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The “randomized” scenario in causal inference

Xx
X1
X2

X3

X

A Y WZ

measured confounders
(age, sex)

treatment outcome

• Estimand: the average treatment effect ATE = E[Y(1)]− E[Y(0)]
• Key identification assumption: no unmeasured confounding

o “Randomized” within each stratum of X
o Not empirically verifiable
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Unmeasured confounding: a threat to causal inference

X X2
X1
X3

U

A Y WZ

unmeasured confounders
(e.g., health-seeking behavior)(age, sex)

treatment outcome

• Hereafter all arguments are made implicitly conditional on X
• Unmeasured confounders U

o At the center of much skepticism about observational studies
o The instrumental variable (IV) methods require randomization

• A hidden treasure: negative control variable
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Does stress during pregnancy affect birth weight?

U

A YZ

family factors

mother’s
stress

baby’s birth
weight

father’s
stress

mortality before
flu season

!

• Observational study on effect of mother’s stress on birth weight
Nonzero effect of father’s stress indicates hidden confounder

Nonzero effect of father’s stress indicates hidden bias

Genetic factors could be an unmeasured confounder

Davey Smith 2008, 2012
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Negative control exposure (NCE)

U

A YZ W

unmeasured confounders

treatment outcomeNegCtrl
exposure (NCE)

NegCtrl
outcome (NCO)

! !

• Z is an NCE if Y(a, z) = Y(a) and Z ⊥⊥ Y(a) | U

(1) It does not causally affect Y
(2) It is associated with Y(a) only through U

W is an NCO if W(a, z) = W and W ⊥⊥ (A,Z) | U
It is not causally affected by A
It is associated with (A,Z) only through U
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Does flu shot prevent 50% death in the elderly?

U

A Y W

health seekingconfounders

influenza
vaccination

mortality during
flu season

mortality before
flu season

!

• Observational study on flu vaccine effectiveness
o found 50% reduction in risk of all cause mortality during winter

Potential unmeasured confounding by self-care behaviors

Risk reduction before flu season indicates confounding bias

Jackson et al. 2006; also considered using injury/trauma hospitalization to detect unmeasured confounding bias
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Does flu shot prevent 50% death in the elderly?
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• Observational study on flu vaccine effectiveness
o found 50% reduction in risk of all cause mortality during winter

• Potential unmeasured confounding by health seeking behavior
• Use mortality before flu season to detect confounding bias

Jackson et al. 2006; also considered using injury/trauma hospitalization to detect unmeasured confounding bias
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Negative control outcome (NCO)

U

A YZ W

unmeasured confounders

treatment outcomeNegCtrl
exposure (NCE)

NegCtrl
outcome (NCO)

! !

• Z is an NCE if Y(a, z) = Y(a) and Z ⊥⊥ Y(a) | U

(1) It does not causally affect Y
(2) It is associated with Y(a) only through U

• W is an NCO if W(a, z) = W and W ⊥⊥ (A,Z) | U

(1) It is not causally affected by A
(2) It is associated with (A,Z) only through U
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More examples that encode the NC assumptions
Examples of NCE

Z → A (pre-treatment) A → Z (post-treatment) Z ⊥⊥ A
No arrow between Instrumental variable (IV)
U and Z (may violate

A

U,X

YZ A

U,X

YZ A

U,X

YZU-comparability)
Invalid IV Post-treatment proxy of U Proxy of U

U → Z
A

U,X

YZ A

U,X

YZ A

U,X

YZ

May violate Assumptions if there is W → U
Z → U

A

U,X

YZ A

U,X

YZ A

U,X

YZ

Examples of NCO
W → Y(a) Y(a) → W Y(a) ⊥⊥ W | (U,X)

No arrow between Violate NCO definition
U and W (violate

A

U,X

Y W A

U,X

Y W A

U,X

Y WU-comparability)
Violate NCO definition

U → W
A

U,X

Y W A

U,X

Y W A

U,X

Y W

May violate Assumption if there is Z → U
Violate NCO definition

W → U
A

U,X

Y W A

U,X

Y W A

U,X

Y W

Examples of Z, A,U and W, Y,U relationships. Grey indicates violation of assumptions. (Shi, Miao, and Tchetgen 2020)
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Negative controls are widely available

• Air pollution and health outcomes: the future $⇒ the past [1]
o NCE = future exposure; NCO = past outcome

U

At YtAt+1 Yt−1
air pollution
current

air pollution
future

health
current

health
past

! !

