

How big data support post marketing surveillance in USA: the Sentinel Initiative

Darren Toh, ScD

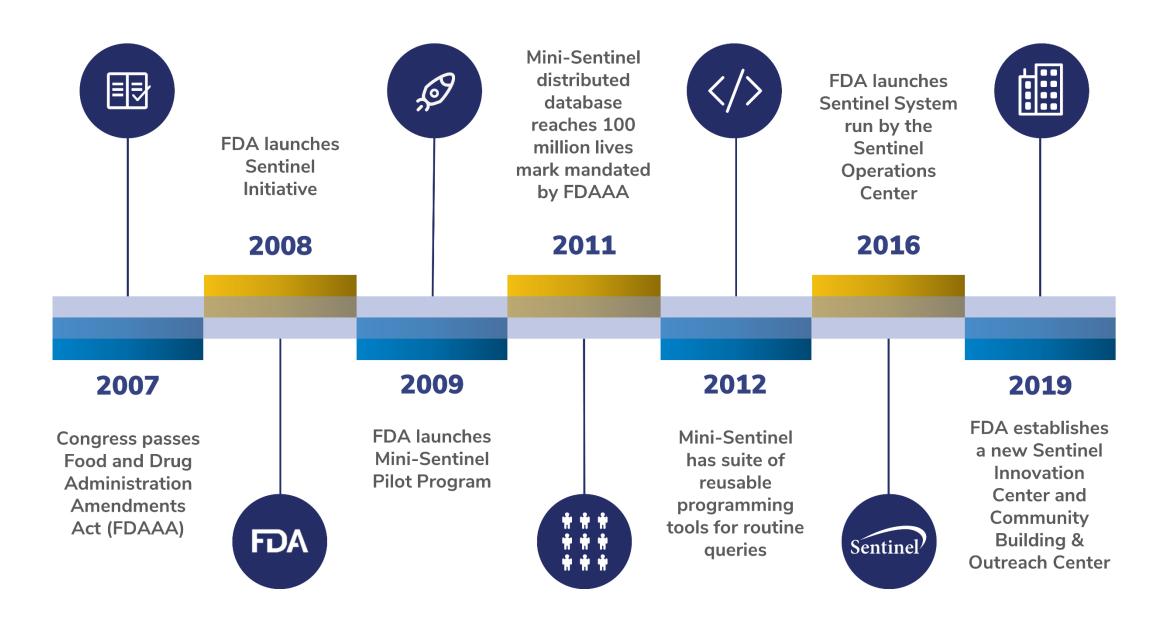
DPM Endowed Professor

Department of Population Medicine

Harvard Medical School and Harvard Pilgrim Health Care Institute

September 22, 2022

- How Sentinel gets, standardizes, and checks its data
- How Sentinel supports post marketing surveillance
- How Sentinel builds trust through transparency
- Discussion



How Sentinel gets, standardizes, and checks its data

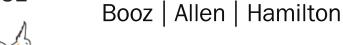
How Sentinel supports post marketing surveillance

How Sentinel builds trust through transparency

Discussion

DEPARTMENT OF POPULATION MEDICINE

MASSACHUSETTS



KAISER PERMANENTE®

Colorado Hawaii Mid-Atlantic Northwest Washington

OneFlorida

CAPriCORN

IBM Watson Health

Diagnosed with Hypertension Routine Office Visit

2017 2019 2019 2019 2020

1/1/2017

Encounter

Office Visit Diagnosis: Influenza with pneumonia

Dispensings

Prescription: Antibiotic 3/15/2018

Encounters

Emergency Department Procedure: Appendectomy

3/15/2018 - 3/18/2018

Hospital: Inpatient Stay 12/11/2018

Encounter

Office Visit Diagnosis: Hypertension

Dispensings

Prescription:Anti-hypertensive

10/31/2019

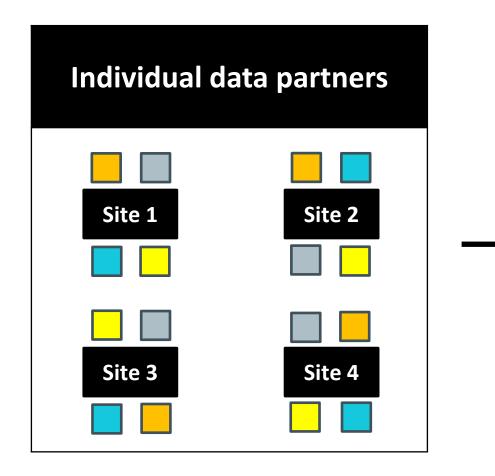
Encounter

Office Visit Diagnosis: Hypertension

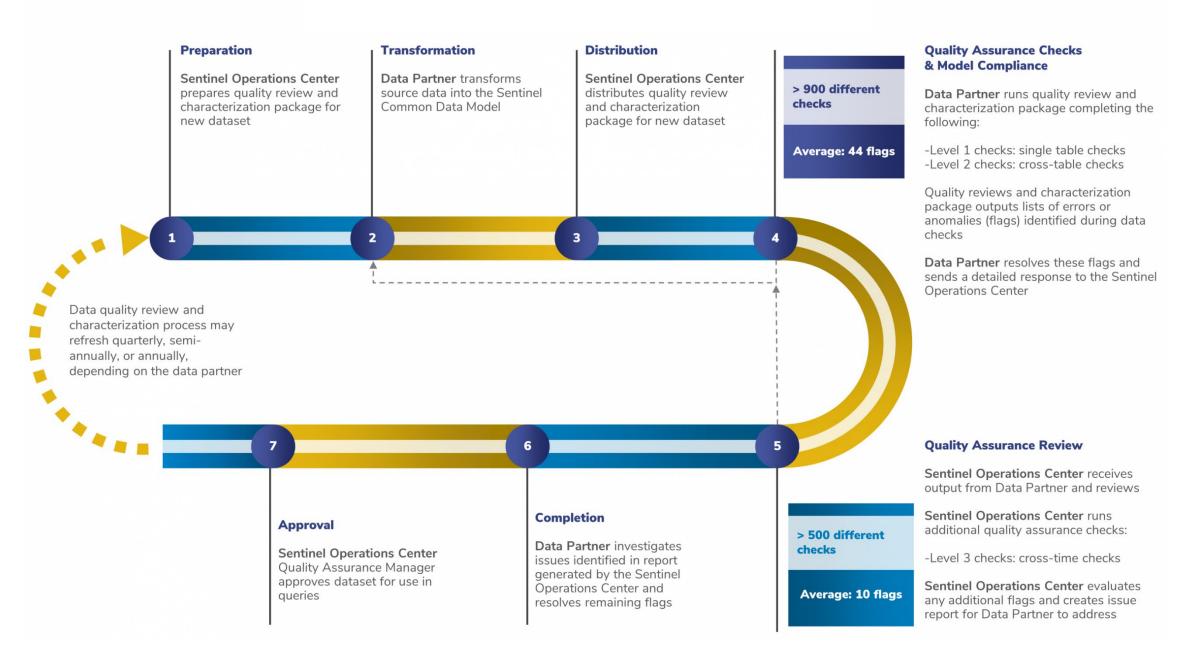
DEMOGRAPHIC						
PATID	BIRTH_DATE	SEX	HISPANIC	RACE	zip	
PatID1	2/2/1964	F	N		5	32818

		DISPENSING			
PATID	RXDATE	NDC	RXSUP	RXAMT	
PatID1	10/14	/2005 00006074031	3	0	30
PatID1	10/14	/2005 00185094098	3	80	30
PatID1	10/17	/2005 00378015210	3	80	45
PatID1	10/17	/2005 54092039101	3	80	30
PatID1	10/21,	/2005 00173073001	3	80	30
PatID1	10/21,	/2005 49884074311	3	0	30
PatID1	10/21,	/2005 58177026408	3	0	60
PatID1	10/22	/2005 00093720656	3	0	30
PatID1	10/23	/2005 00310027510	3	0	15

ENROLLMENT						
PATID	ENR_START	ENR	END	MEDCOV	DRUGCOV	
PatID1	7/1/2004		12/31/20	04 Y	N	
PatID1	1/1/2005		12/31/20	05 Y	Υ	


	DEATH						
PATID	DEATHDT	DTIMPUTE	SOURCE	CONFIDENCE			
PatID1	12/27/2005	N	S	E			

ENCOUNTER						
PATID	ENCOUNTERID	ADATE	DDATE	ENCTYPE		
PatID1	EncID1	10	/18/2005 1	0/20/2005 IP		


			DIAGNOS	IS			
PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYPE	DX	DX_CODETYPE	PDX
PatID1	EncID1	10/18/2005	Provider1	IP	296.2		9 P
PatID1	EncID1	10/18/2005	Provider1	IP	300.02		95
PatID1	EncID1	10/18/2005	Provider1	IP	305.6		95
PatID1	EncID1	10/18/2005	Provider1	IP	311		9 P
PatID1	EncID1	10/18/2005	Provider1	IP	401.9		95
PatID1	EncID1	10/18/2005	Provider1	IP	493.9		95
PatID1	EncID1	10/18/2005	Provider1	IP	715.9		95

	PROCEDURE					
PATID	ENCOUNTERID	ADATE	PROVIDER	ENCTYPE	PX	PX_CODETYPE
PatID1	EncID1	10/18/2005	Provider1	IP	84443	C4
PatID1	EncID1	10/18/2005	Provider1	IP	99222	C4
PatID1	EncID1	10/18/2005	Provider1	IP	99238	C4
PatID1	EncID1	10/18/2005	Provider2	IP	27445	C4

