

SUMMARY TABLE V2 PROGRAMMING SPECIFICATIONS

Version 1.0

June 24, 2016

Table of Contents

I. DOCUMENT HISTORY .. 1
II. OVERVIEW .. 2
III. UTILITY PROCESSES/MODULES .. 3

A. CREATE PATKEYSCOVKEY TABLE ... 3
B. TABLEEXTRACT MACRO... 5
C. CREATE SURROGATE KEYS FOR RX DRUGCLASS AND GENERICNAMES ... 7
D. ATTACH RX SURROGATE KEYS TO DISPENSING ROWS ... 9

IV. SUMMARY TABLES .. 11
A. AGE GROUPS TABLE ... 11
B. ENROLLMENT SUMMARY TABLE ... 12
C. EXTRACTION AND SPLITTING OF DIAGNOSIS TABLE ... 14
D. ICD-9-CM DIAGNOSIS SUMMARY TABLE (3 DIGIT) ... 15
E. ICD-9-CM DIAGNOSIS SUMMARY TABLE (4 DIGIT) ... 16
F. ICD-9-CM DIAGNOSIS SUMMARY TABLE (5 DIGIT) ... 18
G. EXTRACTION AND SPLITTING OF PROCEDURE TABLE ... 19
H. HCPCS SUMMARY TABLE .. 20
I. ICD-9-CM PROCEDURE SUMMARY TABLE (3 DIGIT) .. 21
J. ICD-9-CM PROCEDURE SUMMARY TABLE (4 DIGIT) .. 23
K. EXTRACTION AND KEY ASSIGNMENT OF DISPENSING TABLE ... 24
L. DRUG CATEGORY/CLASS SUMMARY TABLE .. 25
M. INGREDIENT/GENERIC NAME SUMMARY TABLE .. 26
N. INCIDENT ICD-9-CM DIAGNOSIS SUMMARY TABLE (3 DIGIT) ... 27
O. INCIDENT DRUG CLASS/CATEGORY SUMMARY TABLE ... 30
P. INCIDENT INGREDIENT/GENERIC NAME SUMMARY TABLE ... 35
Q. EXPORT TEXT AND ACCESS FILES ... 41

V. APPENDIX A: LOOKUP TABLE DX_ICD9_3DIG_LOOKUP ... 44
VI. APPENDIX B: LOOKUP TABLE DX_ICD9_4DIG_LOOKUP ... 45
VII. APPENDIX C: LOOKUP TABLE DX_ICD9_5DIG_LOOKUP ... 46
VIII. APPENDIX D: LOOKUP TABLE PX_LOOKUP ... 47
IX. APPENDIX E: LOOKUP TABLE PX_ICD9_3DIG_LOOKUP .. 48
X. APPENDIX F: LOOKUP TABLE PX_ICD9_4DIG_LOOKUP .. 49
XI. APPENDIX G: LOOKUP TABLE NDC_LOOKUP_TABLE ... 50

Summary Table V2 Programming Specifications
Version 1.0
 - i -

I. DOCUMENT HISTORY
The following table is a revision history for this document.

Date Version Comments

June 24, 2016 1.0 First production version

Summary Table V2 Programming Specifications
Version 1.0
 - 1 -

II. OVERVIEW

The purpose of this programming specification is to describe the logic and processes required to create Summary Tables for the Sentinel Query
Tool. These Summary Tables use selected Sentinel Common Data Model (SCDM) core tables as the data source. The Summary Tables are
aggregates of the SCDM based on a number of business rules and strata, described in each table.

This specification describes the process for programming each of 13 tables. The process for creating some tables is dependent upon intermediate
results from utility processes. This diagram illustrates both the dependencies and utility processes.

Summary Table V2 Programming Specifications
Version 1.0
 - 2 -

III. UTILITY PROCESSES/MODULES

For creating the Summary Tables, these are processes that are utilized by the project and are developed as distinct modules.

A. Age Groups Table

B. Enrollment Summary Table Utility Process: TableExtract
uses PatKeysCovKey table

C. Extraction and Splitting of Diagnosis Table Utility Process: TableExtract
uses PatKeysCovKey table

D. ICD-9-CM Diagnosis Summary Table (3 digit)

E. ICD-9-CM Diagnosis Summary Table (4 digit)

F. ICD-9-CM Diagnosis Summary Table (5 digit)

N. Incident ICD-9-CM Diagnosis Summary Table (3 Digit)

G. Extraction and Splitting of Procedure Table Utility Process: TableExtract
uses PatKeysCovKey table

H. HCPCS Summary Table

I. ICD-9-CM Procedure Summary Table (3 digit)

J. ICD-9-CM Procedure Summary Table (4 digit)

K. Extraction and Key Assignment of Dispensing Table Utility Process: TableExtract
uses PatKeysCovKey table

Utility Process: Create Surrogate Rx Keys
Utility Process: Rx_Attach_Keys

L. Drug Category/Class Summary Table

M. Ingredient/Generic Name Summary Table

O. Incident Drug Category/Class Summary Table

P. Incident Ingredient/Generic Name Summary Table

Q. Export Text and Access Files

Summary Table V2 Programming Specifications
Version 1.0
 - 3 -

A. CREATE PATKEYSCOVKEY TABLE

The PatKeysCovKey table will contain a list of each patient who has any valid enrollment. The table will include the patient’s birth date, sex and a
flag indicating whether they have had at least one day each of medical coverage and drug coverage in each year of Data Partner data. This table
will be used for filtering in of all utilization records.

Variable
Type

(Length) Format Label Valid Values Source / Comments
PatID Char(##) $##. Patient ID Free text of Data Partners’ PatID SCDM Demographic table
PatKey Num(#) #. PatKey Numeric key on a 1:1 relationship

with PatID
This is a surrogate key for the PatID to purposely
contain a fewer number of bytes that the PatID; the
length of the variable will be the smallest SAS
numeric LENGTH needed to contain the largest value

Birth_Date Num(4) mmddyy10. Birth Date Non-missing birth date SCDM Demographic table
Sex Char(1) 1. Sex F = Female

M = Male
SCDM Demographic table

CovKeyDrug Num(#) #. Drug
Coverage Key

Numeric key with bits representing
drug coverage for each year of
Data Partner data

This is a unique numeric value consisting of 0/1 bits.
Each position represents a calendar year

CovKeyMed Num(#) #. Medical
Coverage Key

Numeric key with bits representing
medical coverage for each year of
Data Partner data

This is a unique numeric value consisting of 0/1 bits.
Each position represents a calendar year

CovKeyDrugAndMed Num(#) #. Drug and
Medical
Coverage Key

Numeric key with bits representing
combined coverage for each year
of Data Partner data

This is a unique numeric value consisting of 0/1 bits.
Each position represents a calendar year

Methods for Creating PatKeyCovKey table

1. From the SCDM Enrollment table, create a list of all unique patients that satisfy these conditions:
1.1. MedCov is one of values “Y” or “N”.
1.2. DrugCov is one of values “Y” or “N”.
1.3. Enr_Start is earlier than or equal to Enr_End and neither variable is missing.

2. Link the table from Step 1 with the SCDM Demographic table on PatID, keeping records where Demographic.Birth_Date is not missing and
Demographic.Sex is one of values “F” or “M”.

3. Create variable PatKey as a numeric key with values, starting with 1, that are a 1:1 relationship to PatID.
4. Sort the table by PatID, name it as PatKey and save the table to the temporary work area.

Summary Table V2 Programming Specifications
Version 1.0
 - 4 -

5. Create temporary table for use in all prevalent tables: Read the table from Step 1 and link it with the PatKey table on PatID, to obtain the
PatKey variable.

6. For each PatKey, create a row per Data Partner calendar year as follows.
6.1. Create a new variable, Year, which is a 4-character representation of the calendar year
6.2. Save the the MedCov and DrugCov variables.

7. Sort this file by PatKey and Year, name it Prevalent_Patients and save it to the temporary work area.
8. Read the table from Step 7 and, for each patient (PatKey), create a numeric variable for each of drug coverage (CovKeyDrug) and medical

coverage (CovKeyMed) as follows.
8.1. For each year in Data Partner data, create a 0/1 bit representation of coverage. This is a unique numeric value consisting of 0/1 bits.

Each position represents a calendar year, ordered from left to right. For example, if the Data Partner has data for 2006-2008 (3 years of
coverage), then the possible binary and decimal values for each of CovKeyDrug and CovKeyMed will be the following.

Binary Decimal Interpretation

000 0 No coverage in any of 2006-2008
001 1 Coverage in 2008 only
010 2 Coverage in 2007 only
011 3 Coverage in 2007 and 2008
100 4 Coverage in 2006 only
101 5 Coverage in 2006 and 2008
111 6 Coverage in 2006, 2007, and 2008

8.2. Create a variable, CovKeyDrugAndMed, structured similarly to CovKeyDrug and CovKeyMed. Set each position’s 0/1 value to 1 when
both CovKeyDrug and CovKeyMed have coverage in the same year. If either or both of CovKeyDrug and CovKeyMed don’t have
coverage, then set the position to 0.

9. Structure the table as per the data dictionary above with one row per patient. Set the numeric number of bytes for variables PatKey,
CovKeyDrug, CovKeyMed, and CovKeyDrugAndMed to the minimal necessary to hold the largest decimal integer value.

10. Sort the table by PatKey, naming it PatKeyCovKey and save it to the temporary work area.

B. TABLEEXTRACT MACRO

This macro performs the following functions in creating derivatives of SCDM tables for use in the Summary Tables programming process:

11. Reads a SCDM or other specified table
12. Filters in specific rows based on specified criteria
13. Performs minor transformations/recoding/cleaning, including creation of new variables

Summary Table V2 Programming Specifications
Version 1.0
 - 5 -

14. Links in demographic variables Birth_Date and Sex
14.1. Calculates Age Group Keys for both prevalent and incident purposes

15. Creates surrogate key(s) for specific variables
16. Names specific variables to be saved
17. Splits the data by time segment, if requested (e.g., calendar year, calendar quarters)

Inputs:

Requires DEM_ETL completion
Macro parameters
SCDM table

Outputs:

Filtered, transformed SCDM tables split by time segment, if requested, OR a single view

Methods for Creating TableExtract macro

1. Create a macro with the following calling parameters:

Parameter Short Description Requirements and Details
MSCDMTable Name of SCDM table to be read Required parameter; must be filled; fully qualified (1-level or 2-level) name
TableInVars Full list of variables to be read

from SCDM table
Required parameter; includes all variables required for filtering and writing

EventDate Utilization event date variable Required parameter; must
that is used for calculating

meet naming requirements for a SAS
age for tables

variable; this is the variable

FilterCode Logical expression code for
filtering in observations

Required parameter; can contain multiple expressions

TransformCode Code for transformations,
recoding, cleaning, including
creation of new variables

Required parameter; must be valid SAS DATA STEP code, with semi-colons per statement

ComputeAge Y=Compute age keys
N=Do not compute age keys

Required parameter. Determine whether or not to compute age key
age as of beginning of period and age as of event date. Default=Y

surrogate variables for

DemHashTable Name of Demographic
table to be read

derivative Required
memory

parameter; must name a valid SAS dataset, to be loaded into DATA STEP hash

HashVarKeys Key variable(s) for linking in hash
join

Required parameter; must name valid
DemHashTable parameter

SAS variable(s) found in the table named by

Summary Table V2 Programming Specifications
Version 1.0
 - 6 -

Parameter Short Description Requirements and Details
HashVarsRead List of additional variables from

DemHashTable to be placed in
hash memory

Required parameter; must name valid SAS
DemHashTable parameter; HashVarsRead
although this is not necessary

variable(s) found in the table named by
can include variables named by HashVarKeys,

CovKeyVars Surrogate key variable(s) for years
of drug and medical coverage

Optional parameter; name of numeric variable(s) that contain unique keys indicating drug
and/or medical or combined coverage; any CovKeyVars specified here must exist in the
DemHashTable

OutName Output file name (or name
for split files)

stub Required parameter as
names

single word as a name for a valid SAS dataset; can include two-level

OutType Specifies output
a single view

as datasets(s) or Optional parameter as single character:
D = Dataset(s); this is the default
V = View

Lengths Enables specifying variable
and lengths

names Optional parameter to control lengths of variables output to the file(s) specified
OutName; follows syntax requirements of the SAS LENGTH statement

by

TableOutVars Full list of variables to be written
out to output dataset(s)

Required parameter; must name valid SAS variables

SplitTime Time split intervals:
Y=by calendar year
Q=by calendar quarters
N=single output file with no
splitting

Required parameter and must be Y, Q, or N.
If Y or Q, output file names are prefixed with OutName; then
=Y, 4-digit year is suffix
=Q, 4-digit year, followed by “Q”, followed by 1-4 as suffix
NOTE: If OutType=V then SplitTime must = N

when:

ReplaceVarPairs Pairs of replacement variable
names for SORTEDBY dataset
parameter

Optional parameter. Pairs are delimited from each
pipe (“|”) character in the pattern:
OriginalVariableName|ReplacementVariableName

other by a blank. Pairs are delimited by a

2. The first part of the macro enables passing on the SORTEDBY variables, if any from the file named by the MSCDMTable parameter to the file(s)

named by the OutName parameter. Note the following:
2.1. If a source SORTEDBY variable is not named in the TableOutVars parameter, then the ReplaceVarPairs must be checked to see if a

source variable is being replaced by a target file variable.
3. The second part of the macro develops the list of output filename(s) as follows:

3.1. When SplitTime=N, then the output file name is set equal to the OutName parameter; e.g. DxExtract.
3.2. When SplitTime=Y, then the output file names are created for each year, inclusive, using the OutName as prefix, followed by the 4-digit

year value; e.g. DxExtract2007.
3.3. When SplitTime=Q, then the output file names are created for each year and quarter, inclusive, using the OutName as prefix, followed

by the 4-digit year value, a “Q”, and the quarter number; e.g. DxExtract2007Q2.
Summary Table V2 Programming Specifications
Version 1.0
 - 7 -

3.4. If OutType=V, then the output filename is structure using single view syntax (e.g., OutputFileName / View=OutputFileNameV).
4. The third part of the macro is a single DATA STEP, that utilizes a hash join to filter incoming utilization rows, based on the patient identifier

being found in a derivative of the demographic tables. The parameters for the macro call control how this data step is constructed, the file and
variables read in, filtering logic, control of output variables, and whether a view or split files are created.