• Genetics research and batch effect [2]
o Use control genes to remove unwanted variation

• Drug/vaccine comparative effectiveness and safety [3]
o Use secondary treatments or outcomes in electronic health records
o Can combine multiple binary negative control variables

[1] Flanders et al. 2011 [2] Gagnon-Bartsch and Speed 2012 [3] Schuemie et al. 2014
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Detection, reduction, and correction of bias
Limitation: application focused on bias detection; methods may require strong
assumptions

Detect
1: Time-series study.
2: invalid NCE.

Reduce
3: Time-series study.
4: Standardized mortality ratio in occupational cohort study.
5: Drug–outcome pairs with no plausible causal effect.

Correct

6: Time-to-event outcome.
7: Generalized difference-in-differences using NCO.
8: Calibration using NCO.
9: Removing unwanted variation in gene-expression analysis.
10: Nonparametric identification using double negative control.

1Flanders et al. 2011.
2Davey Smith 2012; Weisskopf, Tchetgen Tchetgen, and Raz 2016.
3Flanders, Strickland, and Klein 2017; Miao and Tchetgen Tchetgen 2017.
4Richardson et al. 2015.
5Schuemie et al. 2014, 2018.
6Richardson et al. 2014; Tchetgen Tchetgen, Sofer, and Richardson 2015.
7Sofer et al. 2016; Glynn and Ichino 2019.
8Tchetgen Tchetgen 2014.
9Gagnon-Bartsch and Speed 2012; Jacob, Gagnon-Bartsch, and Speed 2016; Wang et al. 2017.

10Miao, Shi, and Tchetgen Tchetgen 2018; Miao, Geng, and Tchetgen Tchetgen 2018; Shi, Miao, and Tchetgen Tchetgen 2020.
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Intuition behind identification

U

A YZ

health seeking

flu shot mortality mortality
before flu season

!

βUYγAU

αAY

• Confounding bias is a product of U-A and U-Y association (γAUβUY)
A-W association is a product of U-A and U-W association (γAUβUW)
Problem solved if U-Y association = U-W association

Regress Y on A︸ ︷︷ ︸
αAY + γAUβUY

, regress W on A︸ ︷︷ ︸
γAUβUW

, then ATE = diff in coefs of A

A special case: the difference-in-differences method Richardson
et al. 2014, 2015; Tchetgen Tchetgen, Sofer, and Richardson 2015;
Sofer et al. 2016
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• Confounding bias is a product of U-A and U-Y association (γAUβUY)
o A-W association is a product of U-A and U-W association (γAUβUW)
o Problem solved if U-Y association = U-W association

• Regress Y on A,︸ ︷︷ ︸
αAY+γAUβUY

and W on A︸ ︷︷ ︸
γAUβUW

, then ATE = diff in coefs of A

• A special case: the difference-in-difference method11

11Richardson et al. 2014, 2015; Tchetgen Tchetgen, Sofer, and Richardson 2015; Sofer et al. 2016.
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Intuition behind identification

U

A Y WZ

family factor

father’s
stress (NCE)

mother’s
stress

baby’s birth
weight

!

αAY

βUYγAUγZU

• Confounding bias is a product of U-A and U-Y association (γAUβUY)
o Z-Y association is a product of U-Z and U-Y association (γZUβUY)
o Problem solved if U-A association = U-Z association

• Regress Y on A︸ ︷︷ ︸
αAY + γAUβUY

and Z︸︷︷︸
γZUβUY

, then ATE = diff in coefs of A and Z

• A special case: air pollution studies12

12Flanders et al. 2011; Flanders, Strickland, and Klein 2017; Miao and Tchetgen Tchetgen 2017.
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Intuition behind identification

U

A Y WZ

unmeasured
confounder

treatment outcomeNC exposure NC outcome

βUY βUW

αAY

γAUγZU

• What if βUY $= βUW and γAU $= γZU?
o A-W association (γAUβUW) recovers the confounding bias (γAUβUY)

up to a scale βUY
βUW

o We cannot identify either βUY or βUW, but we can identify the ratio

• Double negative control: use both an NCE and an NCO13

o Identify the ratio using the NCE: βUY
βUW = Z-Y association

Z-W association = γZUβUY
γZUβUW

o W recovers bias up to a scale; Z recovers that scale

13Miao, Shi, and Tchetgen Tchetgen 2018; Miao, Geng, and Tchetgen Tchetgen 2018; Shi, Miao, and Tchetgen 2020; Shi, Miao,
and Tchetgen Tchetgen 2020; Tchetgen et al. 2020.
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From linear additive model to nonparametric identification

• For simplicity, consider the following two linear additive models
o E[Y | A,Z,U] = β0 + βAA+ βUU
E[W | A,Z,U] = γ0 + γUU

o The causal effect is βA = E[Y(1)− Y(0)] = E[Y(1)− Y(0) | U]

