

Variation in Mother-Infant Linkage Rates by Jurisdiction in U.S. Medicaid Data Bradley G. Hammill, DrPH Department of Population Health Sciences Duke University School of Medicine

Durham, NC, USA

39th International Conference on Pharmacoepidemiology & Therapeutic Risk Management Halifax, Nova Scotia, Canada

Disclosures

- Dr. Hammill reports a research grant from iRhythm Technologies
- All other authors report nothing to disclose
- This project was supported by Task Order 75F40119F19001 under Master Agreement 75F40119D10037 from the US Food and Drug Administration (FDA) and the Assistant Secretary for Planning and Evaluation (ASPE) within the U.S. Department of Health and Human Services.
- The views expressed in this presentation represent those of the presenters and do not necessarily represent the official views of the U.S. FDA or ASPE.

Co-authors

Department of Population Health Sciences, Duke University School of Medicine

- Michael Stagner
- Jessica Pritchard
- Steve Lippmann
- Pratap Adhikari

Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute

- Judith C. Maro
- Daniel Kiernan
- Laura Shockro
- Alexander Mai

Office of Surveillance and Epidemiology, Center for Drug Evaluation and Research, US Food and Drug Administration

- Sarah K. Dutcher
- David Moeny

Health Information Systems Consulting

• Robert Rosofsky

Introduction

Within the U.S. FDA's Sentinel System, linkage of mother and infant data is **critical for the assessment of medication safety** during pregnancy.

U.S. Medicaid/CHIP data in the new Transformed Medicaid Statistical Information System (T-MSIS) format were recently converted to the Sentinel Common Data Model and an initial mother-infant linkage was performed.

Data used for linkage

- 100% Medicaid/CHIP data in the Transformed Medicaid Statistical Information System (T-MSIS) Analytic Files (TAF) format
- We applied data quality-based inclusion/exclusion criteria to exclude jurisdictionplan-years with "unusable" data quality
- We made two data transformations to the Sentinel Common Data Model (SCDM) prior to linkage
 - First transformation (ETL 1), 2014–2018 data
 - Second transformation (ETL 2), 2014–2020 data

Identifying live birth deliveries & infants for linkage

Version 1 Specifications

Deliveries

- <u>Timing</u>: Deliveries from one year later than the start date of the Medicaid/CHIP data availability to the end of the Medicaid/CHIP data availability
- <u>Encounters</u>: Records with a delivery code to women 10-54 years old at the start of the encounter.
- <u>Washout period</u>: No evidence of delivery for 180 days prior to any identified delivery, during which mothers must have had medical coverage

Infants

- <u>Timing</u>: Those with a date of birth from one year later than the start date of the Medicaid/CHIP data availability to the end of data availability
- <u>Enrollment</u>: Children must have at least one day of enrollment with medical coverage during their first year of life

Version 2 Specifications

Deliveries

- <u>Timing</u>: From <u>one year later than</u> the start date of the Medicaid/CHIP data availability to the end of the Medicaid/CHIP data availability
- <u>Encounters</u>: Records with a delivery code to women 10-54 years old at the start of the encounter.
- <u>Washout period</u>: No evidence of delivery for <u>180</u> 90 days prior to any identified delivery, during which mothers must have had medical coverage

"Infants"

- <u>Timing</u>: Those with a date of birth from <u>one year later</u> than the start date of the Medicaid/CHIP data availability to the end of data availability
- <u>Enrollment</u>: Children must have at least one day of enrollment with medical coverage during their first <u>3</u> years of life

Identified deliveries & infants

Version 1 / ETL 1

2.9 million deliveries eligible for linkage7.8 million infants eligible for linkage

Version 2 / ETL 2

6.7 million deliveries eligible for linkage14.9 million infants eligible for linkage

Example: Illinois eligible deliveries

Year	Version 1 / ETL 1	Version 2 / ETL 2
2014		56,907
2015	68,135	74,150
2016		
2017	32,849	51,042
2018	56,899	61,968
2019		58,248
2020		55,760

Rules for linking delivery records to infant records

Objective: Most accurate linkage

- Both delivery record and infant record must be associated with the *same jurisdiction*
- Both delivery record and infant record must have the *same case number identifier*
 - Case number is a state-assigned number that is often a proxy for a family identifier
- Infant's *date of birth must be close to the admission/discharge dates* on the delivery record. Specifically:
 - Infant's DOB must be within 3 days (±) of a delivery record's admission date, if discharge date is unknown, or
 - Infant's DOB must be between 3 days prior to the delivery record's admission date and the delivery record's discharge date