CAUSE OF DEATH						
PATID	COD	CODETYPE	CAUSETYPE	SOURCE	CONFIDENCE	
PatID1	J18.0	10	U	S	E	

Types of Data Quality Checks and Examples

Level 1 Checks: Single table checks

Admission date is not missing value

√ Validity

Admission date is in date format

Level 2 Checks: Cross-table checks

/ Accuracy

Admission date occurs before the patient's discharge

Integrity

Admission date occurs within the patient's active enrollment period

Level 3 Checks: Cross-time checks

Consistency of Trends

There is no sizable percent change in admission date record counts by month-year

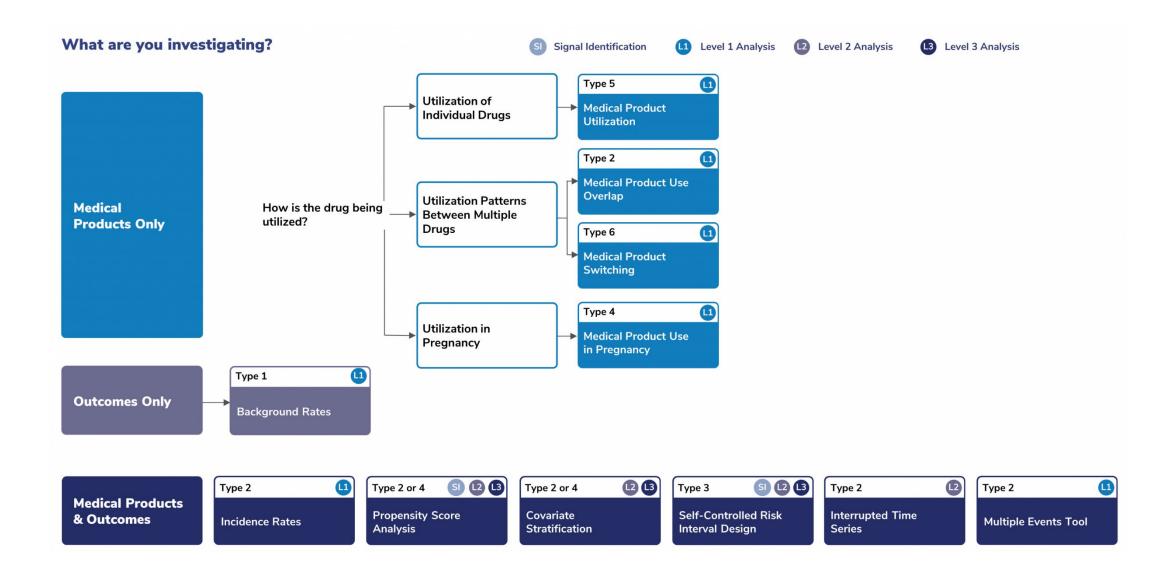
Guidance for Industry and FDA Staff

Best Practices for Conducting and Reporting Pharmacoepidemiologic Safety Studies Using Electronic Healthcare Data

SENTINEL DATA QUALITY ASSURANCE PRACTICES

COMPLIANCE WITH "GUIDANCE FOR INDUSTRY AND FDA STAFF: BEST PRACTICES FOR CONDUCTING AND REPORTING PHARMACOEPIDEMIOLOGIC SAFETY STUDIES USING ELECTRONIC HEALTHCARE DATA"

Sentinel Common Data Model

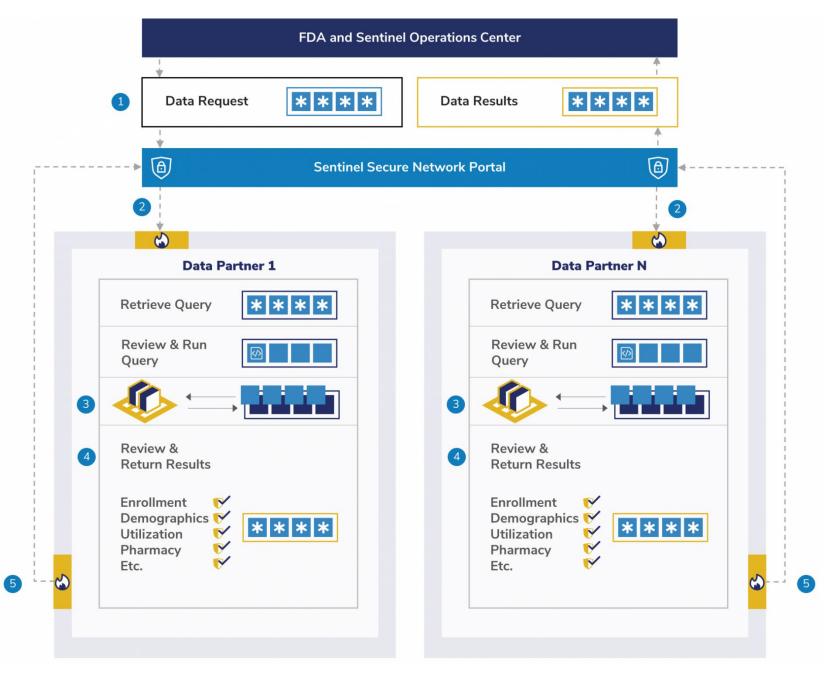

	Administrative Data						Mother-Infant Linkage Data	Auxilia	ry Data
Enrollment	Demographic	Dispensing	Encounter	Diagnosis	Procedure	Prescribing	Mother-Infant Linkage	Facility	Provider
Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Patient ID	Mother ID	Facility ID	Provider ID
Enrollment Start & End Dates	Birth Date	Provider ID	Encounter ID & Type	Encounter ID & Type	Encounter ID & Type	Encounter ID	Mother Birth Date	Facility Location	Provider Specialty & Specialty Code Type
Medical Coverage	Sex	Dispensing Date	Service Date(s)	Provider ID	Provider ID	Provider ID	Encounter ID & Type		
Drug Coverage	Postal Code	Rx	Facility ID	Service Date(s)	Service Date(s)	Order Date	Mother Admission & Discharge Date		
Medical Record Availability	Race	Rx Code Type	Etc.	Diagnosis Code & Type	Procedure Code & Type	Rx	Child ID		
	Etc.	Days Supply		Principal Discharge Diagnosis	Etc.	Days Supply	Childbirth Date		
		Amount Dispensed				Rx Route of Delivery	Mother-Infant Match Method		
						Etc.	Etc.		

Registry Data					
Death	Cause of Death	State Vaccine*			
Patient ID	Patient ID	Patient ID			
Death Date	Cause of Death	Vaccination Date			
Date Imputed Flag	Source	Admission Date			
Source	Confidence	Vaccine Code & Type			
Confidence	Etc.	Provider			
Etc.		Etc.			

Inpatient Data					
Inpatient Pharmacy	Inpatient Transfusion				
Patient ID	Patient ID				
Encounter ID	Encounter ID				
Rx Administration Date & Time	Transfusion Administration ID				
National Drug Code (NDC)	Administration Start & End Date & Time				
Rx ID	Transfusion Product Code				
Route	Blood Type				
Dose	Etc.				
Etc.					

Clinical Data				
Lab Result	Vital Signs			
Patient ID	Patient ID			
Result & Specimen Collection Dates	Measurement Date & Time			
Test Type, Immediacy & Location	Height & Weight			
Logical Observation Identifiers Names and Codes (LOINC®)	Diastolic & Systolic BP			
Etc.	Tobacco Use & Type			
	Etc.			

Patient-Reported Measures (PRM) Data	
PRM Survey	PRM Survey Response
Measure ID	Patient ID
Survey ID	Encounter ID
Question ID	Measure ID
Etc.	Survey ID
	Question ID
	Response Text
	Etc.



- 2 Data Partners retrieve query
- 3 Data Partners review and run query against their local data behind their firewalls
- 4 Data Partners review results for accuracy and privacy compliance
- Data Partners return deidentified results to SOC via secure portal

788 million person-years of data

16 billion pharmacy dispensing

64 million individuals currently accruing data

14 billion medical encounters

Sentinel's Multi-Modal Response System

Claims (with Limited EHR Network) Active Risk Identification and Analysis (ARIA)* Sentinel Distributed

Database

MerativeTM MarketScan® Research Databases

- Sentinel Common Data Model
- Sentinel Analytic Tools
- Access to Medical Records within the Sentinel Distributed Database

EHR Data Aggregators

TriNetX

IBM Watson Health

- Proprietary Common Data Models
- Web-Based Query Interface & Custom Programming
- Access to Medical Records varies by Source

EHR Data Warehouses

HCA Healthcare

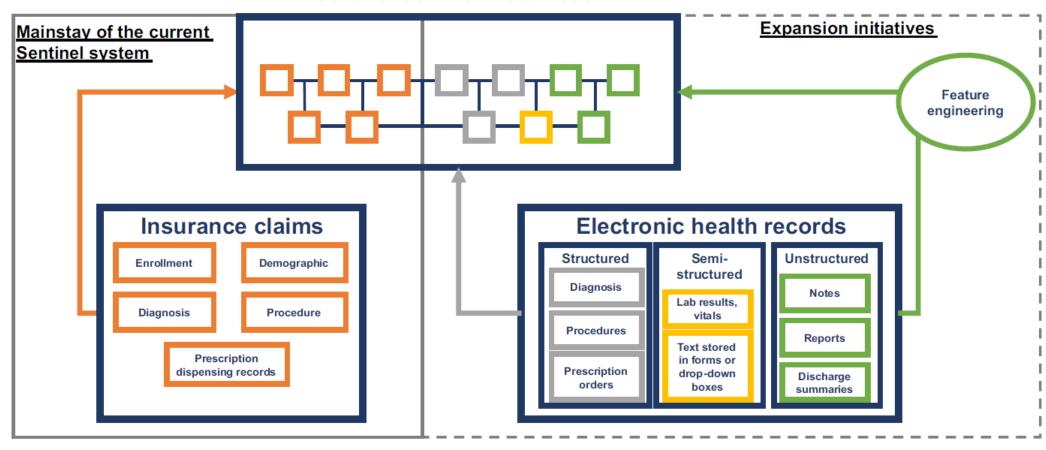
Veradigm

- Data Warehouses for Multiple Healthcare Organizations in a System
- · Custom Programming
- Access to Medical Records

EHR Networks

PCORnet

- PCORnet Common Data Model
- PCORnet Analytic Tools
- Access to Medical Records


^{*}Note: The Active Risk Identification and Analysis (ARIA) System is comprised of the Sentinel Distributed Database, the Sentinel Common Data Model, and Sentinel analytic tools.