• One can show that E[Y | A,Z] = β∗
0 + βAA+ β∗

UE[W | A,Z]

o Regress Y on A and Ŵ, where Ŵ is predicted from E[W | A,Z]

• The ATE can be identified nonparametrically14

o E[Y(a)] = E[h(a,W)], h() satisfies E[Y | A,Z] = E[h(A,W) | A,Z]
o e.g., in the linear model above, h(A,W) = β∗

0 + βAA+ β∗
UW

o Requires Z and W to be sufficiently informative about U

14Miao, Shi, and Tchetgen Tchetgen 2018; Miao, Geng, and Tchetgen Tchetgen 2018; Shi, Miao, and Tchetgen 2020; Shi, Miao,
and Tchetgen Tchetgen 2020; Tchetgen et al. 2020.
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Double negative control in practice

• Two stage least squares (TSLS) under linear models
o Stage I: regress W on A and Z, and obtain fitted values Ŵ
o Stage II: regress Y on A, adjusting for Ŵ (as if it is U)

• Can use existing instrumental variable software packages
o auaGAL in SAS; Bp`2;`2bb, Bp`2;, Bp`2;k in Stata;

;KK, b2K, BpT�+F, �1_ in R
o e.g., ;KK,,;KKU;4u∼�YqYs-t4∼�YwYsV in R
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How to find a candidate negative control variable?

U

A Y WZ

unmeasured
confounder

treatment outcomeNC exposure NC outcome

βUY βUW

αAY

γAUγZU

• Data-driven Automated Negative Control Estimation (DANCE)
o Identifies triplets of negative control variables
o Aggregates ATEs obtained from all pairs of negative controls
o Limitation: can only detect a special type of negative control

• Rationale: all paths from {W,Z} to {Y,A} pass through U

o Therefore Σ{W,Z},{Y,A} =

(
cov(W,Y) cov(W,A)
cov(Z,Y) cov(Z,A)

)
is rank deficient

o Such a rank constraint can be determined using statistical tests
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Performance of the DANCE algorithm

Edge ROC curve Proportional bias

Weak

Strong

Figure 4: Complex Graph simulation results

13

• High AUC in negative control detection
• Low bias in effect estimation using the detected negative controls
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Proximal Causal Learning
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Are two cheap, noisy measures better than one expensive,
accurate measure?15

• Hard to eliminate measurement error
o The “no unmeasured confounding” assumption depends on

investigator’s ability to accurately measure covariates capturing all
potential sources of confounding

o The most one can hope for is that covariate measurements are at
best proxies of the true underlying confounding mechanism

• Easier to get to the right kind of measurement error
o Acknowledge that covariates are imperfect proxies of confounders
o Find proxies that satisfy certain assumptions
o Allow the “no unmeasured confounding” to be violated

15Browning and Crossley 2009.
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An example in vaccine safety study

U

XZ

A

W

Y

age, sexdermatology visit hypertension

health-seeking

Zoster vaccine acute MI

• Adverse effect of a new Zoster vaccine on acute MI
• Plan to adjust for the following confounders:

o age, sex (X)
o dermatology visit (Z), hypertension (W)

Tchetgen et al. 2020

21



An example in vaccine safety study

U

XZ

A

W

Y

age, sexdermatology visit hypertension

health-seeking

Zoster vaccine acute MI

• Adverse effect of a new Zoster vaccine on acute MI
• Plan to adjust for the following confounders:

o age, sex (X)
o dermatology visit (Z), hypertension (W)

Tchetgen et al. 2020

21



An example in vaccine safety study

U

XZ

A

W

Y

age, sexdermatology visit hypertension

health-seeking

Zoster vaccine acute MI

• Adverse effect of a new Zoster vaccine on acute MI
• Plan to adjust for the following confounders:

o age, sex (X)
o dermatology visit (Z), hypertension (W)

Tchetgen et al. 2020

21



An example in vaccine safety study

U

XZ

A

W

Y

age, sexdermatology visit hypertension

health-seeking

Zoster vaccine acute MI

• Adverse effect of a new Zoster vaccine on acute MI
• Plan to adjust for the following confounders:

o age, sex (X)
o dermatology visit (Z), hypertension (W)

Tchetgen et al. 2020

21



An example in vaccine safety study

U

XZ

A

W

Y

age, sexdermatology visit hypertension

health-seeking

Zoster vaccine acute MI

• Three types of confounding variables
o Common causes of the treatment and outcome: age, sex (X)
o Treatment-inducing confounding proxy: dermatology visit (Z)
o Outcome-inducing confounding proxy: hypertension (W)