5. The macro accomplishes the following:
5.1. Passes on the SORTEDBY variables names from the dataset named in the MSCDMTable parameter to the dataset(s) named in the

OutName parameter.
5.2. If SpiltTime is Y or Q, creates splits based on the calendar year or calendar quarter calculated on the basis of the variable named by the

EventDate parameter.
5.3. When ComputeAge=Y, creates both AgeTimePeriodKey and AgeEventKey surrogate keys for age:

5.3.1. AgeTimePeriodKey is calculated as of the 1st date of a period (e.g., January 1 for yearly splits and 1st date of calendar quarter for
quarter splits)

5.3.2. AgeEventKey is calculated as of the EventDate.
5.4. Uses variables named in the CovKeyVars parameter, to additionally filter rows from the utilization tables, determining if the EventDate

falls in a year during which coverage is indicated.
5.4.1. The variable(s) named by the CovKeyVars parameter are decimal integers and their binary value provides, per bit position, whether

there is coverage within a calendar year.
5.4.2. For any event row to be written to the output dataset(s), both MedCov and DrugCov are required.

C. CREATE SURROGATE KEYS FOR RX DRUGCLASS AND GENERICNAMES

The lookup/reference file for NDCs provides both a broad drug category/class as well as a generic name for each NDC. An individual NDC can fall
into more than one drug category/class and more than one generic name. The purpose of this program is to improve processing performance. It
takes an existing NDC reference tables and assigns unique surrogate key values for each drug category/class and for each generic name. These
surrogate key values utilize many fewer bytes than do the full drug category/classes and generic names. When the program is run at MSOC it
generates a PDF report of Drug Classes and Generic Names that share NDCs. This is the structure of the target table.

Variable Data Type Format Label Valid Values Source/Comments
NDC Char(11) $11. NDC Unique numeric identifier of

National Drug Codes
Uses original values

DrugClass Char(70) $70. Drug Class Free text Uses original values
GenericName Char(30) $30. Generic Name Free text Uses original values
DrugClassKey Num(#) #. Drug Class Key 1+ Length of variable is driven by the maximum

number of values found
GenericNameKey Num(#) #. Generic Name Key 1+ Length of variable is driven by the maximum

number of values found

Summary Table V2 Programming Specifications
Version 1.0
 - 8 -

Methods for the creating surrogate keys for rx drugclass and genericnames
1. Take the NDC lookup table and create a new table as a unique list for the following variables: NDC, DrugClass, and GenericName.
2. Take this new table and create two lists of the unique values for each of DrugClass and GenericName.
3. From the lists, determine the number of unique values for each of DrugClass and GenericName.
4. Determine the minimum length in bytes required to represent the maximum number of unique DrugClass and GenericName values, based on

SAS platforms of UNIX and Windows. This table is an extract of the SAS LENGTH statement documentation:

Length in Bytes Largest Integer Represented Exactly
3 8,192
4 2,097,152
5 536,870,912
6 137,438,953,472
7 35,184,372,088,832
8 9,007,199,254,740,992

1. Create key variables DrugClassKey and GenericNameKey respectively as follows:

1.1. Read the list and assign a key value, starting at 1, up to the number of unique values, saving two files respectively that contain the
following variables:

1.1.1. DrugClassKeys: DrugClass and DrugClassKey.
1.1.2. GenericNameKeys: GenericName and GenericNameKey.

2. Create intermediate tables:
2.1. Read the unique NDC table from step 1 and link with the tables DrugClassKeys and GenericNameKeys, on DrugClass and GenericName

variables respectively, saving the variables and structuring the final file as shown in the data dictionary above.
2.2. Name the file NDC_lookup_table_msoc_keyed, sort by NDC, GenericName, and DrugClass, and save to the location for lookup tables

used by the project. Note that an NDC can exist in multiple rows.
2.3. Create an additional table, that is a 1:1 relationship of DrugClassKey and the DrugClass variables, named DrugClassLookup.
2.4. Create an additional table, that is a 1:1 relationship of GenericNameKey and the GenericName variables, named GenericNameLookup.

3. When this program is run at MSOC, it generates a PDF report of Drug Classes and Generic Names that share NDCs.
3.1. Take the NDC table from step 1 and for any NDC that has more than one value of DrugClass, create a table of distinct values of those

DrugClasses. Get and save a count of the number of such DrugClasses.
3.2. Take the NDC table from step 1 and for any NDC that has more than one value of GenericName, create a table of distinct values of

those GenericNames. Get and save a count of the number of such GenericNames.
3.3. Into a single PDF, print the list of DrugClasses and GenericNames. Insert into the respective titles, the following information:

Summary Table V2 Programming Specifications
Version 1.0
 - 9 -

3.3.1. Total number of DrugClass/GenericName
3.3.2. Number of DrugClasses/GenericNames that are shared by more than one NDC.
3.3.3. Percent calculated as (Value from Step 7.3.1 / Value from Step 7.3.2), formatted as ##.#%.

4. Create final table for use in a later hash join linking the DrugClassKeys and the GenericNameKeys to Dispensing rows. This table has the
following structure:

Variable Data Type Format Label Valid Values Source/Comments
NDC Char(11) $11. NDC Unique National Drug

Codes
Uses original values

DrugClassKey1 Num(#) #. Drug Class Key 1+ Length of variable is driven by the maximum
number of values found

DrugClassKeyn* Num(#) #. Drug Class Key 1+ Length of variable is driven by the maximum
number of values found

GenericNameKey1 Num(#) #. Generic Name Key 1+ Length of variable is driven by the maximum
number of values found

GenericNameKeyn* Num(#) #. Generic Name Key 1+ Length of variable is driven by the maximum
number of values found

*The number of DrugClassKey and GenericNameKeys is dynamically created

1. From the NDC_lookup_table_msoc_keyed table, determine the maximum required number of DrugClassKey and GenericNameKey variables.
2. Read in the NDC_lookup_table_msoc_keyed, sorted by NDC. For each NDC,

2.1. Output the DrugClassKeys and the GenericNameKeys to the final table
2.2. Note that some values of DrugClassKeyn and GenericNameKeyn may be missing.

D. ATTACH RX SURROGATE KEYS TO DISPENSING ROWS

The Rx_Attach_Keys program links the DrugClass and GenericName keys to each NDC row in the Dispensing tables, utilizing a data step hash join.
The result of this process is the following table(s), used for both prevalent and incident drug dispensing tables. Tables are named in this pattern:
RxDrugClassYYYY and RxGenericNameYYYY, where “YYYY” is the calendar year.

Variable
Type

(Length) Format Label Valid Values Source / Comments
RxID Num(#) #. RxID 1+ Unique ID per each row in Dispensing table
RxDate Num(4) mmddyy10. RxDate Dates with range of DP

data
From the SCDM Dispensing table

RxSup Num(4) 3. RxSup Days Supply From the SCDM Dispensing table

Summary Table V2 Programming Specifications
Version 1.0
 - 10 -

Variable
Type

(Length) Format Label Valid Values Source / Comments
AgeTimePeriodGroupKey Char(1) 1. AgeTimePeriodGroupKey “0” – “9” Key value mapping 1:1 with Age Groups, age

calculated as of the beginning of the Year
AgeEventGroupKey Char(1) 1. AgeEventGroupKey “0” – “9” Key value mapping 1:1 with Age Groups, age

calculated as of the RxDate
Sex Char(1) $1. Sex M or F From the SCDM Demographic table
Period Char(4) $4. Period YYYY 4-digit year values from DP data
Quarter Char(6) $6. Quarter YYYYQ# 4-digit year values, “Q”, quarter number as #,

from DP data
AgeQuarterKey Char(1) 1. AgeQuarterKey “0” – “9” Key value mapping 1:1 with Age Groups, age

calculated as of the beginning of the
quarter

DrugClassKey* Num(#) #. DrugClassKey 1+ Length of variable is driven by the maximum
number of values found

GenericNameKey* Num(#) #. GenericNameKey 1+ Length of variable is driven by the maximum
number of values found

*Only one of these two variables will be included in the respective RxDrugClass or RxGenericName datasets.

1. For each year of DP Dispensing RxDates, perform the following:
1.1. Create a dataset output name, for each of DrugClasses and GenericNames.
1.2. Name the variables to be output in each dataset, including any SORTEDBY variables from the DP’s Dispensing table.

2. Establish a data step hash join with one set of output datasets for DrugClasses and one set of output datasets for GenericNames. The data step
should function in a single step to read all source Dispensing split files and output all required output dataset names as per step 1.1.

3. Output a single record to the RxDrugClassYYYY datasets for each unique combination of NDC and filled DrugClass.
4. Output a single record to the RxGenericNameYYYY datasets for each unique combination of NDC and filled GenericName.

IV. SUMMARY TABLES

A. AGE GROUPS TABLE

The age groups table provides a key for the age group stratifications within each summary table. This table provides a unique Age Group ID for one
of the ten following age groups: ‘ 0-1’, ‘2-4’, ‘5- 9’, ‘10-14’, ‘15-18’, ‘19-21’, ‘22-44’, ‘45-64’, ‘65-74’ and ‘75+’. This table is used to minimize the

Summary Table V2 Programming Specifications
Version 1.0
 - 11 -

complexity of the query created by the Sentinel Query Tool. The table is created as part of the distributed SAS code. The file will not change with
each data refresh, but it must be held in the local summary table database at all times to enable the query process.

Variable Type (Length) Format Label Valid Values Source / Comments
ID Num(3) 2. ID 1+
Strat10_name Char(5) $5. 10 Stratifications 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64,

65-74, 75+

Strat10_sort_order Num(3) 3. Strat 10 Sort Order 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
Strat7_name Char(5) $5. 7 Stratifications 0-4, 5-9, 10-18, 19-21, 22-44, 45-64, 65+
Strat7_sort_order Num(3) 2. Strat 7 Sort Order 10, 20, 30, 40, 50, 60, 70
Strat4_name Char(5) $5. 4 Stratifications 0-21, 22-44, 45-64, 65+
Strat4_sort_order Num(3) 2. Strat 4 Sort Order 10, 20, 30, 40
Strat2_name Char(8) $8. 2 Stratifications Under 65, 65+
Strat2_sort_order Num(3) 2. Strat 2 Sort Order 10, 20

Full Representation of Table

ID Strat10_name Strat10_sort_order Strat7_name Strat7_sort_order Strat4_name Strat4_sort_order Strat2_name Strat2_sort_order
1 0-1 10 0-4 10 0-21 10 Under 65 10
2 2-4 20 0-4 10 0-21 10 Under 65 10
3 5-9 30 5-9 20 0-21 10 Under 65 10
4 10-14 40 10-18 30 0-21 10 Under 65 10
5 15-18 50 10-18 30 0-21 10 Under 65 10
6 19-21 60 19-21 40 0-21 10 Under 65 10
7 22-44 70 22-44 50 22-44 20 Under 65 10
8 45-64 80 45-64 60 45-64 30 Under 65 10
9 65-74 90 65+ 70 65+ 40 65+ 20
10 75+ 100 65+ 70 65+ 40 65+ 20

Methods for Creating Age Groups Table:

1. Create the structure for a table following the data dictionary at the top of this section.
2. Fill the 10 rows of the table with values shown above in the “Full Representation of Table.” Note the relationship between a Strat##_name and

a Strat##_sort_order. Also note the values of the ID variable in relationship to all other values across a row.
Summary Table V2 Programming Specifications
Version 1.0
 - 12 -

3. Name the table Age_Groups, sort by ID, and save to the DPLocal storage area.

B. ENROLLMENT SUMMARY TABLE

The enrollment table provides a count of unique members and days covered as defined below. The member count and days covered are stratified
by age group, sex, year, quarter (note values in data dictionary for the Year variable), drug coverage status and medical coverage status. The count
of unique members or days covered can be used as denominators to calculate crude prevalence rates.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+
Sex Char(1) $1. Sex M or F
Year Char(6) $6. Year and

Year/Quarter
YYYY=calendar year
YYYYQ#, where:
#= calendar quarter 1 through 4

Based on Enr_Start and Enr_End

DrugCov Char(1) $1. Drug Coverage Y, N
MedCov Char(1) $1. Medical Coverage Y, N
DaysCovered Num(8) 15. Days Covered 1+ Whole integers
Members Num(8) 15. # of Members 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating Enrollment Summary Table:

1. Create an extract of the SCDM Enrollment table, with variables PatID, Enr_Start, Enr_End, MedCov, and Drug_Cov. Keep only rows where the
PatID is found in the PatKey table, DrugCov is either “Y” or “N” only, MedCov is either “Y” or “N” only, Enr_Start <= EnrEnd, and all extracted
variables are not missing. Note that a PatID can be found in the Enrollment table more than once with distinct rows. Name this table
Enr_Spans.

2. Fulfilling these requirements requires linking in demographic variables Birth_Date, and Sex with the Enr_Spans dataset, on the basis of PatKey
and creating a table names EnrDemo.