PERSPECTIVE OF

Broadening the reach of the FDA Sentinel system: A roadmap for integrating electronic health record data in a causal analysis framework

Rishi J. Desai 📵 X, Michael E. Matheny 📵 Kevin Johnson², Keith Marsolo³, Lesley H. Curtis³, Jennifer C. Nelson⁴, Patrick J. Heagerty⁵, Judith Maro 📵 J. Jeffery Brown 📵 Sengwee Toh⁶, Michael Nguyenⁿ, Robert Ball 🔞 Gerald Dal Panⁿ, Shirley V. Wang 📵 J. Joshua J. Gagne¹¹.8 and Sebastian Schneeweiss¹

Sentinel Common Data Model

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2012; **21**(S1): 100–128 Published online in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.2312

ORIGINAL REPORT

A systematic review of validated methods for identifying cerebrovascular accident or transient ischemic attack using administrative data

Susan E. Andrade*, Leslie R. Harrold, Jennifer Tjia, Sarah L. Cutrona, Jane S. Saczynski, Katherine S. Dodd, Robert J. Goldberg and Jerry H. Gurwitz

Meyers Primary Care Institute (Reliant Medical Group, Fallon Community Health Plan, and University of Massachusetts Medical School), Worcester, MA, USA

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2012; **21**(S1): 174–182 Published online in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.2335

ORIGINAL REPORT

A systematic review of validated methods for identifying suicide or suicidal ideation using administrative or claims data

James T. Walkup^{1*}, Lisa Townsend², Stephen Crystal^{2,3} and Mark Olfson⁴

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2012; **21**(S1): 129–140 Published online in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.2313

ORIGINAL REPORT

A systematic review of validated methods for identifying heart failure using administrative data

Jane S. Saczynski*, Susan E. Andrade, Leslie R. Harrold, Jennifer Tjia, Sarah L. Cutrona, Katherine S. Dodd, Robert J. Goldberg and Jerry H. Gurwitz

Division of Geriatric Medicine and Meyers Primary Care Institute, University of Massachusetts Medical School, Worcester, MA, USA

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2012; **21**(S1): 194–202 Published online in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.2334

ORIGINAL REPORT

A systematic review of validated methods for identifying pancreatitis using administrative data

Kevin Moores^{1,2}*, Bradley Gilchrist^{1,2}, Ryan Carnahan³ and Thad Abrams^{4,5}

¹Institute for Health, Health Care Policy and Aging Research, Rutgers University, New Brunswick, NJ, USA

²School of Social Work, Rutgers University, New Brunswick, NJ, USA

³Chronic Disease Management and Outcomes, Center for Health Services Research on Pharmacotherapy, New Brunswick, NJ, USA

⁴Department of Psychiatry, Columbia University, New York, New York, USA

¹Division of Drug Information Service, The University of Iowa College of Pharmacy, Iowa City, IA, USA

² Iowa Drug Information Service, The University of Iowa College of Pharmacy, Iowa City, IA, USA

Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
 Department of Internal Medicine, Division of General Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA

⁵Center for Implementation of Innovative Strategies in Practice, Iowa City Veterans Affairs Medical Center, Iowa City, IA, USA

Published online 29 June 2012 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.3310

ORIGINAL REPORT

Validation of acute myocardial infarction in the Food and Drug Administration's Mini-Sentinel program

Sarah L. Cutrona^{1*}, Sengwee Toh², Aarthi Iyer², Sarah Foy¹, Gregory W. Daniel⁵, Vinit P. Nair⁶, Daniel Ng⁷, Melissa G. Butler⁸, Denise Boudreau⁹, Susan Forrow², Robert Goldberg¹, Joel Gore³, David McManus³, Judith A. Racoosin⁴ and Jerry H. Gurwitz¹

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2013; 22: 1205–1213 Published online 5 September 2013 in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/pds.3505

ORIGINAL REPORT

Validation of anaphylaxis in the Food and Drug Administration's Mini-Sentinel

Kathleen E. Walsh^{1*}, Sarah L. Cutrona^{1,2}, Sarah Foy¹, Meghan A. Baker^{3,4}, Susan Forrow⁴, Azadeh Shoaibi⁵, Pamala A. Pawloski⁶, Michelle Conroy⁷, Andrew M. Fine⁸, Lise E. Nigrovic⁸, Nandini Selvam⁹, Mano S. Selvan¹⁰, William O. Cooper¹¹ and Susan Andrade¹

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2013; **22**: 861–872 Published online 25 June 2013 in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.3470

ORIGINAL REPORT

Validity of diagnostic codes to identify cases of severe acute liver injury in the U.S. Food and Drug Administration's Mini-Sentinel Distributed Database

Vincent Lo Re III^{1,2*}, Kevin Haynes², David Goldberg^{2,3}, Kimberly A. Forde^{2,3}, Dena M. Carbonari², Kimberly B. F. Leidl², Sean Hennessy², K. Rajender Reddy³, Pamala A. Pawloski⁴, Gregory W. Daniel^{5,6}, T. Craig Cheetham⁷, Aarthi Iyer⁸, Kara O. Coughlin⁸, Sengwee Toh⁸, Denise M. Boudreau⁹, Nandini Selvam⁵, William O. Cooper¹⁰, Mano S. Selvan¹¹, Jeffrey J. VanWormer¹², Mark I. Avigan¹³, Monika Houstoun¹³, Gwen L. Zornberg¹³, Judith A. Racoosin¹³ and Azadeh Shoaibi¹³

VALIDATION OF ACUTE KIDNEY INJURY CASES IN THE MINI-SENTINEL DISTRIBUTED DATABASE

Prepared by: Uptal D. Patel, MD, ^{1,2} N. Chantelle Hardy, MPH, ² David H. Smith, RPh, PhD, ³ Jerry H. Gurwitz, MD, ⁴ Chi-yuan Hsu, MD, MSc, ⁵ Chirag R. Parikh, MD, PhD, ⁶ Steven M. Brunelli, MD, MSCE, ⁷ Meghan Baker, MD, ScD⁸ Susan Forrow, BA, ⁸ Carly Comins, BS, ⁸ Denise M. Boudreau, PhD, RPh, ⁹ Chunfu Liu, ScD, ¹⁰ Pamala A. Pawloski, PharmD, ¹¹ Nandini Selvam, PhD, MPH, ¹⁰ Mano S. Selvan, PhD, ¹² Shannon Stratton, BS, ¹³ Jeffrey J. VanWormer, PhD, ¹⁴ George Aggrey, MD, MPH, ¹⁵ Melanie Blank, MD, ¹⁵ Patrick Archdeacon, MD¹⁵

Revised: 1 April 2021 | Accepted: 20 April 2021 Received: 11 August 2020

DOI: 10.1002/pds.5256

ORIGINAL ARTICLE

WILEY

Validation of an electronic algorithm for Hodgkin and non-Hodgkin lymphoma in ICD-10-CM

```
Mara M. Epstein<sup>1,2</sup> | Sarah K. Dutcher<sup>3</sup> | Judith C. Maro<sup>4</sup> |
Cassandra Saphirak<sup>1,2</sup> | Sandra DeLuccia<sup>4</sup> | Muthalagu Ramanathan<sup>5</sup> |
Tejaswini Dhawale<sup>6</sup> | Sonali Harchandani<sup>5</sup> | Christopher Delude<sup>2</sup> | Laura Hou<sup>4</sup> |
Autumn Gertz<sup>4</sup> | Nina DiNunzio<sup>4</sup> | Cheryl N. McMahill-Walraven<sup>7</sup> |
Mano S. Selvan<sup>8</sup> | Justin Vigeant<sup>4</sup> | David V. Cole<sup>4</sup> | Kira Leishear<sup>3</sup> |
Jerry H. Gurwitz<sup>1,2</sup> | Susan Andrade<sup>1,2</sup> | Noelle M. Cocoros<sup>4</sup>
```

Received: 1 February 2021 | Accepted: 11 April 2021

DOI: 10.1002/pds.5253

ORIGINAL ARTICLE

WILEY

Validity of ICD-10-CM diagnoses to identify hospitalizations for serious infections among patients treated with biologic therapies

```
Vincent Lo Re III<sup>1,2</sup> | Dena M. Carbonari<sup>2</sup> | Jerry Jacob<sup>1</sup> | William R. Short<sup>1</sup> |
Charles E. Leonard<sup>2</sup> | Jennifer G. Lyons<sup>3</sup> | Adee Kennedy<sup>3</sup> | Jolene Damon<sup>3</sup> |
Nicole Haug<sup>3</sup> | Esther H. Zhou<sup>4</sup> | David J. Graham<sup>4</sup> |
Cheryl N. McMahill-Walraven<sup>5</sup> | Lauren E. Parlett<sup>6</sup> | Vinit Nair<sup>7</sup> | Mano Selvan<sup>7</sup> |
Yunping Zhou<sup>7</sup> | Gaia Pocobelli<sup>8</sup> | Judith C. Maro<sup>3</sup> | Michael D. Nguyen<sup>4</sup>
```

Received: 5 February 2021 | Revised: 24 May 2021 | Accepted: 1 June 2021 DOI: 10.1002/pds.5300

ORIGINAL ARTICLE

WILEY

Validation of an ICD-10-based algorithm to identify stillbirth in the Sentinel System

```
Susan E. Andrade<sup>1</sup> | Mayura Shinde<sup>2</sup> | Tiffany A. Moore Simas<sup>3</sup> | Steven T. Bird<sup>4</sup> |
Justin Bohn<sup>2</sup> | Kevin Haynes<sup>5</sup> | Lockwood G. Taylor<sup>4</sup> | Julianne R. Lauring<sup>3</sup> |
Erin Longley<sup>6</sup> | Cheryl N. McMahill-Walraven<sup>7</sup> | Connie M. Trinacty<sup>8</sup> |
Cassandra Saphirak<sup>1</sup> | Christopher Delude<sup>1</sup> | Sandra DeLuccia<sup>2</sup> | Tancy Zhang<sup>2</sup> |
David V. Cole<sup>2</sup> | Nina DiNunzio<sup>2</sup> | Autumn Gertz<sup>2</sup> | Elnara Fazio-Evnullaveva<sup>2</sup> |
Danijela Stojanovic<sup>4</sup>
```

Received: 19 May 2021

Revised: 5 November 2021 | Accepted: 9 December 2021

DOI: 10.1002/pds.5401

BRIEF REPORT

WILEY

Validation of diagnosis codes to identify hospitalized COVID-19 patients in health care claims data

```
Sheryl A. Kluberg<sup>1</sup> | Laura Hou<sup>1</sup> | Sarah K. Dutcher<sup>2</sup> | Monisha Billings<sup>2</sup> |
Brian Kit<sup>2</sup> | Sengwee Toh<sup>1</sup> | Sascha Dublin<sup>3</sup> | Kevin Haynes<sup>4</sup> |
Annemarie Kline<sup>5</sup> | Mahesh Maiyani<sup>6</sup> | Pamala A. Pawloski<sup>7</sup> | Eric S. Watson<sup>8</sup> |
Noelle M. Cocoros<sup>1</sup>
```

DOI: 10.1002/pds.4645

ORIGINAL REPORT

WILEY

Evaluating automated approaches to anaphylaxis case classification using unstructured data from the FDA Sentinel System

Pharmacoepidemiol Drug Saf. 2018;27:1077-1084.

