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Training a generative model often uses a 

discriminator
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Two Synthesis Strategies
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Partial Synthesis 

Synthesize quasi-

identifiers

Synthesis

Full Synthesis 

Synthesize all 

variables

Synthesis
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Privacy-Utility Trade-off
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Identity Disclosure Model
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{male, 50}{male, 50}

{male, 50}
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Evaluations of (re-)identification risks show that it 

is low in multiple studies across multiple datasets
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Dataset Fully Synthetic Data Original Data

Washington Hospital 

Data (Discharge)

0.0197 0.098

Canadian COVID-19 

Data (Public Health)

0.0086 0.034

A commonly used risk threshold = 0.09
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Membership disclosure: is the distance between S 

and D predictive of which records are in the training 

dataset
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Comparing real and synthetic data: Adjusted 

model of impact of bowel obstruction on DFS
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Longitudinal Data Model
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Note: Adjusted estimates include the 
following co-variates: age, sex, 

antidepressant use, Elixhauser score, 
ALT, eGFR, HCT; Opioid 1 served as 

the reference group

Adjusted Cox Regression



Electronic Health Information Laboratory, University of Ottawa and Children’s Hospital of Eastern Ontario Research Institute

Hierarchical datasets require a 

different approach



QUESTIONS
cc: an untrained eye - https://www.flickr.com/photos/26312642@N00
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