3. For each row in EnrDemo, by patient, identify the different calendar years across their Enr_Start through Enr_End spans. Per PatKey, for each
calendar year identified, create a new row and do the following:

3.1. Set the value of Year to the calendar year identified.
3.2. Calculate the number of days inclusive within the calendar year as end-date minus start-date + 1 and set this value to a temporary

variable AllDays.. Note that the start-date through end-date relationship will be one of the following:
3.2.1. January 1 through December 31

Summary Table V2 Programming Specifications
Version 1.0
 - 13 -

3.2.2. Enr_Start through December 31
3.2.3. January 1 through Enr_End
3.2.4. Enr_Start through Enr_End

3.3. Calculate AgeTimePeriodGroupKey as of January 1st of the Year for which the AllDays variable is being calculated.
4. Again for each row in EnrDemo, by patient, identify the different calendar quarters across their Enr_Start through Enr_End spans. Per PatID, for

each calendar quarter identified, create a new row and do the following:
4.1. Set the value of Year to the calendar quarter identified, as YYYYQ#.
4.2. Calculate the number of days inclusive within the calendar quarter as end-date minus start-date + 1 and set this value to a temporary

variable AllDaysQuarter. Note that the start-date through end-date relationship will be one of the following:
4.2.1. 1st day in quarter through last day in quarter
4.2.2. Enr_Start through last day in quarter
4.2.3. 1st day in quarter through Enr_End
4.2.4. Enr_Start through Enr_End

4.3. Calculate AgeQuarterKey as of the first day in the quarter.
5. Aggregate rows from all of Step 3 across the classification variables of AgeTimePeriodGroupKey, Sex, Year, MedCov, DrugCov. For each

combination of these variables, perform the following:
5.1. Sum the number of AllDays and set DaysCovered to this value.
5.2. Count the number of distinct PatIDs and set Members to this value.

6. Aggregate rows from all of Step 4, across the classification variables of AgeQuarterKey, Sex, Quarter, MedCov, and DrugCov. For each
combination of these variables, perform the following:

6.1. Sum the number of AllDaysQuarter and set DaysCovered to this value.
6.2. Count the number of distinct PatIDs and set Members to this value.

7. Combine resulting aggregate rows from steps 5 and 6 into a single table. In doing so, with the aggregate from Step 6, rename AgeQuarterKey
to AgeTimePeriodGroupKey and rename Quarter to Year.

8. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.
9. Name the table Enrollment and structure table as per data dictionary above. Sort by Age_Group_ID, Year, Sex, MedCov, and DrugCov. Save to

the DPLocal storage area.
10. Using the Enr_Spans table created earlier in Step 1, create a subset of only those spans, where both DrugCov =“Y” and MedCov = “Y”. Per

patient, join spans together where the number of days between an earlier Enr_End to the next Enr_Start is less than or equal to 45 days. Call
this new table Enr_FullCoverage_Spans_Bridged. This will be used for the three incident tables below.

C. EXTRACTION AND SPLITTING OF DIAGNOSIS TABLE

1. Extract the SCDM Diagnosis table, enabling the following:

Summary Table V2 Programming Specifications
Version 1.0
 - 14 -

1.1. Filter for rows only where DXCode_Type=“09”, EncType is one of: AV, ED, IP, IS, or OA, and none of the following variables are missing:
PatID, DX, DxCode_Type, EncType, and ADate, and the ADate is in between the Data Partner MSDD start and end dates, inclusive.

1.2. Ensure that the PatKey and year of ADate are found in the PatKeyCovKey table, with MedCov=“Y” and DrugCov=“Y”, created above.
1.3. EncType gets renamed to Setting.
1.4. Any occurrences of decimal points in the Dx variable are removed.
1.5. Dx is renamed to Code.
1.6. Create surrogate key variables for age as of the event (i.e., ADate) and age as of the beginning of the Year (i.e., January 1st).

2. Enable the processing in Step 1 by calling the TableExtract macro with the following parameters:
2.1. MSCDMTable: Diagnosis
2.2. TableInVars: PatID Dx DxCode_Type ADate EncType
2.3. EventDate: ADate
2.4. FilterCode: A single expression to enable all of these conditions:

2.4.1. DX_CodeType=“09”
2.4.2. EncType is one of AV, ED, IP, IS, or OA
2.4.3. None of these variables are missing: PatID, DX, EncType, and ADate
2.4.4. ADate is in between the Data Partner MSDD start and end dates, inclusive.

2.5. TransformCode: Code that executes each of the following:
2.5.1. Create a new character variable Period, that is equal to the year of ADate.
2.5.2. Recode any EncType value of OA to AV.
2.5.3. Recode any EncType value of IS to IP.
2.5.4. Remove any decimal points from the Dx variable
2.5.5. Rename Dx to Code
2.5.6. Rename EncType to Setting

2.6. ComputeAge: Y
2.7. DemHashTable: Demographic derivative table: PatKeysCovKey
2.8. HashVarKeys: PatID
2.9. HashVarsRead: PatKey, Birth_Date, and Sex
2.10. CovKeyVars:CovKeyDrugAndMed
2.11. OutName: Dx
2.12. OutType: V
2.13. TableOutVars: PatKey Code ADate Setting Period AgeEventGroupKey AgeTimePeriodGroupKey Sex
2.14. Lengths: Code $5 Setting $2
2.15. SplitTime: N
2.16. ReplaceVars: PatID|PatKey Dx|Code

Summary Table V2 Programming Specifications
Version 1.0
 - 15 -

The TableExtract macro will return two variables, AgeEventGroupKey and AgeTimePeriodGroupKey, that are surrogate keys for the
patient’s age as of the ADate and as of the beginning of the Time Period (e.g., Year, i.e. January 1), respectively.

3. Using the Dx view created using the TableExtract macro, create three new temporary tables as follows:
3.1. DX_3_Digit: Keep all variables and extract only the left-most 3 characters of DX.
3.2. DX_4_Digit: Keep all variables and extract only the left-most 4 characters of DX, but only when the 4th character is not blank.
3.3. DX_5_Digit: Keep all variables and extract only the left-most 5 characters of DX, but only when the 4th and 5th characters are both not

blank.
3.4. Save all three files for use in creating other Summary Tables later in this document. The counts for the rows in the three tables should

have this relationship: DX_3_Digit > DX_4_Digit > DX_5_Digit.

D. ICD-9-CM DIAGNOSIS SUMMARY TABLE (3 DIGIT)

The 3 digit ICD-9-CM diagnosis table provides a count of unique members with a diagnosis observed during the period and a count of events
experienced within each stratum.

The counts are stratified by setting of visit (inpatient, outpatient, emergency department, any), age group, sex, year, and 3 digit ICD-9-CM code.
Members are categorized into visit setting by the encounter type: inpatient includes acute inpatient hospital stay and non-acute institutional stays;
emergency department includes emergency department encounters; outpatient includes ambulatory visit, telephone encounters, email
encounters and other outpatient encounters. The Any setting includes the members with a visit in any of the care settings; for example, if a
member has the same diagnosis code observed across multiple care settings during a period, the member will be counted once in the member
count and all the visits with the code will be summed for the event counts.

Variable Type (Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+ Based on calculating age
Sex Char(1) $1. Sex M or F From Demographic Table
Period Char(4) $4. Year 2004, 2005, etc. Based on ADate
Code Char(3) $3. 3-digit Dx Code Free text
DxName Char(35) $35. Diagnosis Name Free text Based on lookup table values
Setting Char(2) $2. Setting AN = Any (AV, ED, IP, IS, or OA)

AV = Outpatient (AV or OA)
ED = Emergency department
IP = Inpatient (IP or IS)

Members Num(8) 15. # of Members 1+ Whole integers
Events Num(8) 15. # of Events 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Summary Table V2 Programming Specifications
Version 1.0
 - 16 -

Methods for Creating ICD-9-CM Diagnosis Summary Table (3 digit):

1. Use the DX_3_Digit temporary table created in the Extraction and Splitting of Diagnosis Table process.
2. Aggregate the rows across the classification variables of AgeTimePeriodGroupKey, Sex, Period, and Code. For each combination of these

variables, perform the following:
2.1. Set Setting = “AN”.
2.2. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
2.3. Count the number of rows and set Events to this value.

3. Aggregate the temporary DX_3_Digit table again, across the classification variables of AgeTimePeriodGroupKey, Sex, Period, Code and Setting.
For each combination of these variables, perform the following:

3.1. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
3.2. Count the number of rows and set Events to this value.

4. Combine all of the rows from Steps 2 and 3 into a single table, with corresponding variables.
5. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.
6. Link the resulting table with the Dx_ICD9_3dig_Lookup table, on the basis of Lookup.Code = DX_3_Digit.Code to get the Lookup.Srt_Descrip

variable, renaming this variable to DxName. Keep only rows where the linking identifies a DxName for the Code.
7. Name the table ICD9_Diagnosis and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, Code, and Setting. Save

to the DPLocal storage area.

E. ICD-9-CM DIAGNOSIS SUMMARY TABLE (4 DIGIT)

The 4 digit ICD-9-CM diagnosis table provides a count of unique members with a diagnosis observed during the period and a count of events
experienced within each stratum. The counts are stratified by setting of visit as described above (3-digit diagnosis summary tables). This table is
identical to the ICD-9-CDM Diagnosis Summary Table (3 digit) except for use of 4-digit clinical codes instead of 3-digit codes.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+ Based on calculating age
Sex Char(1) $1. Sex M or F From Demographic Table
Period Char(4) $4. Year 2004, 2005, etc. Based on ADate
Code Char(4) $4. 4-digit Dx Code Free text
DxName Char(35) $35. Diagnosis Name Free text

Summary Table V2 Programming Specifications
Version 1.0
 - 17 -

Variable
Type

(Length) Format Label Valid Values Source / Comments
Setting Char(2) $2. Setting AN = Any (AV, ED, IP, IS, or OA)

AV = Outpatient (AV or OA)
ED = Emergency department
IP = Inpatient (IP or IS)

Members Num(8) 15. # of Members 1+ Whole integers
Events Num(8) 15. # of Events 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating ICD-9-CM Diagnosis Summary Table (4 digit):

1. Use the DX_4_Digit temporary table created in the Extraction and Splitting of Diagnosis Table process.
2. Aggregate the rows across the classification variables of AgeTimePeriodGroupKey, Sex, Period, and Code. For each combination of these

variables, perform the following:
2.1. Set Setting = “AN”.
2.2. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
2.3. Count the number of rows and set Events to this value.

3. Aggregate the resulting rows again across the classification variables of AgeTimePeriodGroupKey, Sex, Period, Code, and Setting. For each
combination of these variables, perform the following:

3.1. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
3.2. Count the number of rows and set Events to this value.

4. Combine the rows from Steps 2 and 3 into a single table.
5. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.
6. Link the resulting table with the Dx_ICD9_4dig_Lookup table, on the basis of Lookup.Code = DX_4_Digit.Code to get the Lookup.Srt_Descrip

variable, renaming this variable to DxName. Keep only rows where the linking identifies a DxName for the Code.
7. Name the table ICD9_Diagnosis_4_Digit and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, Code, and

Setting. Save to the DPLocal storage area.

Summary Table V2 Programming Specifications
Version 1.0
 - 18 -

F. ICD-9-CM DIAGNOSIS SUMMARY TABLE (5 DIGIT)

The 5 digit ICD-9-CM diagnosis table provides a count of unique members with a diagnosis observed during the period and a count of events
experienced within each stratum. The counts are stratified by setting of visit as described above (3-digit diagnosis summary tables). This table is
identical to the ICD-9-CDM Diagnosis Summary Table (3 digit) except for use of 5-digit clinical codes instead of 3-digit codes.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+
Sex Char(1) $1. Sex M or F
Period Char(4) $4. Year 2004, 2005, etc. Based on ADate
Code Char(5) $5. 5-digit Dx Code
DxName Char(35) $35. Diagnosis Name
Setting Char(2) $2. Setting AN = Any (AV, ED, IP, IS, or OA)

AV = Outpatient (AV or OA)
ED = Emergency department
IP = Inpatient (IP or IS)

Members Num(8) 15. # of Members 1+ Whole integers
Events Num(8) 15. # of Events 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating ICD-9-CM Diagnosis Summary Table (5 digit):

1. Use the DX_5_Digit temporary table created in the Extraction and Splitting of Diagnosis Table process.
2. Aggregate the rows across the classification variables of AgeTimePeriodGroupKey, Sex, Period, and Code. For each combination of these

variables, perform the following:
2.1. Set Setting = “AN”.
2.2. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
2.3. Count the number of rows and set Events to this value.

3. Aggregate the resulting rows again, across the classification variables of AgeTimePeriodGroupKey, Sex, Period, Code, and Setting. For each
combination of these variables, perform the following:

3.1. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
3.2. Count the number of rows and set Events to this value.

4. Combine the rows from Steps 2 and 3 into a single table.
5. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.

Summary Table V2 Programming Specifications
Version 1.0
 - 19 -

6. Link the resulting table with the Dx_ICD9_5dig_Lookup table, by joining Lookup.Code = DX_5_Digit.Code to get the Lookup.Srt_Descrip variable,
renaming this variable to DxName. Keep only rows where the linking identifies a DxName for the Code.

7. Name the table ICD9_Diagnosis_5_Digit and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, Code, and
Setting. Save to the DPLocal storage area.

G. EXTRACTION AND SPLITTING OF PROCEDURE TABLE

1. Extract the SCDM Procedure table, enabling the following:
1.1. Filter for rows only where PxCode_Type is one of “C4”, “09”, or “HC”, EncType is one of: AV, ED, IP, IS, or OA, and none of the following

variables are missing: PatID, PX, PxCode_Type, EncType, and ADate, and the ADate is in between the Data Partner MSDD start and end
dates, inclusive.

1.2. Ensure that the PatKey and year of ADate are found in the PatKeyCovKey table, with MedCov=“Y” and DrugCov=“Y”, created above.
1.3. EncType gets renamed to Setting.
1.4. Any occurrences of decimal points in the Px variable are removed.
1.5. Px is renamed to Code.
1.6. Create surrogate key variables for age as of the event (i.e., ADate) and age as of the beginning of the Year (i.e., January 1st).

