

Methods: Study Population

- Live Birth Pregnancy Cohort
 - Comprised of pregnancies ending in live birth among women ages 15-45 years identified in 16 Sentinel data partners from Jan 2006 – Jan 2018
 - Enrollment coverage for at least 43 weeks before delivery; Gaps in coverage up to 45 days
 - Pregnancy identification and GA based on validated algorithm (*Raebel 2005; Li 2013*)
 - ~4.7 million live birth pregnancies in Sentinel
- Stillbirth Cohort
 - Comprised of pregnancies ending in stillbirth among women aged 15-45 years identified in 16 Sentinel data partners from Jan 2006 – Jan 2018
 - Enrollment coverage for at least 43 weeks before stillbirth with no stillbirth in prior 140 days; Gaps in coverage up to 45 days
 - Stillbirth identification in the inpatient setting based on validated ICD9 codes (*Likis, 2013*) and unvalidated ICD10 codes
 - 40,484 probable stillbirths in Sentinel

Methods: Prenatal Tests and Procedures

- Fertility procedures:
 - 1: In-Vitro Fertilization (IVF) or In-Utero Insemination (IUI)
- Prenatal Tests and Scans
 - 1: Amniocentesis
 - 2: Chorionic Villus Sampling
 - 3: First Trimester Ultrasound
 - 4: Second/Third Trimester Ultrasound
 - 5: Fetal Anatomic Exam
 - 6: Nuchal Translucency
 - 7: Fetal Echo/Doppler
 - 8: Fetal Aneuploidy test

- 9: Alpha-fetoprotein
- 10: Assay of Estriol
- 11: PAPP-A Serum
- 12: Chorionic Gonadotropin
- 13: Inhibin A
- 14: Group B Strep
- 15: Glucose

Methods: Live birth Pregnancies

- Calculation of GA with traditional delivery coding algorithm
 - Algorithm previously shown to classify 77% of pregnancies within two weeks of the clinical estimate of last menstrual period (*Li 2013*).
- Coding Performance Evaluation
 - 1. Identify prenatal tests and fertility procedures using ICD 9 and 10 coding
 - 2. Examine A) prevalence of each test and B) distribution of test by GA (using traditional algorithm above), **only first occurrence of each prenatal test and last fertility procedure evaluated*
 - 3. Assigned a specific gestational day to each test, selected as the day with the highest percentage of tests occurring within ±14 days of that gestational day

Results: Example Distributions

Good test

Nuchal translucency; ACOG rec 11-14 weeks

Bad test

hCG test; ACOG rec 11-14 weeks quad screen; other reasons

FDA

Results: Test Performance

Test Type	% of live births with test, n=4,701,207	Gestational day with peak 2-week sensitivity	% codes within ±2 weeks
Fertility Coding, IVF/IUI*	2.7%	14	78.3%
Amniocentesis	0.04%	259	30.2%
Chorionic villus sampling	0.8%	84	84.4%
First Trimester Ultrasound	43.0%	80	20.9%
Second/Third Trimester Ultrasound	68.2%	128	63.8%
Fetal anatomic exam	42.5%	138	70.4%
Nuchal translucency	32.3%	88	90.6%
Fetal echo/doppler	7.6%	148	44.6%
Fetal Aneuploidy test	2.6%	85	72.6%
Alpha-fetoprotein	1.8%	120	68.4%
Assay of estriol	31.8%	119	79.6%
PAPP-A serum	28.8%	85	82.6%
Chorionic gonadotop	56.6%	38	35.5%
Inhibin A	30.5%	119	78.1%
Group B strep	61.1%	252	82.2%
Glucose	77.7%	190	66.4%

*Fertility coding tested in later version of data containing 4,727,266 live births

Methods: Live birth Pregnancies

- Algorithm Development
 - If fertility procedures were present, pregnancy start was assigned to the procedures with closest proximity to the delivery date (*Bird*, 2018)
 - In absence of fertility procedures, prenatal tests were ranked by performance, calculated as the two-week sensitivity, as a measure of central tendency, at the assigned gestational day.
 - The algorithm was developed in a stepwise fashion, where the fertility procedures and each prenatal test where added one at a time to the algorithm, with evaluation at each stage.
- Algorithm Evaluation
 - The *prenatal test algorithm* was tested against the traditional *delivery coding algorithm* at each stepwise addition, calculating:
 - 1) sensitivity (i.e., live birth pregnancies assigned a GA)
 - 2) agreement (i.e., difference in estimates of pregnancy start between the two algorithms)

*ICD9/10 coding evaluated combined and separately

Results: Algorithm Development and Evaluation

Prenatal Test(s)	% of live births assigned a gestational age	% of live births with ±2 weeks agreement in pregnancy start between algorithms	Difference pregnancy start between algorithms - Mean No. days
Procedure 1	2.7%	74.5%	-0.2
Proc 1 or Test 6	34.1%	90.1%	0.9
Proc 1 or Test 6 or 2	34.6%	90.1%	0.9
Proc 1 or Test 6, 2, or 11	37.9%	89.0%	1.2
Proc 1 or Test 6, 2, 11, or 14	76.6%	87.4%	-6.3
Proc 1 or Test 6, 2, 11, 14, or 10	81.9%	86.4%	-5.5
Proc 1 or Test 6, 2, 11, 14, 10, or 13	81.9%	86.4%	-5.5
Proc 1 or Test 6, 2, 11, 14, 10, 13, or 8	82.6%	86.3%	-5.4
Proc 1 or Test 6, 2, 11, 14, 10, 13, 8, or 5	87.6%	84.9%	-4.4
Proc 1 or Test 6, 2, 11, 14, 10, 13, 8, 5, or 9	87.6%	84.8%	-4.4
Proc 1 or Test 6, 2, 11, 14, 10, 13, 8, 5, 9, or 15	94.7%	83.3%	-4.4
Proc 1 or Test 6, 2, 11, 14, 10, 13, 8, 5, 9, 15, or 4	97.9%	82.5%	-3.7
Remaining pregnancies not meeting any algorithm ³	2.1%	-	-