Journal of the American Medical Informatics Association, 28(7), 2021, 1507–1517 doi: 10.1093/jamia/ocab036

Advance Access Publication Date: 13 March 2021

Research and Applications

Research and Applications

Electronic phenotyping of health outcomes of interest using a linked claims-electronic health record database: Findings from a machine learning pilot project

Teresa B. Gibson , ^{1*} Michael D. Nguyen, ² Timothy Burrell, ¹ Frank Yoon, ¹ Jenna Wong, ³ Sai Dharmarajan, ⁴ Rita Ouellet-Hellstrom, ⁵ Wei Hua, ² Yong Ma, ⁶ Elande Baro, ⁷ Sarah Bloemers, ¹ Cory Pack, ¹ Adee Kennedy, ³ Sengwee Toh, ³ and Robert Ball ⁸

ORIGINAL ARTICLE **ARTICLES**

Successful Comparison of US Food and Drug Administration Sentinel Analysis Tools to Traditional Approaches in Quantifying a Known **Drug-Adverse Event Association**

JJ Gagne¹, X Han², S Hennessy², CE Leonard², EA Chrischilles³, RM Carnahan³, SV Wang¹, C Fuller⁴, A Iyer⁴, H Katcoff⁴, TS Woodworth⁴, P Archdeacon⁵, TE Meyer⁶, S Schneeweiss¹ and S Toh⁴

VOLUME 100 NUMBER 5 | NOVEMBER 2016:558-564

Sentinel Modular Program for Propensity Score–Matched **Cohort Analyses**

Application to Glyburide, Glipizide, and Serious Hypoglycemia

Meijia Zhou, ^a Shirley V. Wang, ^b Charles E. Leonard, ^a Joshua J. Gagne, ^b Candace Fuller, ^c Christian Hampp, d Patrick Archdeacon, d Sengwee Toh, c Aarthi Iyer, Tiffany Siu Woodworth, c Elizabeth Cavagnaro, catherine A. Panozzo, Sophia Axtman, Ryan M. Carnahan, Elizabeth A. Chrischilles, e and Sean Hennessya

Epidemiology 2017;28: 838–846

Received: 18 September 2017 Revised: 19 January 2018 Accepted: 8 February 2018

DOI: 10.1002/pds.4420

ORIGINAL REPORT

WILEY

Evaluation of the US Food and Drug Administration sentinel analysis tools in confirming previously observed drug-outcome associations: The case of clindamycin and Clostridium difficile infection

Joshua J. Gagne³ | Charles E. Leonard⁵ | Sean Hennessy⁵ | Tamra Meyer⁶ | Patrick Archdeacon⁶ | Chih-Ying Chen⁶ | Catherine A. Panozzo⁴ | Sengwee Toh⁴ | Sengwee Toh⁴ Hannah Katcoff⁴ | Tiffany Woodworth⁴ | Aarthi Iyer⁴ | Sophia Axtman⁴ | Elizabeth A. Chrischilles 1 0

Pharmaceutical Medicine (2019) 33:29–43 https://doi.org/10.1007/s40290-018-00265-w

ORIGINAL RESEARCH ARTICLE

Evaluation of the US Food and Drug Administration Sentinel Analysis Tools Using a Comparator with a Different Indication: Comparing the Rates of Gastrointestinal Bleeding in Warfarin and Statin Users

Ryan M. Carnahan 10 · Joshua J. Gagne² · Christian Hampp³ · Charles E. Leonard⁴ · Sengwee Toh⁵ · Candace C. Fuller⁵ · Sean Hennessy⁴ · Laura Hou⁵ · Noelle M. Cocoros⁵ · Genna Panucci⁵ · Tiffany Woodworth⁵ · Austin Cosgrove⁵ · Aarthi lyer⁵ · Elizabeth A. Chrischilles¹

How Sentinel gets, standardizes, and checks its data

How Sentinel supports post marketing surveillance

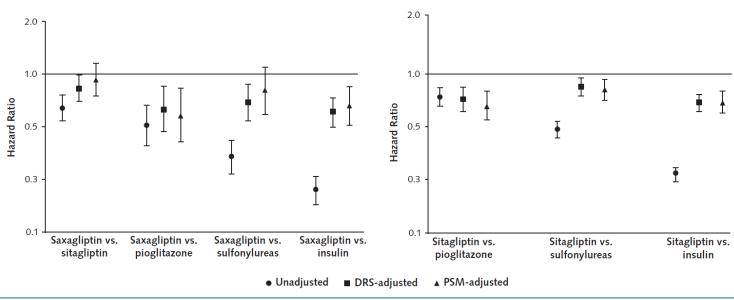
How Sentinel builds trust through transparency

Discussion

Conduct retrospective studies of medication safety

Annals of Internal Medicine

Original Research


Risk for Hospitalized Heart Failure Among New Users of Saxagliptin, Sitagliptin, and Other Antihyperglycemic Drugs

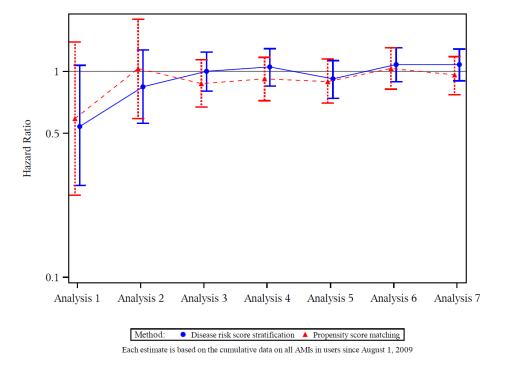
A Retrospective Cohort Study

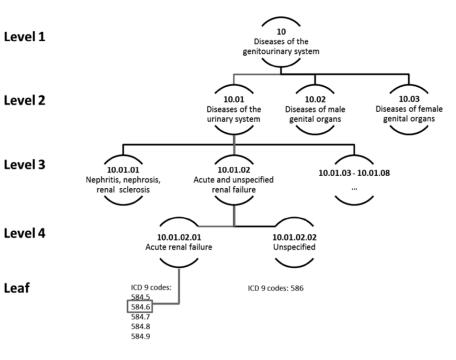
Sengwee Toh, ScD; Christian Hampp, PhD; Marsha E. Reichman, PhD; David J. Graham, MD, MPH; Suchitra Balakrishnan, MD, PhD; Frank Pucino, PharmD, MPH; Jack Hamilton, AB; Samuel Lendle, PhD; Aarthi Iyer, JD, MPH; Malcolm Rucker, MS; Madelyn Pimentel, BA; Neesha Nathwani, BS; Marie R. Griffin, MD, MPH; Nancy J. Brown, MD; and Bruce H. Fireman, MA

Ann Intern Med. 2016;164:705-714.

Figure 2. Hazard ratios and 95% Cls for hospitalized heart failure, by study drug and analysis.

Hazard ratio <1 indicates a lower risk for hospitalized heart failure among users of saxagliptin (*left*) or sitagliptin (*right*). DRS = disease risk score; PSM = propensity score matching.


Conduct prospective safety surveillance of new medications


Prospective Postmarketing Surveillance of Acute Myocardial Infarction in New Users of Saxagliptin: A Population-Based Study

Diabetes Care 2018;41:39–48 | https://doi.org/10.2337/dc17-0476

Sengwee Toh,¹ Marsha E. Reichman,²
David J. Graham,² Christian Hampp,²
Rongmei Zhang,³ Melissa G. Butler,⁴
Aarthi Iyer,¹ Malcolm Rucker,¹
Madelyn Pimentel,¹ Jack Hamilton,⁵
Samuel Lendle,⁵ and Bruce H. Fireman,⁵ for the Mini-Sentinel Saxagliptin-AMI
Surveillance Writing Group*

Conduct signal identification studies

Level 1

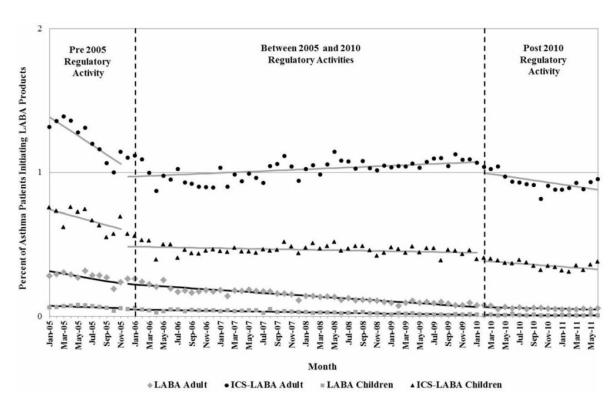
Level 4

Leaf

ORIGINAL ARTICLE

Data Mining for Adverse Drug Events With a Propensity Score-matched Tree-based Scan Statistic

Shirley V. Wang, a Judith C. Maro, b Elande Baro, c Rima Izem, Inna Dashevsky, b James R. Rogers, a Michael Nguyen, d Joshua J. Gagne, Elisabetta Patorno, Krista F. Huybrechts, Jacqueline M. Major, d Esther Zhou, d Megan Reidy, b Austin Cosgrove, b Sebastian Schneeweiss, and Martin Kulldorffa


Epidemiology 2018;29: 895–903

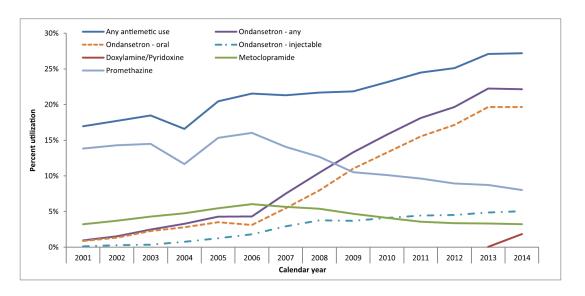
Evaluate impact of FDA regulatory actions

JOURNAL OF ASTHMA 2018, VOL. 55, NO. 8, 907–914 https://doi.org/10.1080/02770903.2017.1378355

The impact of FDA regulatory activities on incident dispensing of LABA-containing medication: 2005–2011

Meghan A. Baker, MD, ScD^{a,b,†}, Melissa G. Butler, PharmD, MPH, PhD OC,d,†, Sally Seymour, MD^e, Fang Zhang, PhD^a, Yute Wu, PhD^f, Ann Chen Wu, MD, MPH^a, Mark S. Levenson, PhD^f, Pingsheng Wu, PhD^g, Aarthi Iyer, MPH^a, Sengwee Toh, ScD^a, Solomon Iyasu, MD, MPH^{h,*}, and Esther H. Zhou, MD, PhD^h

Figure 2. Percentage of LABA product initiation before, between and after the 2005 and 2010 FDA regulatory activities for LABA-containing agents in children and adults with asthma and no history of a LABA dispensing in 180 days.