2. To fulfill these requirements, call the TableExtract macro, using the following parameters:
2.1. MSCDMTable: Procedure
2.2. TableInVars: PatID Px PxCode_Type ADate EncType
2.3. EventDate: ADate
2.4. FilterCode: A single expression to enable all of these conditions:

2.4.1. PxCode_Type is one of “C4”, “09” or “HC” only
2.4.2. EncType is one of AV, ED, IP, IS, or OA
2.4.3. None of the following variables are missing: PatID, PX, PxCode_Type EncType, and ADate
2.4.4. ADate is in between the Data Partner MSDD start and end dates, inclusive.

2.5. TransformCode: Code that executes each of the following:
2.5.1. Create a new character variable Period, that is equal to the year of ADate.
2.5.2. Recode any EncType value of OA to AV.
2.5.3. Recode any EncType value of IS to IP.
2.5.4. Remove any decimal points from the Px variable
2.5.5. Rename Px to Code
2.5.6. Rename EncType to Setting

2.6. ComputeAge: Y
2.7. DemHashTable: Demographic derivative table: PatKeysCovKey

Summary Table V2 Programming Specifications
Version 1.0
 - 20 -

2.8. HashVarKeys: PatID
2.9. HashVarsRead: PatKey, Birth_Date, and Sex
2.10. CovKeyVars: CovKeyDrugAndMed
2.11. OutName: Px
2.12. OutType: V
2.13. TableOutVars: PatKey Code PxCode_Type Setting Period AgeTimePeriodGroupKey Sex
2.14. Lengths: Code $5 Setting $2
2.15. SplitTime: N
2.16. ReplaceVars: PatID|PatKey Px|Code

The TableExtract macro will return two variables, AgeEventGroupKey and AgeTimePeriodGroupKey, that are surrogate keys for the
patient’s age as of the date of the ADate and as of the beginning of the Time Period (i.e., January 1), respectively.

3. Using the returned Px view, create three new temporary tables as follows:
3.1. HCPCS: Subset for PX_CodeType=“HC” or “C4”.
3.2. PX_ICD9_3_Digit: Subset for PX_CodeType =“09”. Extract only the left-most 3 characters of PX, recoding Code to this value.
3.3. PX_ICD9_4_Digit: Subset for PX_CodeType =“09”. Extract only the left-most 4 characters of PX, but only when the 4th character is not

blank, recoding Code to this value.
3.4. Save all three tables for use in creating other Summary Tables later in this document. The count of rows for the two PX_ICD9 tables

should have this relationship: PX_3_Digit > PX_4_Digit.

H. HCPCS SUMMARY TABLE

The HCPCS table provides a count of unique members who had a procedure observed during the period and a count of events experienced within
each stratum. Although this is called the “HCPCS” Summary Table, it includes both CPT (Common Procedural Terminology) and HCPCS (Healthcare
Common Procedure Coding System) codes.

The counts are stratified by setting of visit (as defined for the Diagnosis tables above), age group, sex, year, and procedure code.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+
Sex Char(1) $1. Sex M or F
Period Char(4) $4. Year 2004, 2005, etc. Based on ADate
PX_Code Char(5) $5. CPT or HCPCS Code Free text
PxName Char(35) $35. Procedure Name Free text

Summary Table V2 Programming Specifications
Version 1.0
 - 21 -

Variable
Type

(Length) Format Label Valid Values Source / Comments
Setting Char(2) $2. Setting AN = Any (AV, ED, IP, IS, or OA)

AV = Outpatient (AV or OA)
ED = Emergency department
IP = Inpatient (IP or IS)

Members Num(8) 15. # of Members 1+ Whole integers
Events Num(8) 15. # of Events 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating HCPCS Summary Table:

1. Use the HCPCS temporary table created in the Extraction and Splitting of Procedure Table process.
2. Aggregate the rows across the classification variables of Age_Group, Sex, Period, and Code. For each combination of these variables, perform

the following:
2.1. Set Setting = “AN”.
2.2. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
2.3. Count the number of rows and set Events to this value.

3. Aggregate the temporary HCPCS table again, across the classification variables of Age_Group, Sex, Period, Code, and Setting. For each
combination of these variables, perform the following:

3.1. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
3.2. Count the number of rows and set Events to this value.

4. Combine the rows from Steps 2 and 3 into a single table.
5. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.
6. Link the resulting table with the Px_Lookup table on the basis of Lookup.Code = HCPCS.Code and either: (1) Lookup.source=“hcpcs” and

HCPCS.PX_CodeType=“HC” or (2) Lookup.source=“cpt” and HCPCS.PX_CodeType=“C4”, to get the Lookup.Srt_Descrip variable, renaming this
variable to PxName. Keep only rows where the linking identifies a PxName for the Code.

7. Name the table HCPCS and structure the table as per data dictionary above. (Note that unlike all other prevalent Diagnosis and Procedure
tables, the HCPCS table and ICD9_Procedure_4_Digit table have the variable named PX_Code instead of Code.) Sort by Age_Group_ID, Sex,
Period, Code, and Setting. Save to the DPLocal storage area.

Summary Table V2 Programming Specifications
Version 1.0
 - 22 -

I. ICD-9-CM PROCEDURE SUMMARY TABLE (3 DIGIT)

The ICD-9-CM 3 digit procedure table provides a count of unique members with an ICD-9-CM coded procedure observed during the period and a
count of events in each stratum.

The counts are stratified by setting of visit (as defined above), age group, sex, year, and 3 digit ICD-9-CM procedure code.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+
Sex Char(1) $1. Sex M or F
Period Char(4) $4. Year 2004, 2005, etc. Based on ADate
Code Char(3) $3. 3-digit ICD9 Px Code Free text
PxName Char(35) $35. Procedure Name Free text
Setting Char(2) $2. Setting AN = Any (AV, ED, IP, IS, or OA)

AV = Outpatient (AV or OA)
ED = Emergency department
IP = Inpatient (IP or IS)

Members Num(8) 15. # of Members 1+ Whole integers
Events Num(8) 15. # of Events 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating ICD-9-CM Procedure Summary Table (3 digit):

1. Use the PX_ICD9_3_Digit temporary table created in the Extraction and Splitting of Procedure Table process.
2. Aggregate the rows across the classification variables of Age_Group, Sex, Period, and Code. For each combination of these variables, perform

the following:
2.1. Set Setting = “AN”.
2.2. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
2.3. Count the number of rows and set Events to this value.

3. Aggregate the rows again across the classification variables of Age_Group, Sex, Period, Code, and Setting. For each combination of these
variables, perform the following:

3.1. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
3.2. Count the number of rows and set Events to this value.

4. Combine the rows from Steps 2 and 3 into a single table.
5. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.

Summary Table V2 Programming Specifications
Version 1.0
 - 23 -

6. Link the resulting table with the Px_ICD9_3Dig_Lookup table, by joining Lookup.Code = PX_ICD9_3_Digit.Code to get the Lookup.Srt_Descrip
variable, renaming this variable to PxName. Keep only rows where the linking identifies a PxName for the Code.

7. Name the table ICD9_Procedure and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, Code, and Setting. Save
to the DPLocal storage area.

J. ICD-9-CM PROCEDURE SUMMARY TABLE (4 DIGIT)

The ICD-9-CM 4 digit procedure table provides a count of unique members with an ICD-9-CM coded procedure observed during the period and a
count of events in each stratum.

The counts are stratified by setting of visit (as defined above), age group, sex, year, and 4 digit ICD-9-CM procedure code.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+
Sex Char(1) $1. Sex M or F
Period Char(4) $4. Year 2004, 2005, etc. Based on ADate
PX_Code Char(4) $4. 4-digit ICD9 Px Code Free text
PxName Char(35) $35. Procedure Name Free text
Setting Char(2) $2. Setting AN = Any (AV, ED, IP, IS, or OA)

AV = Outpatient (AV or OA)
ED = Emergency department
IP = Inpatient (IP or IS)

Members Num(8) 15. # of Members 1+ Whole integers
Events Num(8) 15. # of Events 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating ICD-9-CM Procedure Summary Table (4 digit):

1. Use the PX_ICD9_4_Digit temporary table created in the Extraction and Splitting of Procedure Table process.
2. Aggregate the rows across the classification variables of Age_Group, Sex, Period, and Code. For each combination of these variables, perform

the following:
2.1. Set Setting = “AN”.
2.2. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
2.3. Count the number of rows and set Events to this value.

Summary Table V2 Programming Specifications
Version 1.0
 - 24 -

3. Aggregate the rows again across the classification variables of Age_Group, Sex, Period, Code, and Setting. For each combination of these
variables, perform the following:

3.1. Count the number of distinct patients (i.e., PatKey) and set Members to this value.
3.2. Count the number of rows and set Events to this value.

4. Combine the rows from Steps 2 and 3 into a single table.
5. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.
6. Link the resulting table with the Px_ICD9_4Dig_Lookup table, on the basis of Lookup.Code = PX_ICD9_4_Digit.Code to get the

Lookup.Srt_Descrip variable, renaming this variable to PxName. Keep only rows where the linking identifies a PxName for the Code.
7. Name the table ICD9_Procedure_4_Digit and structure the table as per data dictionary above. (Note that unlike all other prevalent Diagnosis

and Procedure tables, the ICD9_Procedure_4_Digit table and the HCPCS table have the variable named PX_Code instead of Code.) Sort by
Age_Group_ID, Sex, Period, Px_Code, and Setting. Save to the DPLocal storage area.

K. EXTRACTION AND KEY ASSIGNMENT OF DISPENSING TABLE

1. Create an extract from the SCDM Dispensing table, keeping the following variables in the resulting file: PatID, RxDate, NDC, RxSup, and RxAmt.
Keep only rows that meet these conditions and process as indicated:

1.1. All variables are not missing.
1.2. Ensure that the PatKey and year of RxDate are found in the PatKeyCovKey table, with MedCov=“Y” and DrugCov=“Y”, created above.
1.3. RxDate is in between the Data Partner MSDD start and end dates, inclusive.
1.4. RxSup is greater than or equal to 1, thus excluding rows with missing or zero values.
1.5. NDC is 11 digits only.
1.6. Create the Period variable as the calendar year and the Quarter variable of the RxDate, in the format YYYYQ#.

2. To fulfill these requirements, call the TableExtract macro, using the following parameters:
2.1. MSCDMTable: Dispensing
2.2. TableInVars: PatID RxDate NDC RxSup RxAmt
2.3. EventDate: RxDate
2.4. FilterCode: A single expression to enable all of these conditions:

2.4.1. RxSup >= 1
2.4.2. None of these variables are missing: PatID, RxDate NDC RxSup RxAmt

2.5. TransformCode: Code that executes each of the following:
2.5.1. Create a new character variable Period, that is equal to the year of RxDate
2.5.2. Create a new character variable Quarter, that is equal to the calendar quarter of RxDate, formatted as YearQ#.
2.5.3. Calculates AgeQuarterKey variable, as of the beginning of the Quarter, identified in step 2.5.2.

2.6. ComputeAge: Y

Summary Table V2 Programming Specifications
Version 1.0
 - 25 -

2.7. DemHashTable: Demographic derivative table: PatKeysCovKey
2.8. HashVarKeys: PatID
2.9. HashVarsRead: PatKey, Birth_Date, and Sex
2.10. CovKeyVars: CovKeyDrugAndMed
2.11. OutName: Rx
2.12. OutType: V
2.13. Lengths: Quarter $6 RxID (# of bytes needed to hold the # of observations in the CDM Dispensing table)
2.14. TableOutVars: PatKey Sex RxDate NDC RxSup RxID AgeEventGroupKey AgeTimePeriodGroupKey Period Quarter AgeQuarterKey
2.15. SplitTime: N
2.16. ReplaceVars: PatID|PatKey

3. Perform the process Attach Rx Surrogate Keys to Dispensing Rows (above) to link the NDCs with their respective DrugClassKey(s) and
GenericNameKey(s), resulting in files named in the pattern of RxDrugClassYYYY and a set of files named in the pattern of RxGenericNameYYYY.

L. DRUG CATEGORY/CLASS SUMMARY TABLE

The Drug Category (also known as Drug Class) table provides a count of unique members who had a drug dispensing during the period and a count
of dispensings received by all of these members by strata. Additionally, a count of total days supply (sum of days supply for all members by strata)
is included.

The counts are stratified by drug class, age group, sex, year-quarter and year. The drug category is standardized using a look-up table provided by
the Sentinel Operations Center.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+
Sex Char(1) $1. Sex M or F
Period Char(6) $6. Year and

Year/Quarter
YYYY=calendar year
YYYYQ#, where:
#= calendar quarter 1 through 4

DrugClass Char(70) $70. Drug Class/Category Free text
Members Num(8) 15. # of Members 1+ Whole integers
Dispensings Num(8) 15. # of Dispensings 1+ Whole integers
DaysSupply Num(8) 15. Days Supply 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Summary Table V2 Programming Specifications
Version 1.0
 - 26 -

Methods for Creating Drug Category/Class Summary Table:

1. Use the file(s) RxDrugClassYYYY, created by the process of Extraction and Key Assignment of Dispensing Table above, Step 3.
2. Aggregate the file(s), per AgeTimePeriodGroupKey, Sex, Period, and DrugClassKey, as follows:

2.1. Count the number of distinct PatKeys and set the result value to variable Members.
2.2. Count the number of rows and set the result value to variable Dispensings.
2.3. Sum the values of RxSup and set the result value to variable DaysSupply.
2.4. Name the aggregate file as RxDrugClassYYYY. It should contain the following variables: AgeTimePeriodGroupKey, Sex, Period,

DrugClassKey, Members, Dispensings, and DaysSupply.
3. Aggregate the resulting file(s) from Step 3 again, per AgeQuarterKey, Sex, Quarter, and DrugClassKey, as follows:

3.1. Count the number of distinct PatKeys and set the result value to variable Members.
3.2. Count the number of rows and set the result to variable Dispensings.
3.3. Sum the values of RxSup and set the result value to variable DaysSupply.
3.4. Name the aggregate file as RxDrugClassQuarterYYYY. It should contain the following variables: AgeQuarterKey, Sex, Quarter,

DrugClassKey, Members, Dispensings, and DaysSupply.
4. Combine all rows from RxDrugClassYYYY and RxDrugClassQuarterYYYY. In doing so with RxDrugClassQuarterYYYY, rename variable Quarter to

Period and AgeQuarterKey to AgeTimePeriodGroupKey.
5. Link the resulting table again with the NDC_Lookup_Table on the basis of Lookup.DrugClassKey = RxAggregates.DrugClassKey to get the

DrugClass variable. Drop variable DrugClassKey from further processing.
6. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.
7. Name the table Drug_Class and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, and DrugClass. Save to the

DPLocal storage area.

