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Ways to Generate Synthetic Data:
Perturbation
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Ways to Generate Synthetic Data:
Simulation
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Generative Adversarial Networks:
GANs
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Playing the GAN Game
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This is Not a New Principle
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This is Not a New Principle
(Choi MLHC 2017)

• Sutter Health & MIMIC 

• Demographics, Diagnoses, 
Procedures, & Meds

• Prediction of presence / 
absence clinical concept
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Limitations

• Autoencoder induced noise and hurt learning

• Evaluation measures based on superficial aspects 
of data gave false impression of merits of 
simulation

• Focus on all EHR data led to overrepresentation of 
common associations
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Evolution

• Better training (Wasserstein distance) and evaluation 
methods (latent dimensions) (Zhang JAMIA 2020)

• Enabling constraints (e.g., preventing women from 
having prostate cancer) (Yan AMIA 2020)

• Move from static to longitudinal data:                
think LSTMs + GANs (Zhang JAMIA 2021)

Zhang, Yan, Mesa, Sun, & Malin. Ensuring electronic medical record simulation through better training, modeling, and evaluation. JAMIA. 2020; 27: 99-108.
Yan, Zhang, Nyemba, & Malin. Generating electronic health records with multiple data types and constraints. Proc AMIA Symp. 2020: 1335-1344.
Zhang, Yan, Lasko, Sun, & Malin. SynTEG: A framework for temporal structured electronic health data simulation. JAMIA. 2021; 28: 596-604. 13



Building a Synthetic Resource
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Data selection

Model training

Data generation

Post-hoc curation

235,000 participants w/
demographics, physical measures, survey responses

Train multiple GAN models
to determine the best converge point and control repetition

Based on specific requirements 
(e.g., volume, constraints) 

Reinsert important outliers that are discarded by
the data generation model, e.g. Wolfram syndrome



System/software Development
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Develop data analytic tools

Test important system features

Complete quality control and assurance tasks



Case Study for Demos & Tutorial
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May 2020 May 2021

1 year after Launch
Researcher Workbench

launched

> 30 researcher outreach and training events

> 2000 users
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Real vs Synthetic in the Same Tutorial
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Is Synthetic Data “De-identified”?

Removal of 18 types of 
identifiers

No actual knowledge 
residual information can 

identify individual

Safe Harbor

Apply statistical or 
scientific principles

Very small risk that 
anticipated recipient 

could identify individual

Expert 
Determination

According to HIPAA (Privacy Rule):

“information that does not identify an individual and … no reasonable basis … 
information can be used to identify an individual”
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What Could Go Wrong?
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FAKE Real

https://arxiv.org/abs/2107.06304



A Bunch of Things

• Mimic

• Insufficient training data can lead to “mimicking” of original records

• Membership Inference

• User can test if features of someone they know appear to be in the 

training data

• Requires knowing the features in question

• Attribute Inference

• User can predict features (they don’t know) about someone based on 

features they do know

• Combining Membership and Attribute is where disclosure occurs
21



Membership Intrusion
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An Attack on VUMC Data

• 45,000 patients, diagnosis and procedure codes

• Up to 200 visits

• Adversary has 10% “prior” knowledge

Fully Synthetic Partially Synthetic
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Context Matters ALOT

• Must define the expected capabilities of the recipients 
of the data

• Privacy assessments should consider the data, as well 
as how the data was created

• Must consider the recipient’s tolerance for errors

• Most consider society’s tolerance for intrusion (and 
claimed intrusion)
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Questions?

b.malin@vanderbilt.edu

Center for Genetic Privacy & Identity in Community Settings
https://www.vumc.org/getprecise

Health Data Science Center
https://www.vumc.org/heads
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