Tchetgen et al. 2020

21



An example in vaccine safety study

U

XZ

A

W

Y

age, sexdermatology visit hypertension

health-seeking

Zoster vaccine acute MI

• Three types of confounding variables
o Common causes of the treatment and outcome: age, sex (X)
o Treatment-inducing confounding proxy: dermatology visit (Z)
o Outcome-inducing confounding proxy: hypertension (W)

Tchetgen et al. 2020

20



Classical vs Proximal causal inference

• Classical causal inference: fails when U exists
o Confounders {X,W,Z}: age, sex, dermatology visit, hypertension
o Standard g-formula: E[Y(a)] = E[m(a,X,W,Z)]
o m(a, x,w, z) is the outcome model
m(a, x,w, z) = E[Y | A = a,X = x,W = w,Z = z]

o Estimation via g-computation

• Proximal causal inference
o X = age, sex; W = hypertension; Z = dermatology visit
o Proximal g-formula: E[Y(a)] = E[h(a,W,X)]
o h(a,w, x) is the outcome bridge function
E[h(a,w, x) | A = a,Z = z,X = x] = E[Y | A = a,Z = z,X = x]

o Estimation via proximal g-computation or two-stage least squares

Greenland and Robins 1986; In slight abuse of notation let
∑

denote an integral in the case of a continuous variable
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Application to the SUPPORT study

• Right heart catheterization (RHC) procedure
o Performed to measure blood flow and pressures in the heart
o Many physicians believed that measurements from the RHC can

guide therapy and lead to better outcomes for critically ill patients
o Due to the popularity and strong belief of the procedure, conducting

a clinical trial was unethical

• The Study to Understand Prognoses and Preferences for
Outcomes and Risks of Treatments (SUPPORT)16
o Evaluate the effectiveness of RHC among adults admitted to the

intensive care unit (ICU)
o 2184 patient managed with RHC, 3551 without RHC

16Connors et al. 1996.

22



A controversial result

• The SUPPORT study found that RHC was harmful
• Potential confounding

o Confounding bias might show harmful effect of RHC
o Patients for whom RHC was performed might have been a lot sicker

• This data set has been analyzed by many researchers17
o Majority relying on the no unmeasured confounding assumption

17Lin, Psaty, and Kronmal 1998; Tan 2006; Li, Morgan, and Zaslavsky 2018; Mao and Li 2020.
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Candidate proxies in the SUPPORT study

X X2
X1
X3

other covariates
U

A Y WZ

unmeasured
confounder

RHC SurvivalSerum pH Serum sodium

• The SUPPORT study collected 72 covariates including
o demographics, comorbidity, vital signs, functional status
o physiological status measured from a blood test during the initial 24

hours in the ICU ⇒ 10 candidate proxies

• We applied our DANCE algorithm to find valid proxies
o Most frequently selected pair: ph and sod
o ph = Serum pH; sod = Serum sodium
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Methods

X X2
X1
X3

other covariates
U

A Y WZ

unmeasured
confounder

RHC SurvivalSerum pH Serum sodium

• We evaluate effect of RHC on survival time in days
o Assumed a linear additive model

• Estimation
o Proximal two stage least squares
o Inverse probability weighting to adjust for the other covariates X
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Results

X X2
X1
X3

other covariates
U

A Y WZ

unmeasured
confounder

RHC SurvivalSerum pH Serum sodium

Proxy variables RHC effect (95% CI)
W = ph, Z = sod -0.44 (-1.00, 0.11)
W = sod, Z = ph -0.40 (-1.09, 0.30)

Average over all detected (W,Z) pairs -0.71 (-1.50, 0.08)
Naive adjustment -1.29 (-1.83, -0.75)

• RHC was not significantly associated with survival time
• Note that the role of Z and W are exchangeable

o Our results remained invariant to the choice of W and Z
o This verifies that the graph is correctly specified
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Summary

• Negative controls and proxies can adjust for confounding bias
• Can directly use off-the-shelf software packages
• A data-driven pipeline of negative control detection and adjustment

• Current work by the proximal causal inference group
Review on negative controls arXiv:2009.05641
Nonparametric identification arXiv:1609.08816
Binary variable setting arXiv:1808.04906
Outcome confounding bridge arXiv:1808.04945
Proximal causal inference arXiv:2009.10982
Outcome and treatment confounding bridge arXiv:2011.08411
Longitudinal data setting arXiv:2109.07030
Panel data setting arXiv:2108.13935
Proximal mediation analysis arXiv:2109.11904
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