M. INGREDIENT/GENERIC NAME SUMMARY TABLE

The ingredient name (also known as Generic Name) table provides a count of unique members who had a drug dispensing during the period, a
count of dispensings received by all of these members, and total days supplied by strata.

The counts are stratified by drug class, age group, sex, year-quarter and year. The drug category is standardized using a look-up table provided by
the Sentinel Operations Center.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+
Sex Char(1) $1. Sex M or F
Summary Table V2 Programming Specifications
Version 1.0
 - 27 -

Variable
Type

(Length) Format Label Valid Values Source / Comments
Period Char(6) $6. Year and

Year/Quarter
YYYYQ#, where:
YYYY=calendar year
 #= calendar quarter 1 through 4

GenericName Char(30) $30. Generic Drug Name Free text
Members Num(8) 15. # of Members 1+ Whole integers
Dispensings Num(8) 15. # of Events 1+ Whole integers
DaysSupply Num(8) 15. Days Supply 1+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating Ingredient Name Summary Table:

1. Use the file(s) RxGenericNameYYYY, created by the process of Extraction and Key Assignment of Dispensing Table above, Step 3.
2. Aggregate the resulting file(s), per AgeTimePeriodGroupKey, Sex, Period, and DrugClassKey, as follows:

2.1. Count the number of distinct PatKeys and set the result value to variable Members.
2.2. Count the number of rows and set the result value to variable Dispensings.
2.3. Sum the values of RxSup and set the result value to variable DaysSupply.
2.4. Name the aggregate file as RxGenericNameYYYY. It should contain the following variables: Age_Group, Sex, Period, GenericNameKey,

Members, Dispensings, and DaysSupply.
3. Aggregate the resulting file(s) from Step 1 again, per AgeQuarterKey, Sex, Quarter, and GenericNameKey, as follows:

3.1. Count the number of distinct PatKeys and set the result value to variable Members.
3.2. Count the number of rows and set the result value to variable Dispensings.
3.3. Sum the values of RxSup and set the result value to variable DaysSupply.
3.4. Name the aggregate file as RxGenericNameQuarterYYYY. It should contain the following variables: AgeQuarterKey, Sex, Quarter,

GenericNameKey, Members, Dispensings, and DaysSupply.
4. Combine all rows from RxGenericNameYYYY and RxGenericNameQuarterYYYY. In doing so with RxGenericNameQuarterYYYY, rename

variable Quarter to Period and AgeQuarterKey to AgeTimePeriodGroupKey.
5. Link the resulting table again with the NDC_Lookup_Table on the basis of Lookup.GenericNameKey = RxAggregates.GenericNameKey to get

the GenericName variable. Drop variable GenericNameKey from further processing.
6. Using the AgeTimePeriodGroupKey variable, create the variables Age_Group and Age_Group_ID.
7. Name the table Generic_Name and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, and GenericName. Save

to the DPLocal storage area.

Summary Table V2 Programming Specifications
Version 1.0
 - 28 -

N. INCIDENT ICD-9-CM DIAGNOSIS SUMMARY TABLE (3 DIGIT)

The incident ICD-9-CM diagnosis table provides a count of unique members and unique incident diagnosis events of each 3-digit ICD-9-CM category
in one of four care settings of interest (i.e., inpatient, emergency department, ambulatory, and any) stratified by age group, sex, and year.

An incident event is defined as a member with an encounter with the diagnosis of interest (i.e., the index date), in the care setting of interest, in the
year of interest, with no evidence of that diagnosis in the 90, 180 and 270 days (i.e., the lookback periods) before the index date in any care setting.
Both continuous medical and drug coverage are required during the 3 possible lookback periods, through the date of the incident events. When
defining continuous coverage, enrollment gaps of <=45 days are bridged.

If a patient has more than one qualifying incident event within a calendar year, for a given diagnosis care setting, and lookback period, all incident
events qualifying will be reported, although incident members will be counted at most once within a calendar year for a given diagnosis and care
setting. Note that while reporting is by calendar year, lookback periods can extend to the prior year to ascertain incidence.

Counts are stratified by setting of visit, age group, sex, year, 3 digit ICD-9-CM code(s) of interest. For each stratum the number of unique members
and incident events for the 90, 180 and 270 lookback scenarios are reported.

Variable
Type

(Length) Format Label Valid Values
Source /

Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44, 45-64, 65-74, 75+
Sex Char(1) $1. Sex M or F
Period Char(4) $4. Year
Code Char(3) $3. 3-digit Dx Code
DxName Char(35) $35. Diagnosis Name
Setting Char(2) $2. Setting AN = Any (AV, ED, IP, IS, or OA)

AV = Outpatient (AV or OA)
ED = Emergency department
IP = Inpatient (IP or IS)

Members90 Num(8) 15. Members in 90-day lookback 1+ Whole integers
Events90 Num(8) 15. # of Events from 90-day lookback 1+ Whole integers
Members180 Num(8) 15. Members in 180-day lookback 0+ Whole integers
Events180 Num(8) 15. # of Events from 180-day lookback 0+ Whole integers
Members270 Num(8) 15. Members in 270-day lookback 0+ Whole integers
Events270 Num(8) 15. # of Events from 270-day lookback 0+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating Incident ICD-9-CM Diagnosis Summary Table (3 Digit)

Summary Table V2 Programming Specifications
Version 1.0
 - 29 -

1. Use the DX_3_Digit temporary table(3) created in the Extraction and Splitting of Diagnosis Table process. Drop the AgeTimePeriodGroupKey
variable.

2. Merge the table from Step 1 with the Enr_FullCoverage_Spans_Bridged table (built as part of creating the Enrollment Summary Table, Step 10)
on the basis of PatKey and keep only those rows from the Step 1 table(s), where the ADate is in between the patient’s Enr_Start and Enr_End
dates. Note that per patient, there can be multiple spans of Enr_Start to Enr_End, each of which should be checked. Sort this table by PatKey,
Code, and ADate. Keep the following variables: PatKey, AgeEventGroupKey, Sex, Setting, Code, and ADate.

3. Then build a patient level temporary table, named DX_3_Digit_All, that will have the following structure. Follow Step 4 to create the table.

Variable
Type

(Length) Format Label Valid Values Source / Comments
PatKey Num(#) #. PatKey Numeric key on a 1:1

relationship with PatID
Surrogate key for the PatID

AgeEventGroupKey Char(1) 1. AgeEventGroupKey “0” – “9” Key value mapping 1:1 with Age Groups, age
calculated as of the ADate

Sex Char(1) $1. Sex M or F
Setting Char(2) $2. Setting AV = Outpatient (AV or OA)

ED = Emergency department
IP = Inpatient (IP or IS)

Code Char(3) $3. Code ICD-9 3-digiti diagnosis codes
ADate Num(4) mmddyy10. ADate Valid dates
Inc90 Num(1) 1. Inc90 0 = Not incident 90 days prior

1 = Incident 90 days prior

Inc180 Num(1) 1. Inc180 0 = Not incident 180 days prior
1 = Incident 180 days prior

Inc270 Num(1) 1. Inc270 0 = Not incident 270 days prior
1 = Incident 270 days prior

4. For each row (defined by PatKey, Code, and ADate) in the new DX_3_Digit_All table, initialize each of these variables to zero: Inc90, Inc180, and

Inc270. Then read rows from the Step 2 table. For each ADate, look earlier within all rows, across all Settings, for the same Code.
4.1. When no same Code is found within 90 days earlier, not including the examined ADate, and the examined ADate is more than 90 days

later than the earliest Data Partner MSDD minimum date, set the value of Inc90 to 1.
4.2. When no same Code is found within 180 days earlier, not including the examined ADate, and the examined ADate is more than 180

days later than the earliest Data Partner MSDD minimum date, set the value of Inc180 to 1.
4.3. When no same Code is found within 270 days earlier, not including the examined ADate, and the examined ADate is more than 270

days later than the earliest Data Partner MSDD minimum date, set the value of Inc270 to 1.

Summary Table V2 Programming Specifications
Version 1.0
 - 30 -

5. Aggregate for each Setting: Using the DX_3_Digit_All file as input, creates three groups of subsets (for each value of 90, 180, and 270), for each
distinct Period, where Period equals the year-value of ADate, and including rows where at least one Inc### = 1. For each subset (i.e., Period by
###), on the classification combination of Code, AgeEventGroupKey, Sex, and Setting, create aggregates as follows:

5.1. Count the number of unique PatKeys and save this value to Members###.
5.2. Sum the Inc### and save this value to Events###.

6. Aggregate for “Any” Setting: Use the same subsets as in Step 5, and for each subset (i.e., Period by ###), on the classification combination of
Code, AgeEventGroupKey, and Sex, create aggregates as follows:

6.1. Count the number of unique PatKeys and save this value to Members###.
6.2. Sum the Inc### and save this value to Events###.
6.3. Set Setting to “AN”.

7. Merge all aggregates from Steps 5 and 6 on the linking variables AgeEventGroupKey, Sex, Period, Code, and Setting and write to file IncDx3. Set
any missing values to zero, for variables Members90, Events90, Members180, Events180, Members270, or Events270.

8. Using the AgeEventGroupKey variable, create the variables Age_Group and Age_Group_ID.
9. Then link this file with Dx_ICD9_3dig_Lookup, on IncDx3.Code = Lookup.Code, to get the Lookup.Srt_descrip variable, renaming this variable

to DxName.
10. Name the final table Incident_ICD9_Diagnosis and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, Code and

Setting. Save to the DPLocal storage area.

O. INCIDENT DRUG CLASS/CATEGORY SUMMARY TABLE

The incident Drug Class table provides a count of unique members with an incident dispensing for each drug category (e.g., betablocker,
antidiabetic) of interest stratified by age group, sex, and year.

Incidence is defined as a member with a dispensing with the Drug Class of interest (i.e., the index date), in the year of interest with no evidence of a
dispensing for that drug category in the 90, 180 and 270 days (i.e., the lookback periods) before the index date.

Both medical and drug coverage are required during the 3 possible lookback periods, allowing for eligibility gaps of <=45 days. Additionally, both
forms of enrollment coverage are required throughout the period of the dispensing episode. Following rules in Cohort Identification and Data
Analysis (CIDA), only dispensings with the start of their dispensing within enrollment coverage are utilized. That is, the start of the dispensing must
have full enrollment coverage, both before and after stockpiling. After stockpiling, if the start of a dispensing has been changed, it is the new start
date that must be fully covered by enrollment. Stockpiling is the process of resetting to a later start date, those dispensing rows whose original
start date overlapped prior dispensings, using the assumption that a patient will consume all doses in all filled prescriptions.

In addition to reporting the number of members with an incident dispensing, for each such incident user a treatment episode starting on the index
date is created, and the total number of dispensings, days supplied and length of treatment episodes (in days) is measured for each treatment
episode. Treatment gaps of <= 15 days are allowed when creating episodes and are considered part of the same treatment episode. Treatment

Summary Table V2 Programming Specifications
Version 1.0
 - 31 -

episodes are censored by a gap in treatment, a gap in enrollment, or the end of Data Partner data, whichever occurs first. Although a member can
have multiple index events in a given calendar year the first one only is counted and used for reporting.

The counts are stratified by Drug Class, age group, sex, and year. Drug Categories are standardized using a look-up table provided by the Sentinel
Operations Center. For each stratum the results contain 3 separate sections for each of the 90, 180 and 270 lookback scenarios. Each section
contains the total number of members, total dispensings, total days supplied and total length of all episodes, as well as a quarterly breakdown of
index dates (must sum up to total number of members).