FDA

Methods: Stillbirth

- Algorithm Implementation
 - The prenatal testing and fertility procedure code algorithm developed in live birth pregnancies was applied to our cohort of stillbirths
- Evaluation
 - No reference GA for stillbirth analysis
 - We compared our GA estimates for stillbirth in Sentinel to that of national data

Results: Stillbirth

Prenatal test(s) within 280 days of index event	No. of stillbirths assigned a gestational age	% of stillbirths assigned a gestational age
Number of probable stillbirths	n = 40,484	0 0
Proc 1	1,928	4.8%
Proc 1 or Test 6	13,491	33.3%
Proc 1, Test 6 or 2	13,736	33.9%
Proc 1, Test 6,2 or 11	14,672	36.2%
Proc 1, Test 6,2,11 or 14	21,142	52.2%
Proc 1, Test 6,2,11,14 or 10	25,666	63.4%
Proc 1, Test 6,2,11,14,10 or 13	25,682	63.4%
Proc 1, Test 6,2,11,14,10,13 or 8	26,842	66.3%
Proc 1, Test 6,2,11,14,10,13,8 or 5	31,691	78.3%
Proc 1, Test 6,2,11,14,10,13,8,5, or 9	31,799	78.5%
Proc 1, Test 6,2,11,14,10,13,8,5,9, or 15	34,100	84.2%
Proc 1, Test 6,2,11,14,10,13,8,5,9,15 or 4	37,498	92.6%
No recorded prenatal tests	2,986	7.4%

Results: Stillbirth by gestational age

The proportion of stillbirths by gestational week: A comparison of the Sentinel prenatal test algorithm versus CDC WONDER estimates

Discussion

- Results suggest that algorithms using prenatal tests can be used to reliably estimate pregnancy start in absence of information on GA among live births
 - Tests added in order of performance.
 Addition of each test is a balance between increased sensitivity and decreased accuracy

- Prenatal tests were commonly performed among our population of probable stillbirths
 - The distribution of GA at stillbirth using our prenatal test algorithm was similar to that of a national estimate (CDC, NCHS).

Discussion

- Limitations
 - We evaluated our GA algorithm using prenatal testing against another validated algorithm, not directly against birth certificate data
 - May have resulted in misclassification of GA, but likely minimal
 - Stillbirth definition unvalidated and limited to inpatient settings
 - Difficult to differentiate timing of stillbirth diagnosis from delivery (misclassification <1 week)
 - We tested our algorithm in live birth pregnancies and applied it to stillbirths.
 - This assumes clinical management, particularly in early pregnancy, is similar for pregnancies that end in live birth versus stillbirth
 - Early detection of pregnancy complications / fetal abnormalities may bias toward increased prenatal testing among pregnancies ending in stillbirth

Conclusions

- In the absence of information on GA, use of prenatal tests and fertility procedure coding may provide reliable estimation of pregnancy start among stillbirths and live births.
- Ongoing work
 - Formal validation of ICD-10 stillbirth coding, GA among stillbirths, and the performance of this algorithm among validated stillbirths is ongoing.
 - If successful, the mainstay of drug utilization analyses in Sentinel can be conducted among a cohort of pregnancies surviving 20+ weeks

References

- Bird et al. Misclassification in assessment of first trimester in-utero exposure to drugs used proximally to conception; the example of letrozole utilization and infertility treatment. *Am J Epidemiol* 2019;188(2):418-425.

- Li Q et al. Validation of an algorithm to estimate gestational age in electronic health plan databases. *PDS* 2013; 22: 524-532.

- Likis et al. A systematic review of unvalidated methods to capture stillbirth and spontaneous abortion using administrative claims data. *Vaccine* 2013; 31 Suppl 10:K74-82.

- Margulis et al. Algorithms to estimate the beginning of pregnancy in administrative databases. *PDS* 2013; 22(1): 16-24.

- Matcho et al. Inferring pregnancy episodes and outcomes within a network of observational databases. *PLoS ONE* 2018: 13(2) e0192033.

- Raebel et al. Evaluation of gestational age and admission date assumptions used to determine prenatal drug exposure from administrative data. *PDS* 2005; 14(12): 829-836.

Many thanks are due to the Data Partners who provided data used in the analyses:

KPNC, Fallon/Meyers, Aetna, KPMA, Humana, HealthCore, Marshfield, KPNW, HPHC, OptumInsight, BCBSMA, Vanderbilt, KPCO, Health Partners, KPHI, KPWA.

The Office of Surveillance and Epidemiology is hiring epidemiologists

Visit us at booth 1111