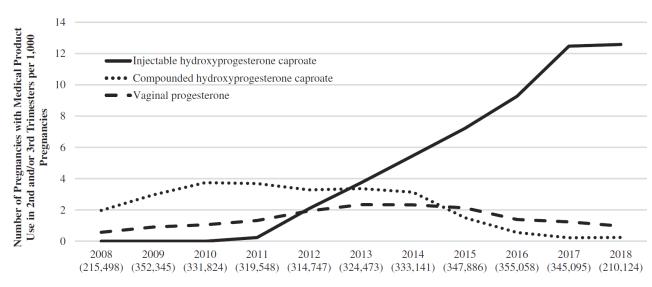

Examine medication exposure during pregnancy

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2017; **26**: 592–596 Published online 21 February 2017 in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.4185

BRIEF REPORT

Antiemetic use among pregnant women in the United States: the escalating use of ondansetron

Lockwood G. Taylor¹* , Steven T. Bird¹, Leyla Sahin¹, Melissa S. Tassinari¹, Patty Greene¹, Marsha E. Reichman¹, Susan E. Andrade², Katherine Haffenreffer³ and Sengwee Toh³



THE JOURNAL OF MATERNAL-FETAL & NEONATAL MEDICINE https://doi.org/10.1080/14767058.2021.1910669

ORIGINAL ARTICLE

Utilization of hydroxyprogesterone caproate among pregnancies with live birth deliveries in the sentinel distributed database

Mayura Shinde^a, Austin Cosgrove^a, Corinne M. Woods^b, Christina Chang^c, Christine P. Nguyen^c, David Moeny^b, Adebola Ajao^b, Joy Kolonoski^a and Huei-Ting Tsai^b

Calendar Year (Total number of live birth pregnancies by calendar year)

Examine medication safety during pregnancy

Received: 11 April 2022 | Revised: 14 July 2022 | Accepted: 21 July 2022 | DOI: 10.1002/pds.5512

ORIGINAL ARTICLE

Novel methods for pregnancy drug safety surveillance in the FDA Sentinel System

Elizabeth A. Suarez¹ | Michael Nguyen² | Di Zhang³ | Yueqin Zhao³ |
Danijela Stojanovic² | Monica Munoz⁴ | Jane Liedtka⁵ | Abby Anderson⁶ |
Wei Liu⁷ | Inna Dashevsky¹ | David Cole¹ | Sandra DeLuccia¹ |
Talia Menzin¹ | Jennifer Noble¹ | Judith C. Maro¹

Chapter Q codes Q00-Q99: Congenital malformations, Level 1 deformations and chromosomal abnormalities Q65-Q79: Congenital malformations and Level 2 deformations of the musculoskeletal system Q76: Congenital malformations Level 3 of spine and bony thorax Q764: Other congenital malformations Level 4 of spine, not associated with scoliosis Q7641: Congenital kyphosis Level 5 Leaf Q76411: occipito-

atlanto-axial region

WILEY

P05-P08: Disorders of newborn related to length of gestation and fetal growth P07: Disorders of newborn related to short gestation and low birth weight P072: Extreme immaturity of newborn P0726: Gestational age 27 completed weeks P0726: Gestational age 27 completed weeks P0726: Gestational age

Chapter P codes

27 completed weeks

Identify potential medication errors

Received: 31 December 2018

Revised: 7 May 2019

Accepted: 12 June 2019

DOI: 10.1002/pds.4858

ORIGINAL REPORT

WILEY

Development of an algorithm to detect methotrexate wrong frequency error using computerized health care data

Received: 15 April 2019

Revised: 7 August 2019

Accepted: 18 August 2019

DOI: 10.1002/pds.4891

ORIGINAL REPORT

WILEY

Identification of potential drug name confusion errors in the Sentinel System

Conduct post-market requirement studies of new products

NDA 211801

Fremont, CA 94555

NDA APPROVAL

Ardelyx, Inc.
Attention: Robert C. Blanks, M.S., RAC
Senior Vice President, Regulatory Affairs and Quality Assurance
34175 Ardenwood Blvd.
Suite 100

SENTINEL/ARIA NOTIFICATION

The Food and Drug Administration Amendments Act of 2007 (FDAAA) required FDA to establish a national electronic system to monitor the safety of FDA-regulated medical products. In fulfillment of this mandate, FDA established the Sentinel System, which enables FDA to proactively monitor drug safety using electronic health data from multiple data sources that contribute to the Sentinel Distributed Database.

FDA plans to evaluate tenapanor in the Sentinel System as part of the implementation of section 505(o) of the FDCA. We have determined that the new pharmacovigilance system, Sentinel's Active Risk Identification and Analysis (ARIA) System, established under section 505(k)(3) of the FDCA, is sufficient to assess the following serious risks: risk of inflammatory bowel disease.

The ARIA safety assessment will be posted to the Sentinel website.³ Once there is sufficient product uptake to support an analysis, an analysis plan will be posted online. After the analysis is complete, FDA will also post the results on the Sentinel website. FDA will notify you prior to posting the analysis plan and prior to posting the results.

Inform label change

HIGHLIGHTS OF PRESCRIBING INFORMATION

These highlights do not include all the information needed to use RotaTeg safely and effectively. See full prescribing information for RotaTeg.

RotaTeg (Rotavirus Vaccine, Live, Oral, Pentavalent) Oral Solution Initial U.S. Approval: 2006

---- RECENT MAJOR CHANGES --Indications and Usage (1) 02/2017

--- INDICATIONS AND USAGE ------

RotaTeg® is a vaccine indicated for the prevention of rotavirus gastroenteritis caused by types G1, G2, G3, G4, and G9. (1)

RotaTeq is approved for use in infants 6 weeks to 32 weeks of age. (1)

---DOSAGE AND ADMINISTRATION----

- FOR ORAL USE ONLY. NOT FOR INJECTION. (2)
- The vaccination series consists of three ready-to-use liquid doses of RotaTeg administered orally starting at 6 to 12 weeks of age,

WARNINGS AND PRECAUTIONS -

- No safety or efficacy data are available from clinical trials regarding the administration of RotaTeg to infants who are potentially immunocompromised (e.g., HIV/AIDS). (5.2)
- In a post-marketing study, cases of intussusception were observed in temporal association within 21 days following the first dose of RotaTeq, with a clustering of cases in the first 7 days.
- No safety or efficacy data are available for the administration of RotaTeq to infants with a history of gastrointestinal disorders (e.g., active acute gastrointestinal illness, chronic diarrhea, failure to thrive, history of congenital abdominal disorders, and abdominal surgery). (5.4)
- Vaccine virus transmission from vaccine recipient to nonvaccinated contacts has been reported. Caution is advised when considering whether to administer RotaTeg to individuals with immunodeficient contacts. (5.5)

----- ADVERSE REACTIONS ------

Most common adverse events included diarrhea, vomiting, irritability, otitis media, nasopharyngitis, and bronchospasm. (6.1)

The NEW ENGLAND JOURNAL of MEDICINE

ESTABLISHED IN 1812

FEBRUARY 6, 2014

Intussusception Risk after Rotavirus Vaccination in U.S. Infants

W. Katherine Yih, Ph.D., M.P.H., Tracy A. Lieu, M.D., M.P.H., Martin Kulldorff, Ph.D., David Martin, M.D., M.P.H., Cheryl N. McMahill-Walraven, M.S.W., Ph.D., Richard Platt, M.D., Nandini Selvam, Ph.D., M.P.H., Mano Selvan, Ph.D., Grace M. Lee, M.D., M.P.H., and Michael Nguyen, M.D.

Post-Marketing Observational Safety Surveillance Studies

The temporal association between vaccination with RotaTeg and intussusception was evaluated in the Post-licensure Rapid Immunization Safety Monitoring (PRISM) program² an electronic active surveillance program comprised of 3 US health insurance plans.

More than 1.2 million RotaTeg vaccinations (507,000 of which were first doses) administered to infants 5 through 36 weeks of age were evaluated. From 2004 through 2011, potential cases of intussusception in either the inpatient or emergency department setting and vaccine exposures were identified through electronic procedure and diagnosis codes. Medical records were reviewed to confirm intussusception and rotavirus vaccination status.

The risk of intussusception was assessed using self-controlled risk interval and cohort designs, with adjustment for age. Risk windows of 1-7 and 1-21 days were evaluated. Cases of intussusception were observed in temporal association within 21 days following the first dose of RotaTeq, with a clustering of cases in the first 7 days. Based on the results, approximately 1 to 1.5 excess cases of intussusception occur per 100,000 vaccinated US infants within 21 days following the first dose of RotaTeq. In the first year of life, the background rate of intussusception hospitalizations in the US has been estimated to be approximately 34 per 100,000 infants.3

Inform label change

JNCI Cancer Spectrum (2021) 5(2): pkab009

doi: 10.1093/jncics/pkab009 First published online 4 February 2021

Risk of Nonmelanoma Skin Cancer in Association With Use of Hydrochlorothiazide-Containing Products in the United States

Efe Eworuke [6], PhD, 1.* Nicole Haug, MPH, 2 Marie Bradley [6], PhD, 1 Austin Cosgrove, BS, 2 Tancy Zhang, MPH, 2 Elizabeth C. Dee, MPH,² Sruthi Adimadhyam (6), PhD² Andrew Petrone, MPH,² Hana Lee, PhD,³ Tiffany Woodworth , MPH, Sengwee Toh, ScD²

Postmarketing Experience:

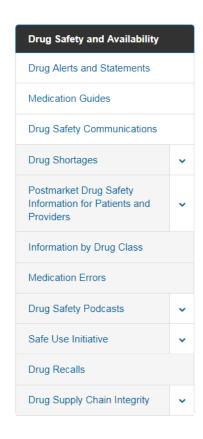
Non-melanoma Skin Cancer

Hydrochlorothia<u>zide is associate</u>d with an increased risk of non-melanoma skin cancer. In a study conducted in the Sentinel System, increased risk was predominantly for squamous cell carcinoma (SCC) and in white patients taking large cumulative doses. The increased risk for SCC in the overall population was approximately 1 additional case per 16,000 patients per year, and for white patients taking a cumulative dose of ≥50,000 mg the risk increase was approximately 1 additional SCC case for every 6,700 patients per year.