Variable
Type

(Length) Format Label Valid Values
Source /

Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-21, 22-44,

45-64, 65-74, 75+

Sex Char(1) $1. Sex M or F
Period Char(4) $4. Year 2000+
DrugClass Char(70) $70. Drug Class/Category Name Text description
Members90 Num(8) 15. Members with no same drug dispensing in 90-day

lookback prior to index date
1+ Whole integers

Dispensings90 Num(8) 15. # of Dispensings for 90-day lookback 1+ Whole integers
DaysSupply90 Num(8) 15. # of total days supply for all episodes for 90-day

lookback
1+ Whole integers

EpisodeSpan90 Num(8) 15. # of total length in days
lookback

of all episodes for 90-day 1+ Whole integers

Members90Q1 Num(8) 15. # of index dates in Period/Q1 for 90-day lookback 0+ Whole integers
Members90Q2 Num(8) 15. # of index dates in Period/Q2 for 90-day lookback 0+ Whole integers
Members90Q3 Num(8) 15. # of index dates in Period/Q3 for 90-day lookback 0+ Whole integers
Members90Q4 Num(8) 15. # of index dates in Period/Q4 for 90-day lookback 0+ Whole integers
Members180 Num(8) 15. Members with no same drug dispensing in

lookback prior to index date
180-day 0+ Whole integers

Dispensings180 Num(8) 15. # of Dispensings for 180-day lookback 0+ Whole integers
DaysSupply180 Num(8) 15. # of total days supply for all episodes for 180-day

lookback
0+ Whole integers

EpisodeSpan180 Num(8) 15. # of total length in days
lookback

of all episodes for 180-day 0+ Whole integers

Members180Q1 Num(8) 15. # of index dates in Period/Q1 for 180-day lookback 0+ Whole integers
Members180Q2 Num(8) 15. # of index dates in Period/Q2 for 180-day lookback 0+ Whole integers

Summary Table V2 Programming Specifications
Version 1.0
 - 32 -

Variable
Type

(Length) Format Label Valid Values
Source /

Comments
Members180Q3 Num(8) 15. # of index dates in Period/Q3 for 180-day lookback 0+ Whole integers
Members180Q4 Num(8) 15. # of index dates in Period/Q4 for 180-day lookback 0+ Whole integers
Members270 Num(8) 15. Members with no same drug dispensing in 270-day

lookback prior to index date
0+ Whole integers

Dispensings270 Num(8) 15. # of Dispensings for 270-day lookback 0+ Whole integers
DaysSupply270 Num(8) 15. # of total days supply for all episodes for 270-day

lookback
0+ Whole integers

EpisodeSpan270 Num(8) 15. # of total length in days of all episodes for 270-day
lookback

0+ Whole integers

Members270Q1 Num(8) 15. # of index dates in Period/Q1 for 270-day lookback 0+ Whole integers
Members270Q2 Num(8) 15. # of index dates in Period/Q2 for 270-day lookback 0+ Whole integers
Members270Q3 Num(8) 15. # of index dates in Period/Q3 for 270-day lookback 0+ Whole integers
Members270Q4 Num(8) 15. # of index dates in Period/Q4 for 270-day lookback 0+ Whole integers
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating Incident Drug Class Summary Tables

1. Use the file(s) RxDrugClassYYYY, created by the process of Extraction and Key Assignment of Dispensing Table above, Step 3.
2. Merge these tables with the Enr_FullCoverage_Spans_Bridged table (built as part of creating the Enrollment Summary Table, Step 10) on the

basis of PatKey and keep only dispensing rows where the RxDate is in between the dates of Enr_Start and Enr_End. Note that per patient, there
can be multiple spans of Enr_Start to Enr_End, each of which should be checked.

3. For possible identical Drug Class dispensing rows to the same patient on the same RxDate:
3.1. Set the value of RxSup to the maximum value of RxSup across such identical dispensing rows
3.2. Count all rows within such grouping and save into variable NumClaims.
3.3. Save one row per identical Drug Class dispensing rows to the same patient on the same RxDate.

4. Assess the extent of overlap and gaps between dispensing rows: While maintaining all rows, create and adjust selected variables of the
dispensing rows as follows:

4.1. Create a new variable, ExpireDt, set as RxDate + RxSup – 1 for all rows.
4.2. Define groups of dispensing rows on the basis of patient, Drug Class, and RxDate.
4.3. For the first row within a grouping:

4.3.1. Create a new variable to count dispensing rows within a grouping, WithinGroupRowID, initialized to 1.
4.3.2. Create a new variable to track the latest examined ExpireDt within a grouping, LExpireDt, initialized to missing.
4.3.3. Create a new variable to track the latest examined RxSup within a grouping, LRxSup, initialized to missing.

Summary Table V2 Programming Specifications
Version 1.0
 - 33 -

4.3.4. Create a new variable which calculates in days the extent of overlap between dispensing row spans, Overlap_Prior, initialized to
missing.

4.3.5. Create a new variable, FillStatus, that indicates the status of a row within a grouping, and set to “F”, for first fill.
4.4. For the subsequent rows within a grouping:

4.4.1. Increment WithinGroupRowID by 1.
4.4.2. Set LExpireDt to ExpireDt, thus tracking the latest expiration date of a drug episode.
4.4.3. Set LRxSup to RxSup, thus tracking the latest days supply of a drug episode.
4.4.4. Set Overlap_Prior to the previous row’s ExpireDt (i.e., LExpireDt) - RxDate +1. Then check OverLap_Prior and if greater than zero,

perform the following:
4.4.4.1. Create PercentDay_Prior and set equal to Overlap_Prior / LRxSup, thus establishing the percent of overlap between the current

and prior row’s RxSup.
4.4.4.2. Set FillStatus = “+”.
4.4.4.3. Set RxDate = previous row’s ExpireDt (i.e., LExpireDt) + 1. Note that this may set the RxDate variable to a later date, when

there is overlap of dispensing rows.
4.4.4.4. Set ExpireDt = RxDate + RxSup - 1, thus setting the end date of the current dispensing based on the newly adjusted RxDate.

4.4.5. If Overlap_Prior is zero or less, than we have a gap between rows. Set FillStatus = “G”.
4.5. Write all rows to a table named Rx_DrugCategory_Dispensing_Assessed.

5. Identify dispensing rows in context of enrollment: Using the table Rx_DrugCategory_Dispensing_Assessed from all of Step 4, separate rows
into two groups:

5.1. Where RxDate is later than Enr_End, write to table named as Rx_DrugCategory_Exclude. These rows will be examined later for
ascertaining whether they fall in between later enrollment spans for a patient.

5.2. For all other rows, process as follows and then write to table named as Rx_DrugCategory_Stockpiled.
5.2.1. If ExpireDt is later than Enr_End or later than end of the Data Partner’s data, then:

5.2.1.1. Set ExpireDt to the earliest of Enr_End or DP data, thus truncating the dispensing span to the end of the patient’s enrollment
span or DP data, whichever is earlier.

5.2.1.2. Reset RxSup equal to ExpireDt - RxDate + 1.
6. “Rescue” dispensing rows that fell beyond enrollment: Using the table Rx_DrugCategory_Exclude from Step 5.1 above, see if any of these

dispensing rows are within a future enrollment span for the patients. This is done by merging Rx_DrugCategory_Exclude with the
Enr_FullCoverage_Spans_Bridged table (built as part of creating the Enrollment Summary Table, Step 10), on PatKey, and keeping only
dispensing rows where the RxDate is in between the dates of Enr_Start and Enr_End, writing any such rows to table RX_DrugCategoryRescue
and then process as follows:

6.1. If RxDate is not equal to the original RxDate, then the AgeEventGroupKey may need to be changed. On the basis of PatKey, merge
these rows only, with the PatKeysCovKey table and calculate AgeEventGroupKey, using RxDate and PatKeysCovKey.Birth_Date.

6.2. Set ExpireDt to the earliest of either the existing ExpireDt or to Enr_End.
6.3. Reset RxSup equal to ExpireDt - RxDate + 1.

Summary Table V2 Programming Specifications
Version 1.0
 - 34 -

6.4. Then interleave all of these rows with table Rx_DrugCategory_Stockpiled, on the basis of patient, Drug Class, and RxDate.
6.5. Write rows to new table Rx_DrugCategory_Stockpiled_All.

7. From multiple dispensing rows, identify single episodes across such dispensing rows, taking into account gap days: While maintaining all
dispensing rows, create and adjust selected variables of the dispensing rows as follows:

7.1. Define groups of dispensing rows on the basis of patient and Drug Class.
7.2. Create variables that are carried from one row to another and are used to compare values in current rows to prior rows. These

variables are: LRunOutDate, LEnrStart and an error-trapping counter variable, _Trap_.
7.3. For the first row within a grouping, based on the earliest RxDate:

7.3.1. Create a new variable LRunOutDate (last date of episode) equal to ExpireDt.
7.3.2. Create a new variable LEnrStart (last enrollment start date) equal to Enr_Start.
7.3.3. Create a new variable Episode and sequentially number each row within a grouping, starting at 1.
7.3.4. Create a new variable Gap and set it to missing.

7.4. For all other rows, set Gap equal to RxDate - LRunOutDate - 1. Then, If Gap is greater than the prescribed maximum number of gap
days (i.e., 15), or LEnrStart is not equal to Enr_Start, then the current row is the beginning of a new drug episode.

7.4.1. Increment Episode by 1.
7.4.2. Set LRunOutDate to ExpireDt in the current row.

7.5. When the condition in Step 7.4 is false, check if LRunOutDate is later than the current ExpireDt. If so, then we have overlapping
dispensing rows.

7.5.1. Increment _Trap_ by 1.
7.5.2. Set LRunOutDate to the latter date of ExpireDt in the current row or to LRunOutDate, thus always setting this variable to the latest

expiration date (ExpireDt) of a grouping.
7.6. For each row, set LEnrStart equal to Enr_Start.
7.7. Write the results of these dispensing rows to table RX_DrugCategory_Episode_Claims.

8. Summarize dispensing rows into episode rows: On the basis of patient, Drug Class, and Episode, summarize the dispensing rows as follows:
8.1. Keep the following individual variables: Patient, Drug Class, and Episode.
8.2. Take the lowest value of AgeEventGroupKey, to ensure that age key is set as of the beginning of the episode.
8.3. Total number of NumClaims into variable EpiNumClaims, to get the number of dispensing rows per episode.
8.4. Sum RxSup into variable EpiRxSup, to get total days supply per episode.
8.5. Set the earliest RxDate into variable EpiStart, to ensure that the beginning of the episodes are set to the earliest dispensing row.
8.6. Set the latest ExpireDt into variable EpiEnd, to ensure that the end date of the episodes are set to the latest expiration date of a

dispensing row.
8.7. Set the earliest EStart into same variable EStart, to ensure the earliest enrollment start date for the episode.
8.8. Sort the episode rows by patient, Drug Class, and Episode (thereby sorting also by EpiStart), and save to table named

Rx_DrugCategory_Episodes.

Summary Table V2 Programming Specifications
Version 1.0
 - 35 -

9. Filter episodes for those that meet the minimal 90-day lookback criterion: This will minimize the number of episodes that can possibly satisfy
the 90, 180, and 270-day lookback periods. Read in the Rx_DrugCategory_Episodes table by a grouping of patient, Drug Class, and Episode.

9.1. Calculate the end date of the prior episode’s end date as variable PriorEpiEnd. For the first row per grouping, set this to missing.
9.2. Set a variable, MinLookBackDt, as the minimal look back date from the beginning of an episode in a group equal to

Epistart (see Step 8.5) – 90 or DP data start + 90, whichever is later.
9.3. If PriorEpiEnd is earlier than MinLookBackDt and EStart (see Step 8.7) is earlier than or equal to MinLookBackDt, then the current

episode is an incident episode, as no observed episode is found earlier than 90 days and we have observed the start of enrollment
earlier than or equal to the minimal lookback date. When this occurs, calculate the following variables:

9.3.1. Year as the 4-character year value of EpiStart.
9.3.2. Qtr as the 1-character value of the calendar quarter of EpiStart.
9.3.3. EpiDuration as EpiEnd - EpiStart + 1.

9.4. Sort the kept episode rows by PatKey, Drug Class, Year, and Episode and write episode rows to table named
Candidates_RX_DrugCategory.

10. Select the first incident episode per period, outputting a row for each of the 3 lookback periods (i.e., 90, 180, or 270 days) for which it qualifies:
Read in table Candidates_RX_DrugCategory in its sorted order and subset only the first episode row per calendar year. Assign a variable,
LookBack, to each of lookback periods 90, 180, and 270 and then perform the following for each value of LookBack:

10.1. Calculate a LookBackDt variable as EpiStart – LookBack.
10.2. Keep episodes that meet the following conditions: Both DP start date and EStart are earlier than or equal to LookBackDt (thus both

minimal DP data spans and enrollment criteria are maintained) and PriorEpiEnd (see Step 9.1) is earlier than LookBackDt (thus the
current episode is incident.

10.3. Write these saved rows to a table named Rx_DrugCategory_Epi_LookBack.
11. From Rx_DrugCategory_Epi_LookBack, create counts of index dates within quarterly Periods on the classification combination of

AgeEventGroupKey, Sex, Period, and Drug Class for each lookback value (i.e., 90, 180, 270).
11.1. Count the number of index dates in the first calendar quarter and set variable Members###Q1 to this value.
11.2. Count the number of index dates in the second calendar quarter and set variable Members###Q2 to this value.
11.3. Count the number of index dates in the third calendar quarter and set variable Members###Q3 to this value.
11.4. Count the number of index dates in the fourth calendar quarter and set variable Members###Q4 to this value.

12. From Rx_DrugCategory_Epi_LookBack again, create three aggregates as follows, on the classification combination of AgeEventGroupKey, Sex,
Period, and Drug Class, for each lookback value (i.e., 90, 180, 270):

12.1. Count the number of unique PatIDs and save this value to Members###
12.2. Sum EpiNumClaims and save this value to Dispensings###
12.3. Sum EpiRxSup and save this value to DaysSupply###.
12.4. Sum EpiDuration and save this value to EpisodeSpan###.
12.5. Note that the sum of counts in Members###Q1 through Members###Q4 must be equal to Members### within all strata.

Summary Table V2 Programming Specifications
Version 1.0
 - 36 -

13. Merge all aggregates on the basis of AgeEventGroupKey, Sex, Period, and Drug Class to file IncRxSumm. Set any missing values to zero, for
variables Members###, Dispensings###, DaysSupply###, EpisodeSpan###, Members###Q1, Members###Q2, Members###Q3, and
Members###Q4.

14. Using the AgeEventGroupKey variable, create the variables Age_Group and Age_Group_ID.
15. Then link this file with NDC_Lookup_Table, on IncRxClass.DrugCategoryKey = Lookup.DrugCategoryKey, to get the Lookup.DrugClass variable.
16. Name the table Incident_Drug_Class and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, and DrugClass. Save

to the DPLocal storage area.

P. INCIDENT INGREDIENT/GENERIC NAME SUMMARY TABLE

The incident Generic Name table provides a count of unique members with an incident dispensing for each generic drug name of interest (e.g.
prednisone, tamsulosin HCL) stratified by age group, sex, and year.