Overall

61% of mother's delivery records—4.1 million of 6.7 million eligible—from ETL 2 were linked to child records in the Medicaid/CHIP data This statistic hides substantial variability *All linkage results should be considered preliminary until approved for use within the Sentinel System.*

Overall

61% of mother's delivery records—4.1 million of 6.7 million eligible—from ETL 2 were linked to child records in the Medicaid/CHIP data This statistic hides substantial variability *All linkage results should be considered preliminary until approved for use within the Sentinel System.*

By jurisdiction

Among 49 jurisdictions included in ETL 2 (46 states, DC, PR, VI):

- 34 had linkage rates over 75%
- 7 had linkage rates under 15%

Not shown: Puerto Rico, 74% linkage; U.S. Virgin Islands, 79% linkage.

By year of delivery

Age Group	% of Deliveries	Linkage rate
2014	3.4%	65.6%
2015	7.9%	60.2%
2016	16.7%	60.7%
2017	18.0%	63.6%
2018	17.1%	62.0%
2019	18.7%	63.0%
2020	18.2%	54.2%

By age of mother at Age Group % of Deliveries Linkage rate 10–19 years 9.4% 58.8% 20–44 years 90.5% 61.1% 45–54 years 0.1% 49.1%

For comparison, overall linkage rate was 60.8%

By encounter type

Healthcare setting	% of Deliveries	Linkage rate
Inpatient	88.7%	62.0%
Other (ED, outpatient, etc.)	11.3%	51.3%

By number of children delivered

Birth type	% of Deliveries	Linkage rate
Singleton	87.3%	62.6%
Multiple	1.1%	62.3%
Unknown	11.6%	47.6%

For comparison, overall linkage rate was 60.8%

Reasons for poor linkage

Unique or nearly unique case

numbers Case numbers will be unique when a jurisdiction does not use them to identify family groups

Missing case numbers

Missing case numbers also prevent proper linkage between deliveries and infants

Of these 7 jurisdictions:

- 7 had case numbers that were unique 85% or more of the time
- 2 had case number missing over 10% of the time

Of these 8 jurisdictions:

• 4 had case number missing over 10% of the time

Notable differences from prior linkage in MAX data

Better linkage in TAF data

Jurisdiction	MAX Linkage Rate	TAF Linkage Rate	Δ [TAF – MAX]
Montana	0.0%	90.0%	+90.0%
New York	49.5%	92.0%	+42.5%
Georgia	32.6%	74.2%	+41.6%
Maryland	9.3%	47.7%	+38.4%
Louisiana	62.6%	94.3%	+31.7%
Indiana	58.8%	89.0%	+30.2%

5 more jurisdictions with linkage rates 20–30% higher in TAF than in MAX

MAX results from: Palmsten K, Huybrechts KF, Mogun H, Kowal MK, Williams PL, Michels KB, Setoguchi S, Hernández-Díaz S. Harnessing the Medicaid Analytic eXtract (MAX) to evaluate medications in pregnancy: design considerations. PloS one. 2013 Jun 26;8(6):e67405.

Notable differences from prior linkage in MAX data

Worse linkage in TAF data

Jurisdiction	MAX Linkage Rate	TAF Linkage Rate	$\Delta [TAF - MAX]$
Washington	78.0%	4.6%	-73.4%
New Jersey	68.9%	4.3%	-64.6%
Missouri	51.6%	37.4%	-14.2%
Minnesota	82.3%	68.6%	-13.7%
North Carolina	16.6%	3.5%	-13.1%
South Dakota	89.6%	79.3%	-10.3%

MAX results from: Palmsten K, Huybrechts KF, Mogun H, Kowal MK, Williams PL, Michels KB, Setoguchi S, Hernández-Díaz S. Harnessing the Medicaid Analytic eXtract (MAX) to evaluate medications in pregnancy: design considerations. PloS one. 2013 Jun 26;8(6):e67405.

Conclusion

In the U.S. Medicaid/CHIP TAF data, mother-infant linkage was **successful for most jurisdictions**.

In other jurisdictions, alternative methods for linkage would need to be explored.

Thank You

Brad Hammill

Duke University brad.hammill@duke.edu