Contribute to FDA advisory committee meeting

FDA Briefing Document

ARTHRITIS ADVISORY COMMITTEE
AND DRUG SAFETY AND RISK MANAGEMENT
ADVISORY COMMITTEE MEETING
January 11, 2019


NDA 21856 Febuxostat Xanthine oxidase (XO) inhibitor for the chronic management of hyperuricemia in patients with gout

Takeda

EXECUTIVE SUMMARY

Febuxostat (Uloric®), a selective inhibitor of xanthine oxidase, lowers serum uric acid levels by inhibiting the conversion of xanthine to uric acid. It was approved by the FDA in February 2009 for the management of chronic hyperuricemia in patients with gout. Preliminary results from a post-approval safety trial (Cardiovascular Safety of Febuxostat and Allopurinol in Patients with Gout and Cardiovascular Morbidity (CARES)) showed an increased risk of cardiovascular-related death and all-cause death in febuxostat users. As a result, FDA issued a drug safety communication in November 2017. An advisory committee (AC) meeting is scheduled for January 11, 2019 to discuss potential regulatory action to address the safety of febuxostat. For context, the Division of Pulmonary, Allergy, and Rheumatology Products (DPARP) requested the Division of Epidemiology (DEPI) to investigate the characteristics of the gout population and use of febuxostat and allopurinol in real-world settings using the Sentinel Distributed Database (SDD) since the CARES trial was enriched for patients with CVD.

Contribute to FDA Drug Safety Communication

FDA Drug Safety Communication: Update on the risk for serious bleeding events with the anticoagulant Pradaxa (dabigatran)

The FDA has issued new information about this safety issue, see the **FDA Drug Safety Communication** issued 05-13-2014.

This update is a follow-up to the **FDA Drug Safety Communication of 12/7/2011**: Safety review of post-market reports of serious bleeding events with the anticoagulant Pradaxa (dabigatran etexilate mesylate)

Safety Announcement
Additional Information for Patients
Additional Information for Healthcare Professionals
Data Summary
References

Safety Announcement

[11-02-2012] The U.S. Food and Drug Administration (FDA) has evaluated new information about the risk of serious bleeding associated with use of the anticoagulants (blood thinners) dabigatran (Pradaxa) and warfarin (Coumadin, Jantoven, and generics). Following the approval of Pradaxa, FDA received a large number of post-marketing reports of bleeding among Pradaxa users. As a result, FDA investigated the actual rates of gastrointestinal bleeding (occurring in the stomach and intestines) and intracranial hemorrhage (a type of bleeding in the brain) for new users of Pradaxa compared to new users of warfarin. This assessment was done using insurance claims and administrative data from FDA's Mini-Sentinel pilot of the Sentinel Initiative. The results of this Mini-Sentinel assessment indicate that bleeding rates associated with new use of Pradaxa do not appear to be higher than bleeding rates associated with new use of warfarin, which is consistent with observations from the large clinical trial used to approve Pradaxa (the RE-LY trial). (see Data Summary). FDA is continuing to evaluate multiple sources of data in the ongoing safety review of this issue.

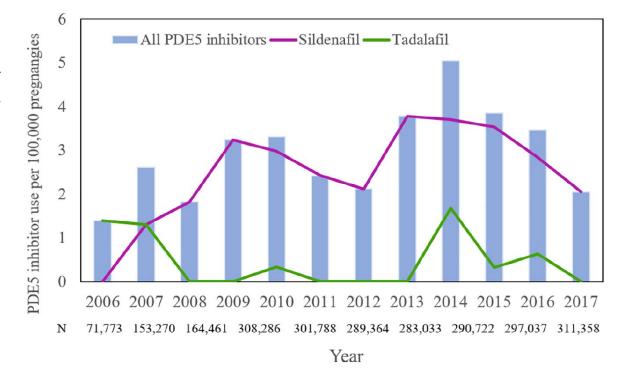
Address emerging safety issues

Trial of erectile dysfunction drug on pregnant women stopped after 11 babies die

By Debra Goldschmidt and Michael Nedelman, CNN

① Updated 3:45 PM ET, Wed July 25, 2018

Revised: 11 August 2020 Received: 13 November 2019 Accepted: 17 August 2020


DOI: 10.1002/pds.5112

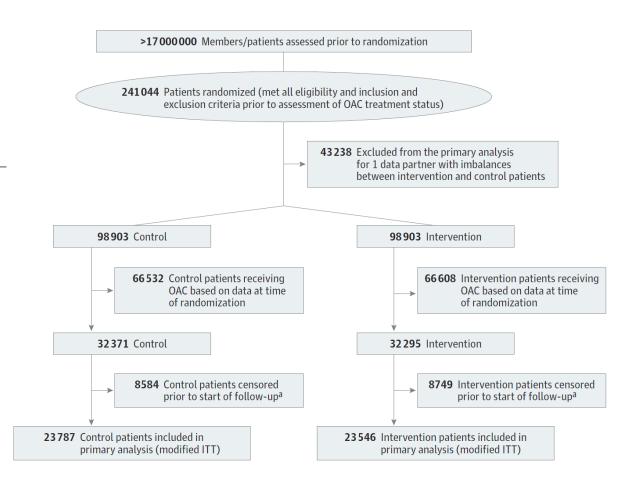
ORIGINAL REPORT

WILEY

Phosphodiesterase type 5 inhibitor use among pregnant and reproductive-age women in the United States

Wei Liu¹ | Talia J. Menzin² | Corinne M. Woods¹ | Nicole R. Haug² | Jie Li¹ | Justin A. Mathew¹ | Christine P. Nguyen³ | Grace P. Chai¹ David G. Moeny¹ | Mayura Shinde²

Conduct pragmatic trials



Original Investigation | Cardiology

Effect of Mailing Educational Material to Patients With Atrial Fibrillation and Their Clinicians on Use of Oral Anticoagulants A Randomized Clinical Trial

Sean D. Pokorney, MD, MBA; Noelle Cocoros, DSc, MPH; Hussein R. Al-Khalidi, PhD; Kevin Haynes, PharmD, MSCE; Shuang Li, MS; Sana M. Al-Khatib, MD, MHS; Jacqueline Corrigan-Curay, MD; Meighan Rogers Driscoll, MPH; Crystal Garcia, MPH; Sara B. Calvert, PharmD; Thomas Harkins, MPH, MA; Robert Jin, MS; Daniel Knecht, MD, MBA; Mark Levenson, PhD; Nancy D. Lin, ScD; David Martin, MD, MPH; Debbe McCall, BS, MBA; Cheryl McMahill-Walraven, PhD, MSW; Vinit Nair, BPharm, MS, RPh; Lauren Parlett, PhD; Andrew Petrone, MPH; Robert Temple, MD; Rongmei Zhang, PhD; Yunping Zhou, MS; Richard Platt, MD, MSc; Christopher B. Granger, MD

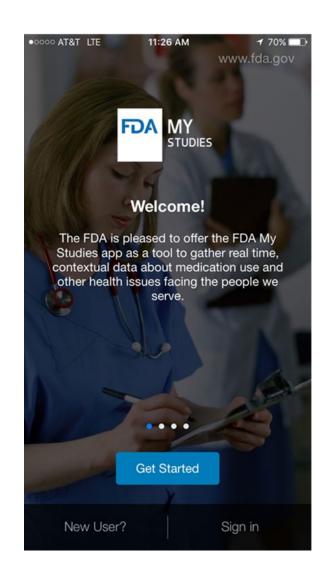
JAMA Network Open. 2022;5(5):e2214321.

Collect information directly from patients

Received: 18 April 2020

Revised: 4 June 2021

Accepted: 25 June 2021


DOI: 10.1002/pds.5320

ORIGINAL ARTICLE

WILEY

Use of a mobile app to capture supplemental health information during pregnancy: Implications for clinical research

```
Claire W. Rothschild<sup>1</sup> | Sascha Dublin<sup>1,2</sup> | Jeffrey S. Brown<sup>3,4</sup> | Predrag Klasnja<sup>2</sup> | Chayim Herzig-Marx<sup>3,4</sup> | Juliane S. Reynolds<sup>3,4</sup> | Zachary Wyner<sup>3,4</sup> | Christina Chambers<sup>5</sup> | David Martin<sup>6</sup>
```


Prepare for the next pandemic

PHARMACOEPIDEMIOLOGY AND DRUG SAFETY 2016; **25**: 481–492 Published online 17 November 2015 in Wiley Online Library (wileyonlinelibrary.com) **DOI**: 10.1002/pds.3908

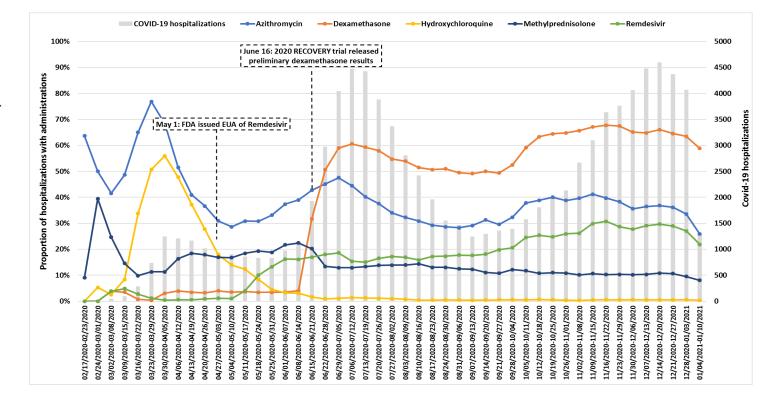
ORIGINAL REPORT

Prospective influenza vaccine safety surveillance using fresh data in the Sentinel System[†]

Weiling Katherine Yih^{1*}, Martin Kulldorff¹, Sukhminder K. Sandhu², Lauren Zichittella¹, Judith C. Maro¹, David V. Cole¹, Robert Jin¹, Alison Tse Kawai¹, Meghan A. Baker¹, Chunfu Liu³, Cheryl N. McMahill-Walraven⁴, Mano S. Selvan⁵, Richard Platt¹, Michael D. Nguyen^{2,‡} and Grace M. Lee^{1,‡}