Incidence is defined as a member with a dispensing with the Generic Name of interest (i.e., the index date), in the year of interest with no evidence
of a dispensing for that generic name in the 90, 180 and 270 days (i.e., the lookback periods) before the index date.

Both medical and drug coverage are required during the 3 possible lookback periods, allowing for eligibility gaps of <=45 days. Further, both forms
of enrollment coverage are required throughout the period of the dispensing episode. Following rules in Cohort Identification and Data Analysis
(CIDA), only dispensings with the start of their dispensing within enrollment coverage are utilized. That is, the start of the dispensing must have full
enrollment coverage, both before and after stockpiling. After stockpiling, if the start of a dispensing has been changed, it is the new start date that
must be fully covered by enrollment. Stockpiling is the process of resetting to a later start date, those dispensing rows whose original start date
overlapped prior dispensings, using the assumption that a patient will consume all doses in all filled prescriptions.

In addition to reporting the number of members with an incident dispensing, for each such incident user a treatment episode starting on the index
date is created, and the total number of dispensings, days supplied and length of treatment episodes (in days) is measured for each treatment
episode. Treatment gaps of <= 15 days are allowed when creating episodes and are considered part of the same treatment episode. Treatment
episodes are censored by a gap in treatment, a gap in enrollment, or the end of Data Partner data, whichever occurs first. Although a member can
have multiple index events in a given calendar year the first one only is counted and used for reporting.

The counts are stratified by Generic Name, age group, sex, and year. Generic Names are standardized using a look-up table provided by the
Sentinel Operations Center. For each stratum the results contain 3 separate sections for each of the 90, 180 and 270 lookback scenarios. Each
section contains the total number of members, total dispensings, total days supplied and total length of all episodes, as well as a quarterly
breakdown of index dates (must sum up to total number of members).

Variable
Type

(Length) Format Label Valid Values
Source /

Comments

Summary Table V2 Programming Specifications
Version 1.0
 - 37 -

Variable
Type

(Length) Format Label Valid Values
Source /

Comments
Age_Group Char(5) $5. Age Group 0-1, 2-4, 5-9, 10-14, 15-18, 19-

21, 22-44, 45-64, 65-74, 75+

Sex Char(1) $1. Sex M or F
Period Char(4) $4. Year 2000+
GenericName Char(30) $30. Generic Drug Name Text description
Members90 Num(8) 15. Members with no same drug dispensing in 90-day lookback prior

to index date
1+ Whole integers

Dispensings90 Num(8) 15. # of Dispensings for 90-day lookback 1+ Whole integers
DaysSupply90 Num(8) 15. # of total days supply for all episodes for 90-day lookback 1+ Whole integers
EpisodeSpan90 Num(8) 15. # of total length in days of all episodes for 90-day lookback 1+ Whole integers
Members90Q1 Num(8) 15. # of index dates in Period/Q1 for 90-day lookback 0+ Whole integers
Members90Q2 Num(8) 15. # of index dates in Period/Q2 for 90-day lookback 0+ Whole integers
Members90Q3 Num(8) 15. # of index dates in Period/Q3 for 90-day lookback 0+ Whole integers
Members90Q4 Num(8) 15. # of index dates in Period/Q4 for 90-day lookback 0+ Whole integers
Members180 Num(8) 15. Members with no same drug dispensing in 180-day lookback

prior to index date
0+ Whole integers

Dispensings180 Num(8) 15. # of Dispensings for 180-day lookback 0+ Whole integers
DaysSupply180 Num(8) 15. # of total days supply for all episodes for 180-day lookback 0+ Whole integers
EpisodeSpan180 Num(8) 15. # of total length in days of all episodes for 180-day lookback 0+ Whole integers
Members180Q1 Num(8) 15. # of index dates in Period/Q1 for 180-day lookback 0+ Whole integers
Members180Q2 Num(8) 15. # of index dates in Period/Q2 for 180-day lookback 0+ Whole integers
Members180Q3 Num(8) 15. # of index dates in Period/Q3 for 180-day lookback 0+ Whole integers
Members180Q4 Num(8) 15. # of index dates in Period/Q4 for 180-day lookback 0+ Whole integers
Members270 Num(8) 15. Members with no same drug dispensing in 270-day lookback

prior to index date
0+ Whole integers

Dispensings270 Num(8) 15. # of Dispensings for 270-day lookback 0+ Whole integers
DaysSupply270 Num(8) 15. # of total days supply for all episodes for 270-day lookback 0+ Whole integers
EpisodeSpan270 Num(8) 15. # of total length in days of all episodes for 270-day lookback 0+ Whole integers
Members270Q1 Num(8) 15. # of index dates in Period/Q1 for 270-day lookback 0+ Whole integers
Members270Q2 Num(8) 15. # of index dates in Period/Q2 for 270-day lookback 0+ Whole integers
Members270Q3 Num(8) 15. # of index dates in Period/Q3 for 270-day lookback 0+ Whole integers
Members270Q4 Num(8) 15. # of index dates in Period/Q4 for 270-day lookback 0+ Whole integers

Summary Table V2 Programming Specifications
Version 1.0
 - 38 -

Variable
Type

(Length) Format Label Valid Values
Source /

Comments
Age_Group_ID Num(3) 2. ID 1+

Methods for Creating Incident Generic Name Summary Tables

1. Use the file(s) RxGenericNameYYYY, created by the process of Extraction and Key Assignment of Dispensing Table above, Step 3.
2. Merge these tables with the Enr_FullCoverage_Spans_Bridged table (built as part of creating the Enrollment Summary Table, Step 10) on the

basis of PatKey and keep only dispensing rows where the RxDate is in between the dates of Enr_Start and Enr_End. Note that per patient, there
can be multiple spans of Enr_Start to Enr_End, each of which should be checked.

3. For possible identical Generic Name dispensing rows to the same patient on the same RxDate:
3.1. Set the value of RxSup to the maximum value of RxSup across such identical dispensing rows
3.2. Count all rows within such grouping and save into variable NumClaims.
3.3. Save one row per identical Drug Class dispensing rows to the same patient on the same RxDate.

4. Assess the extent of overlap and gaps between dispensing rows: While maintaining all rows, create and adjust selected variables of the
dispensing rows as follows:

4.1. Create a new variable, ExpireDt, set as RxDate + RxSup – 1 for all rows.
4.2. Define groups of dispensing rows on the basis of patient, Generic Name, and RxDate.
4.3. For the first row within a grouping:

4.3.1. Create a new variable to count dispensing rows within a grouping, WithinGroupRowID, initialized to 1.
4.3.2. Create a new variable to track the latest examined ExpireDt within a grouping, LExpireDt, initialized to missing.
4.3.3. Create a new variable to track the latest examined RxSup within a grouping, LRxSup, initialized to missing.
4.3.4. Create a new variable which calculates in days the extent of overlap between dispensing row spans, Overlap_Prior, initialized to

missing.
4.3.5. Create a new variable, FillStatus, that indicates the status of a row within a grouping, and set to “F”, for first fill.

4.4. For the subsequent rows within a grouping:
4.4.1. Increment WithinGroupRowID by 1.
4.4.2. Set LExpireDt to ExpireDt, thus tracking the latest expiration date of a drug episode.
4.4.3. Set LRxSup to RxSup, thus tracking the latest days supply of a drug episode.
4.4.4. Set Overlap_Prior to the previous row’s ExpireDt (i.e., LExpireDt) - RxDate +1. Then check OverLap_Prior and if greater than zero,

perform the following:
4.4.4.1. Create PercentDay_Prior and set equal to Overlap_Prior / LRxSup, thus establishing the percent of overlap between the current

and prior row’s RxSup.
4.4.4.2. Set FillStatus = “+”.
4.4.4.3. Set RxDate = previous row’s ExpireDt (i.e., LExpireDt) + 1. Note that this may set the RxDate variable to a later date, when

there is overlap of dispensing rows.
Summary Table V2 Programming Specifications
Version 1.0
 - 39 -

4.4.4.4. Set ExpireDt = RxDate + RxSup - 1, thus setting the end date of the current dispensing based on the newly adjusted RxDate.
4.4.5. If Overlap_Prior is zero or less, than we have a gap between rows. Set FillStatus = “G”.

4.5. Write all rows to a table named Rx_DrugCategory_Dispensing_Assessed.
5. Identify dispensing rows in context of enrollment: Using the table Rx_DrugCategory_Dispensing_Assessed from all of Step 4, separate rows

into two groups:
5.1. Where RxDate is later than Enr_End, write to table named as Rx_DrugCategory_Exclude. These rows will be examined later for

ascertaining whether they fall in between later enrollment spans for a patient.
5.2. For all other rows, process as follows and then write to table named Rx_DrugCategory_Stockpiled.

5.2.1. If ExpireDt is later than Enr_End or later than end of the Data Partner’s data, then:
5.2.1.1. Set ExpireDt to the earliest of Enr_End or DP data, thus truncating the dispensing span to the end of the patient’s enrollment

span or DP data, whichever is earlier.
5.2.1.2. Reset RxSup equal to ExpireDt - RxDate + 1.

6. “Rescue” dispensing rows that fell beyond enrollment: Using the table Rx_DrugCategory_Exclude from Step 5.1 above, see if any of these
dispensing rows are within a future enrollment span for the patients. This is done by merging Rx_DrugCategory_Exclude with the
Enr_FullCoverage_Spans_Bridged table (built as part of creating the Enrollment Summary Table, Step 10), on PatKey, and keeping only
dispensing rows where the RxDate is in between the dates of Enr_Start and Enr_End, writing any such rows to table RX_DrugCategoryRescue
and then process as follows:

6.1. If RxDate is not equal to the original RxDate, then the AgeEventGroupKey may need to be changed. On the basis of PatKey, merge
these rows only, with the PatKeysCovKey table and calculate AgeEventGroupKey, using RxDate and PatKeysCovKey.Birth_Date.

6.2. Set ExpireDt to the earliest of either the existing ExpireDt or to Enr_End.
6.3. Reset RxSup equal to ExpireDt - RxDate + 1.
6.4. Then interleave all of these rows with table Rx_DrugCategory_Stockpiled, on the basis of patient, Generic Name, and RxDate.
6.5. Write rows to new table Rx_DrugCategory_Stockpiled_All.

7. From multiple dispensing rows, identify single episodes across such dispensing rows, taking into account gap days: While maintaining all
dispensing rows, create and adjust selected variables of the dispensing rows as follows:

7.1. Define groups of dispensing rows on the basis of patient and Generic Name.
7.2. Create variables that are carried from one row to another and are used to compare values in current rows to prior rows. These

variables are: LRunOutDate, LEnrStart and an error-trapping counter variable, _Trap_.
7.3. For the first row within a grouping, based on the earliest RxDate:

7.3.1. Create a new variable LRunOutDate (last date of episode) equal to ExpireDt.
7.3.2. Create a new variable LEnrStart (last enrollment start date) equal to Enr_Start.
7.3.3. Create a new variable Episode and sequentially number each row within a grouping, starting at 1.
7.3.4. Create a new variable Gap and set it to missing.

7.4. For all other rows, set Gap equal to RxDate - LRunOutDate - 1. Then, If Gap is greater than the prescribed maximum number of gap
days (i.e., 15), or LEnrStart is not equal to Enr_Start, then the current row is the beginning of a new drug episode.

Summary Table V2 Programming Specifications
Version 1.0
 - 40 -

7.4.1. Increment Episode by 1.
7.4.2. Set LRunOutDate to ExpireDt in the current row.

7.5. When the condition in Step 7.4 is false, check if LRunOutDate is later than the current ExpireDt. If so, then we have overlapping
dispensing rows.

7.5.1. Increment _Trap_ by 1.
7.5.2. Set LRunOutDate to the latter date of ExpireDt in the current row or to LRunOutDate, thus always setting this variable to the latest

expiration date (ExpireDt) of a grouping.
7.6. For each row, set LEnrStart equal to Enr_Start.
7.7. Write the results of these dispensing rows to table RX_DrugCategory_Episode_Claims.

8. Summarize dispensing rows into episode rows: On the basis of patient, Generic Name, and Episode, summarize the dispensing rows as follows:
8.1. Keep the following individual variables: Patient, Generic Name, and Episode.
8.2. Take the lowest value of AgeEventGroupKey, to ensure that age key is set as of the beginning of the episode.
8.3. Total number of NumClaims into variable EpiNumClaims, to get the number of dispensing rows per episode.
8.4. Sum RxSup into variable EpiRxSup, to get total days supply per episode.
8.5. Set the earliest RxDate into variable EpiStart, to ensure that the beginning of the episodes are set to the earliest dispensing row.
8.6. Set the latest ExpireDt into variable EpiEnd, to ensure that the end date of the episodes are set to the latest expiration date of a

dispensing row.
8.7. Set the earliest EStart into same variable EStart, to ensure the earliest enrollment start date for the episode.
8.8. Sort the episode rows by patient, Generic Name, and Episode (thereby sorting also by EpiStart), and save to table named

Rx_DrugCategory_Episodes.
9. Filter episodes for those that meet the minimal 90-day lookback criterion: This will minimize the number of episodes that can possibly satisfy

the 90, 180, and 270-day lookback periods. Read in the Rx_DrugCategory_Episodes table by a grouping of patient, Generic Name, and Episode.
9.1. Calculate the end date of the prior episode’s end date as variable PriorEpiEnd. For the first row per grouping, set this to missing.
9.2. Set a variable, MinLookBackDt, as the minimal look back date from the beginning of an episode in a group equal to

Epistart (see Step 8.5) – 90 or DP data start + 90, whichever is later.
9.3. If PriorEpiEnd is earlier than MinLookBackDt and EStart (see Step 8.7) is earlier than or equal to MinLookBackDt, then the current

episode is an incident episode, as no observed episode is found earlier than 90 days and we have observed the start of enrollment
earlier than or equal to the minimal lookback date. When this occurs, calculate the following variables:

9.3.1. Year as the 4-character year value of EpiStart.
9.3.2. Qtr as the 1-character value of the calendar quarter of EpiStart.
9.3.3. EpiDuration as EpiEnd - EpiStart + 1.