Generate timely evidence during pandemic

Received: 3 March 2021 Revised: 25 March 2021 Accepted: 26 March 2021


DOI: 10.1002/pds.5240

REVIEW

WILEY

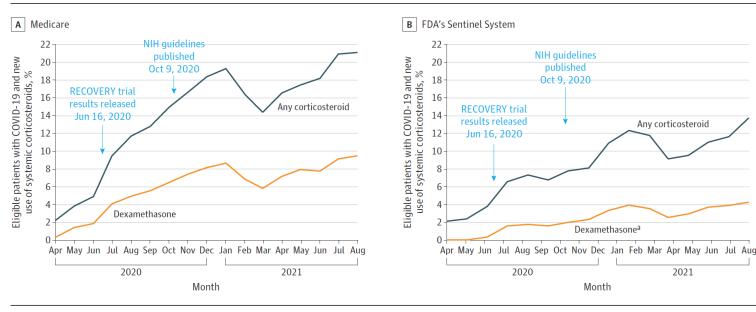
A COVID-19-ready public health surveillance system: The Food and Drug Administration's Sentinel System

```
Noelle M. Cocoros<sup>1</sup> | Candace C. Fuller<sup>1</sup> | Sruthi Adimadhyam<sup>1</sup>
Robert Ball<sup>2</sup> | Jeffrey S. Brown<sup>1</sup> | Gerald J. Dal Pan<sup>2</sup> | Sheryl A. Kluberg<sup>1</sup> |
Vincent Lo Re 3rd<sup>3</sup> | Judith C. Maro<sup>1</sup> | Michael Nguyen<sup>2</sup> | Robert Orr<sup>2</sup>
Dianne Paraoan<sup>2</sup> | Jonathan Perlin<sup>4</sup> | Russell E. Poland<sup>1,4</sup> |
Meighan Rogers Driscoll | Kenneth Sands<sup>1,4</sup> | Sengwee Toh<sup>1</sup> |
W. Katherine Yih<sup>1</sup> | Richard Platt<sup>1</sup> | And the FDA-Sentinel COVID-19 Working Group
                                                 Pharmacoepidemiol Drug Saf. 2021;30:827-837.
```


Generate timely evidence during pandemic

Research Letter

April 8, 2022


Systemic Corticosteroid Use for COVID-19 in US Outpatient Settings From April 2020 to August 2021

Marie C. Bradley, PhD, MPharm, MScPH¹; Silvia Perez-Vilar, PhD, PharmD¹; Yoganand Chillarige, MPA²; Diane Dong, RN, MPH³; Ashley I. Martinez, PharmD, PhD⁴; Andrew R. Weckstein, BA⁵; Gerald J. Dal Pan, MD, MHS¹

□ Author Affiliations | Article Information

JAMA. 2022;327(20):2015-2018. doi:10.1001/jama.2022.4877

Figure. Proportion of Patients With COVID-19 Initiating Systemic Corticosteroids Within 14 Days of Diagnosis

FDA indicates Food and Drug Administration; NIH, National Institutes of Health; RECOVERY, Randomised Evaluation of COVID-19 Therapy.

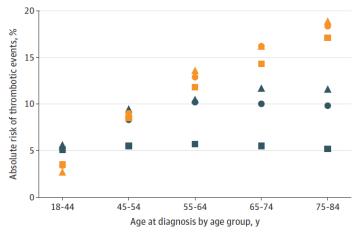
^a The name of the corticosteroid was only available for pharmacy dispensings.

Generate timely evidence during pandemic

Original Investigation

August 16, 2022

Association of COVID-19 vs Influenza With Risk of Arterial and Venous Thrombotic Events Among Hospitalized Patients

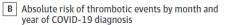

Vincent Lo Re III, MD, MSCE^{1,2}; Sarah K. Dutcher, PhD³; John G. Connolly, ScD⁴; Silvia Perez-Vilar, PharmD, PhD³; Dena M. Carbonari, MS²; Terese A. DeFor, MS⁵; Djeneba Audrey Djibo, PhD⁶; Laura B. Harrington, PhD, MPH⁷; Laura Hou, MS⁴; Sean Hennessy, PharmD, PhD²; Rebecca A. Hubbard, PhD²; Maria E. Kempner, BA⁴; Jennifer L. Kuntz, PhD⁸; Cheryl N. McMahill-Walraven, PhD⁶; Jolene Mosley, MS⁴; Pamala A. Pawloski, PharmD⁵; Andrew B. Petrone, MPH⁴; Allyson M. Pishko, MD, MSCE⁹; Meighan Rogers Driscoll, MPH⁴; Claudia A. Steiner, MD, MPH¹⁰; Yunping Zhou, MS¹¹; Noelle M. Cocoros, DSc, MPH⁴

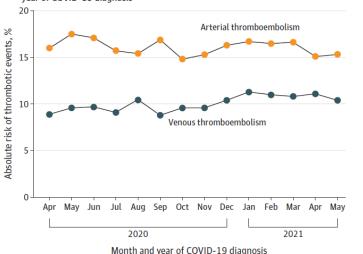
☐ Author Affiliations | Article Information

JAMA. 2022;328(7):637-651. doi:10.1001/jama.2022.13072

Figure. Absolute Risk of Inpatient Arterial and Venous Thrombotic Events

Absolute risk of thrombotic events by age group for patients hospitalized with COVID-19 before vaccine availability (Apr 1-Nov 30, 2020) and during vaccine availability (Dec 1, 2020-May 31, 2021) vs patients hospitalized with influenza (Oct 1, 2018-Apr 30, 2019)




Arterial thromboembolism

- Hospitalized with COVID-19 before vaccine availability
- Hospitalized with COVID-19 during vaccine availability
- Hospitalized with influenza in 2018-2019

Venous thromboembolism

- Hospitalized with COVID-19 before vaccine availability
- ▲ Hospitalized with COVID-19 during vaccine availability
- Hospitalized with influenza in 2018-2019

Enable international collaboration during pandemic

Natural History of COVID-19 among Pregnant Women

CONSIGN (Covid-19 infectiON and medicineS In pregnancy) conceptual replication

Enable international collaboration to address global issues

Quantitative Assessment of the Impact of Nitrosamine Contamination and Angiotensin Receptor Blockers (ARB) Recall on ARB Utilization: A Multinational Study

Details

Additional Information

Contributors

Date Posted: Tuesday, August 18, 2020

Status: IN PROGRESS

Medical Product: angiotensin II receptor blocker (ARB), angiotensin receptor blocker, angiotensin-

converting enzyme (ACE) inhibitor, calcium channel blockers (CCB)

- How Sentinel gets, standardizes, and checks its data
- How Sentinel supports post marketing surveillance
- How Sentinel builds trust through transparency
- Discussion

DOI: 10.1002/pds.4295

WILEY

ORIGINAL REPORT

Reporting to Improve Reproducibility and Facilitate Validity Assessment for Healthcare Database Studies V1.0

```
Shirley V. Wang<sup>1,2</sup>  Sebastian Schneeweiss<sup>1,2</sup> | Marc L. Berger<sup>3</sup> | Jeffrey Brown<sup>4</sup> |
Frank de Vries<sup>5</sup> | Ian Douglas<sup>6</sup> | Joshua J. Gagne<sup>1,2</sup>  | Rosa Gini<sup>7</sup> | Olaf Klungel<sup>8</sup> |
C. Daniel Mullins<sup>9</sup> | Michael D. Nguyen<sup>10</sup> | Jeremy A. Rassen<sup>11</sup> | Liam Smeeth<sup>6</sup> |
Miriam Sturkenboom<sup>12</sup>
on behalf of the joint ISPE-ISPOR Special Task Force on Real World Evidence in Health Care
Decision Making
```

RESEARCH AND REPORTING METHODS **Annals of Internal Medicine**

Graphical Depiction of Longitudinal Study Designs in Health Care Databases

Sebastian Schneeweiss, MD, ScD; Jeremy A. Rassen, ScD; Jeffrey S. Brown, PhD; Kenneth J. Rothman, DrPH; Laura Happe, PharmD, MPH; Peter Arlett, MD; Gerald Dal Pan, MD, MHS; Wim Goettsch, PhD; William Murk, PhD; and Shirley V. Wang, PhD Ann Intern Med. 2019;170:398-406.

The reporting of studies conducted using observational routinely collected health data statement for pharmacoepidemiology (RECORD-PE)

Sinéad M Langan, ¹ Sigrún AJ Schmidt, ² Kevin Wing, ¹ Vera Ehrenstein, ² Stuart G Nicholls, ^{3,4} Kristian B Filion, 5,6 Olaf Klungel, Trene Petersen, 2,8 Henrik T Sorensen, William G Dixon, 9 Astrid Guttmann, 10,11 Katie Harron, 12 Lars G Hemkens, 13 David Moher, 3 Sebastian Schneeweiss, 14 Liam Smeeth, 1 Miriam Sturkenboom, 15 Erik von Elm, 16 Shirley V Wang, 14 Eric I Benchimol 10,17,18 BMJ 2018:363:k3532

STaRT-RWE: structured template for planning and reporting on the implementation of real world evidence studies

Shirley V Wang, ¹ Simone Pinheiro, ² Wei Hua, ² Peter Arlett, ^{3,4} Yoshiaki Uyama, ⁵ Jesse A Berlin, ⁶ Dorothee B Bartels, Kristijan H Kahler, Lily G Bessette, Sebastian Schneeweiss

BMJ 2021:372:m4856

https://www.sentinelinitiative.org/assessments/drugs/ eliquis-apixaban-pradaxa-dabigatran-and-xareltorivaroxaban-2

Eliquis (Apixaban), Pradaxa (Dabigatran), and Xarelto (Rivaroxaban) & Severe **Uterine Bleed**

Details

Complete Status: (

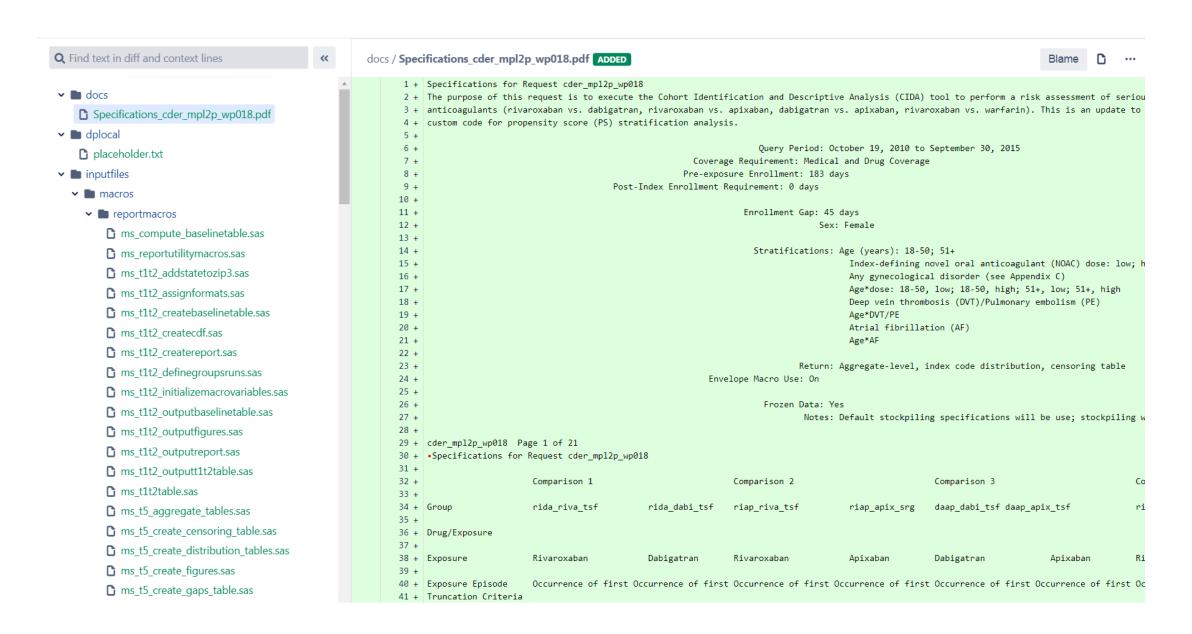
Last Updated: Monday, May 24, 2021

Original Posting Date: Thursday, April 18, 2019

Health Outcome(s):

severe uterine bleed

Purpose: Drug and Outcome Analysis


Regulatory Determination / Use:

Cases of severe uterine bleeding associated with use of novel oral anticoagulants (ACs) have been reported in the FDA Adverse Event Reporting System (FAERS) and the medical literature. FDA conducted a Sentinel study to examine severe uterine bleeding events requiring medical intervention in women treated with oral ACs. Among 1,050,192 new users of oral ACs, the incidence rates of severe uterine bleeding with medical, transfusion, and surgical (e.g., hysterectomy, myomectomy) management were 0.6, 1.7, and 5.0 per 1000 person-years, respectively. These findings contributed to the following class-wide label change for oral ACs in Section 8.3, "The risk of clinically significant uterine bleeding, potentially requiring gynecological surgical interventions, identified with oral anticoagulants including [PRODUCT name] should be assessed in females of reproductive potential and those with abnormal uterine bleeding."

Analytic Code Link(s) (1)

Severe Uterine Bleed Following Novel Oral Anticoagulants Use: A Propensity Score Analysis

Result(s) (3)

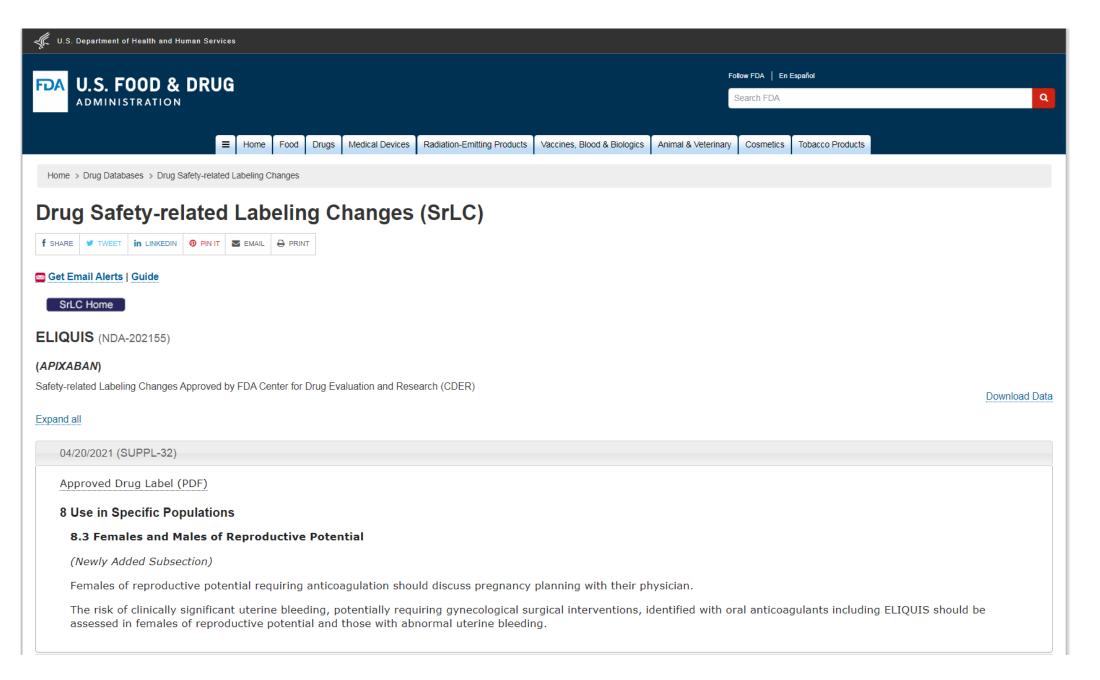
Incidence of Severe Uterine Bleed Following Novel Oral Anticoagulants Use: A Descriptive Analysis

Severe Uterine Bleed Following Novel Oral Anticoagulants Use: A Propensity Score Analysis

Incidence Rate of Severe Uterine Bleeding Among New Users of Oral Anticoagulants: A Descriptive Analysis

Table 2a. Effect Estimates for Severe Uterine Bleed (SUB) Defined by Surgical Management in the Sentinel Distributed Database (SDD) between October 19, 2010 to September 30, 2015, by Analysis Type, Rivaroxaban vs. Dabigatran

			Average	Average		Incidence		Incidence Rate	Difference	Hazard Ratio	
		Person-	Person-	Person-	Number	Rate per	Risk per	Difference	in Risk per	(95%	
	Number of	Years	Days	Years	of	1,000	1,000	per 1,000	1,000	Confidence	Wald
Medical Product	New Users	at Risk	at Risk	at Risk	Events	Person-Years	New Users	Person-Years	New Users	Interval)	P-Value
Unmatched Analysis (Site-adjusted only)											
Rivaroxaban	289,011	155,142.97	196.07	0.54	801	5.16	2.77	1.54	-1.05	1.35	<0.001
Dabigatran	80,844	85,311.95	385.44	1.06	309	3.62	3.82			(1.17, 1.54)	
1:1 Matched Conditional P	redefined Ana	lysis; Caliper=	0.05								
Rivaroxaban	80,844	27,967.12	126.35	0.35	120	4.29	1.48	0.57	0.20	1.15	0.285
Dabigatran	80,844	27,967.12	126.35	0.35	104	3.72	1.29			(0.89, 1.50)	
1:1 Matched Unconditional Predefined Analysis; Caliper= 0.05											
Rivaroxaban	80,844	55,251.85	249.63	0.68	224	4.05	2.77	0.43	-1.05	1.09	0.344
Dabigatran	80,844	85,311.95	385.44	1.06	309	3.62	3.82			(0.91, 1.30)	
Predefined Percentile Anal	ysis; Percentile	= 10									
Rivaroxaban	289,011									1.21	0.008
Dabigatran	80,844									(1.05, 1.39)	0.000


Data are not presented in shaded cells due to their inability to be calculated.

Regulatory Link(s) (3)

□ Drug Safety-related Labeling Change (Eliquis)

Related Publication(s) and/or Presentation(s) (1)

Risk of Severe Abnormal Uterine Bleeding Associated with Rivaroxaban Compared with Apixaban, Dabigatran and Warfarin

Drug Safety (2021) 44:753–763 https://doi.org/10.1007/s40264-021-01072-0

ORIGINAL RESEARCH ARTICLE

Risk of Severe Abnormal Uterine Bleeding Associated with Rivaroxaban Compared with Apixaban, Dabigatran and Warfarin

Efe Eworuke 1 $\odot \cdot$ Laura Hou $^2 \cdot$ Rongmei Zhang $^3 \cdot$ Hui-Lee Wong $^4 \cdot$ Peter Waldron $^5 \cdot$ Abby Anderson $^6 \cdot$ Audrey Gassman $^6 \cdot$ David Moeny $^1 \cdot$ Ting-Ying Huang 2

- How Sentinel gets, standardizes, and checks its data
- How Sentinel supports post marketing surveillance
- How Sentinel builds trust through transparency
- Discussion

Developing the Sentinel System — A National Resource for Evidence Development

Rachel E. Behrman, M.D., M.P.H., Joshua S. Benner, Pharm.D., Sc.D., Jeffrey S. Brown, Ph.D., Mark McClellan, M.D., Ph.D., Janet Woodcock, M.D., and Richard Platt, M.D.

N Engl J Med 2011; 364:498-499

The FDA Sentinel Initiative — An Evolving National Resource

Richard Platt, M.D., Jeffrey S. Brown, Ph.D., Melissa Robb, M.S., Mark McClellan, M.D., Ph.D., Robert Ball, M.D., M.P.H., Michael D. Nguyen, M.D., and Rachel E. Sherman, M.D., M.P.H.

N Engl J Med 2018; 379:2091-2093

The US Food and Drug Administration Sentinel System: a national resource for a learning health system

Jeffrey S. Brown (b)¹, Aaron B. Mendelsohn¹, Young Hee Nam¹, Judith C. Maro (b)¹, Noelle M. Cocoros¹, Carla Rodriguez-Watson², Catherine M. Lockhart³, Richard Platt¹, Robert Ball (b)⁴, Gerald J. Dal Pan⁴, and Sengwee Toh¹

Journal of the American Medical Informatics Association, 00(0), 2022, 1–10 https://doi.org/10.1093/jamia/ocac153

How big data support post marketing surveillance in USA: the Sentinel Initiative

Darren Toh, ScD

darren_toh@harvardpilgrim.org

@darrentoh_epi