9.4. Sort the kept episode rows by PatKey, Generic Name, Year, and Episode and write episode rows to table named
Candidates_RX_DrugCategory.

Summary Table V2 Programming Specifications
Version 1.0
 - 41 -

10. Select the first incident episode per period, outputting a row for each of the 3 lookback periods (i.e., 90, 180, or 270 days) for which it qualifies:
Read in table Candidates_RX_DrugCategory in its sorted order and subset only the first episode row per calendar year. Assign a variable,
LookBack, to each of lookback periods 90, 180, and 270 and then perform the following for each value of LookBack:

10.1. Calculate a LookBackDt variable as EpiStart – LookBack.
10.2. Keep episodes that meet the following conditions: Both DP start date and EStart are earlier than or equal to LookBackDt (thus both

minimal DP data spans and enrollment criteria are maintained) and PriorEpiEnd (see Step 9.1) is earlier than LookBackDt (thus the
current episode is incident.

10.3. Write these saved rows to a table named Rx_DrugCategory_Epi_LookBack.
11. From Rx_DrugCategory_Epi_LookBack, create counts of index dates within quarterly Periods on the classification combination of

AgeEventGroupKey, Sex, Period, and Generic Name for each lookback value (i.e., 90, 180, 270).
11.1. Count the number of index dates in the first calendar quarter and set variable Members###Q1 to this value.
11.2. Count the number of index dates in the second calendar quarter and set variable Members###Q2 to this value.
11.3. Count the number of index dates in the third calendar quarter and set variable Members###Q3 to this value.
11.4. Count the number of index dates in the fourth calendar quarter and set variable Members###Q4 to this value.

12. From Rx_DrugCategory_Epi_LookBack again, create three aggregates as follows, on the classification combination of AgeEventGroupKey, Sex,
Period, and Generic Name, for each lookback value (i.e., 90, 180, 270):

12.1. Count the number of unique PatIDs and save this value to Members###
12.2. Sum EpiNumClaims and save this value to Dispensings###
12.3. Sum EpiRxSup and save this value to DaysSupply###.
12.4. Sum EpiDuration and save this value to EpisodeSpan###.
12.5. Note that the sum of counts in Members###Q1 through Members###Q4 must be equal to Members### within all strata.

13. Merge all aggregates on the basis of AgeEventGroupKey, Sex, Period, and Generic Name to file IncRxSumm. Set any missing values to zero, for
variables Members###, Dispensings###, DaysSupply###, EpisodeSpan###, Members###Q1, Members###Q2, Members###Q3, and
Members###Q4.

14. Using the AgeEventGroupKey variable, create the variables Age_Group and Age_Group_ID.
15. Then link this file with NDC_Lookup_Table, on IncRxClass.GenericNameKey = Lookup.GenericNameKey, to get the Lookup.GenericName

variable.
16. Name the table Incident_Generic_Name and structure table as per data dictionary above. Sort by Age_Group_ID, Sex, Period, and DrugClass.

Save to the DPLocal storage area.

Q. EXPORT TEXT AND ACCESS FILES

The final process is to output flat text data files and optionally Access databases, containing all of the generated summary tables. The selection of
which files are exported is based on both the capabilities of the Data Partner as well as their choices.

Summary Table V2 Programming Specifications
Version 1.0
 - 42 -

Methods for Generating Export Files – Environmental

1. Create multiple user-modifiable parameters as follows that will be completed by the Data Partner and entered at the top of the program
package.

Parameter Purpose Parameter Values
TextFiles REQUIRED

Text files are always generated; this parameter
indicates the type of text files

Must be one of the following values:
C = Comma delimited
P = Pipe delimited
T = Tab delimited

ExportPath OPTIONAL
Indicates the path into which the text files and MS
Access database (optionally) are to be written, if
not DPLocal

Operating system full path

AccessFiles REQUIRED
Indicates if an Access database is to be generated
and the type

Must be one of the following values:
N = No, do not generate Access files
M = Generate a MDB format, compatible with Office version up to 2007
A = Generate an ACCDB format, compatible with Office versions from 2007 and
later

Access_DBMS OPTIONAL, when AccessFiles = M or A
Indicates the DBMS parameter for PROC EXPORT,
dependent on platform

ACCESS: For translating between 32-bit SAS and 32-bit MS Office Access
ACCESSCS: For translating between 64-bit SAS and 32-bit MS Office Access

2. Validate the parameters above as follows:

2.1. TextFiles: This must be filled and only for the values shown above. If values fail these criteria, then put a message to the log and stop
processing the entire package.

2.2. ExportPath: If filled, then validate that the path exists and that the program has write privileges to the directory. Otherwise, do not
check this parameter. If the path does not exist or if write privileges are not available, then put a message to the log and stop
processing the entire package.

2.3. AccessFiles: This must be filled and only with the values shown above. If values fail these criteria, then put a message to the log and
stop processing the entire package.

2.3.1. If AccessFiles is not equal to “N”, then check the Common Components _sas_access parameter. If this parameter equals “N”, then
Access databases cannot be generated; put the following message to the log and stop processing the entire package:

Access Database cannot be generated as SAS/Access Interface to PC files is not indicated to be available
Check installation of SAS components and the setting for the _sas_Access parm in ‘Common Components.sas’
Summary Table V2 Programming Specifications
Version 1.0
 - 43 -

Summary Table processing will be aborted

Methods for Generating Export Files – Text files
1. Create a processing loop for all 13 Summary Tables (Age_Groups, Enrollment, ICD9_Diagnosis, ICD9_Diagnosis_4_Digit, ICD9_Diagnosis_5_Digit,

HCPCS, ICD9_Procedure, ICD9_Procedure_4_Digit, Drug_Class, Generic_Name, Incident_ICD9_Diagnosis, Incident_Drug_Class,
Incident_Generic_Name)

2. For each iteration through the loop per table, do the following:
2.1. Determine if the Summary Table exists.

2.1.1. If it does not exist, then put the following message to the log:
WARNING: Table [name of table] does not exist and will not be exported to a text file.
WARNING: This issue should be investigated by the DP and SOC.

2.2. If it does exist, then write the table as TableName.txt, to the validated path indicated by the TextPath parameter.
2.3. Output one data text line, per SAS observation.

3. Follow these formatting requirements per data type for the variables:
3.1. Character: Output the values of the variables, embedded in double-quotes.
3.2. Numeric: Output the values of the variables as only a string of digits, with no punctuation, and not embedded in double-quotes.
3.3. In between the variables written, insert a delimiter as specified by the TextFiles parameter.
3.4. Note that there are no date or time formatted variables to be processed.

Methods for Generating Export Files – Access Databases

1. If the AccessFiles parameter is not equal to “N”, then create a processing loop for all Summary Tables, per step 3 above:
2. For each iteration through the loop, per table, do the following:

2.1. Determine if the Summary Table exists.
2.1.1. If it does not exist, then put the following message to the log:

WARNING: Table [name of table] does not exist and will not be exported to Access database.
WARNING: This issue should be investigated by the DP and SOC.

2.2. If it does exist, then write the table as TableName, to an Access database named as Mini_Sentinel_Summary_Tables.Extension, to the
path indicated by the ExportPath parameter, where Extension is based on the AccessFiles parameter and the Access_DBMS user
parameters is applied as requested.

Summary Table V2 Programming Specifications
Version 1.0
 - 44 -

V. APPENDIX A: LOOKUP TABLE DX_ICD9_3DIG_LOOKUP

Includes descriptions for 3-character ICD9 codes.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Category Char(120) $120. category Free text Broad classification of ICD9 codes
Code Char(6) $6. Code Free text ICD9 Diagnosis code (3-characters)
Dcode Char(6) $6. dcode Free text ICD9 Diagnosis code (3-characters)
Srt_descrip Char(35) $35. srt_descrip Free text Short description for code
Lng_descrip Char(48) $48. lng_descrip Free text Long description for code

Sample Rows
Category Code DCode srt_descrip lng_descrip

(580-629)Diseases Of The Genitourinary System 626 626 D/O MENS&OTH ABN BLEED FE
GNT TRACT

D/O MENSTRUATION&OTH ABN BLEED
FE GENIT TRACT

(580-629)Diseases Of The Genitourinary System 627 627 MENOPAUSAL&POSTMENOPAUSA
L DISORDERS

MENOPAUSAL AND POSTMENOPAUSAL
DISORDERS

(580-629)Diseases Of The Genitourinary System 628 628 FEMALE INFERTILITY FEMALE INFERTILITY
(580-629)Diseases Of The Genitourinary System 629 629 OTH DISORDERS FEMALE GENITAL

ORGANS
OTHER DISORDERS OF FEMALE GENITAL
ORGANS

(630-676)Complications of Pregnancy,
Childbirth, and the Puerperium

630 630 HYDATIDIFORM MOLE HYDATIDIFORM MOLE

(630-676)Complications of Pregnancy,
Childbirth, and the Puerperium

631 631 OTHER ABNORMAL PRODUCT
CONCEPTION

OTHER ABNORMAL PRODUCT OF
CONCEPTION

(630-676)Complications of Pregnancy,
Childbirth, and the Puerperium

632 632 MISSED ABORTION MISSED ABORTION

Summary Table V2 Programming Specifications
Version 1.0
 - 45 -

VI. APPENDIX B: LOOKUP TABLE DX_ICD9_4DIG_LOOKUP

Includes descriptions for 4-character ICD9 codes.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Category Char(120) $120. Category Free text Broad classification of ICD9 codes
Code Char(6) $6. Code Free text ICD9 Diagnosis code (4-characters)
Dcode Char(6) $6. Dcode Free text ICD9 Diagnosis code (4-characters) with decimal point
Srt_descrip Char(35) $35. srt_descrip Free text Short description for code
Lng_descrip Char(48) $48. lng_descrip Free text Long description for code

Sample Rows
Category Code DCode Srt_descrip Lng_descrip

(140-239)Neoplasms 2397 239.7 NEO UNS NATUR ENDOCRNE&OTH
NERV SYS

NEOPLSM UNS NATR ENDOCRN
GLND&OTH PART NERV SYS

(140-239)Neoplasms 2398 239.8 NEOPLASM UNSPEC NATR OTH
SPEC SITES

NEOPLASM UNSPEC NATURE OTHER
SPEC SITES

(140-239)Neoplasms 2399 239.9 NEOPLASM UNSPEC NATURE SITE
UNSPEC

NEOPLASM OF UNSPECIFIED NATURE
SITE UNSPECIFIED

(240-279)Endocrine, Nutritional And Metabolic
Diseases, And Immunity Disorders

2400 240.0 GOITER SPECIFIED AS SIMPLE GOITER, SPECIFIED AS SIMPLE

(240-279)Endocrine, Nutritional And Metabolic
Diseases, And Immunity Disorders

2409 240.9 GOITER UNSPECIFIED GOITER, UNSPECIFIED

(240-279)Endocrine, Nutritional And Metabolic
Diseases, And Immunity Disorders

2410 241.0 NONTOXIC UNINODULAR GOITER NONTOXIC UNINODULAR GOITER

Summary Table V2 Programming Specifications
Version 1.0
 - 46 -

VII. APPENDIX C: LOOKUP TABLE DX_ICD9_5DIG_LOOKUP

Includes descriptions for 4-character ICD9 codes.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Category Char(120) $120. Category Free text Broad classification of ICD9 codes
Code Char(6) $6. Code Free text ICD9 Diagnosis code (5-characters)
Dcode Char(6) $6. Dcode Free text ICD9 Diagnosis code (5-characters) with decimal point
Srt_descrip Char(35) $35. srt_descrip Free text Short description for code
Lng_descrip Char(48) $48. lng_descrip Free text Long description for code

Sample Rows
Category Code DCode Srt_descrip Lng_descrip

(001-139)Infectious And Parasitic
Diseases

13109 131.09 OTHER UROGENITAL
TRICHOMONIASIS

OTHER UROGENITAL TRICHOMONIASIS

(001-139)Infectious And Parasitic
Diseases

13621 136.21 SPEC INFECTION DUE TO
ACANTHAMOEBA

SPECIFIC INFECTION DUE TO ACANTHAMOEBA

(001-139)Infectious And Parasitic
Diseases

13629 136.29 OTH SPECIFIC INF FREE-LIVING
AMEBAE

OTHER SPECIFIC INFECTIONS FREE-LIVING
AMEBAE

(140-239)Neoplasms 17300 173.00 UNS MALIGNANT NEOPLASM SKIN
LIP

UNSPECIFIED MALIGNANT NEOPLASM OF SKIN
OF LIP

(140-239)Neoplasms 17301 173.01 BASAL CELL CARCINOMA OF SKIN OF
LIP

BASAL CELL CARCINOMA OF SKIN OF LIP

(140-239)Neoplasms 17302 173.02 SQUAMOUS CELL CARCINOMA SKIN
OF LIP

SQUAMOUS CELL CARCINOMA OF SKIN OF LIP

Summary Table V2 Programming Specifications
Version 1.0
 - 47 -

VIII. APPENDIX D: LOOKUP TABLE PX_LOOKUP

Includes descriptions for 4-character ICD9 codes.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Source Char(5) $5. Source Free text Categorization of PX codes; i.e., PX_CodeType
Code Char(6) $6. Code Free text Procedure code
Srt_descrip Char(35) $35. Srt_descrip Free text Short description for code
Lng_descrip Char(48) $48. Lng_descrip Free text Long description for code
Category Char(9) $9. Category Free text Category of code

Sample Rows
Source Code Srt_descrip Lng_descrip Category

cpt 22841 INSERT SPINE FIXATION DEVICE INTERNAL SPINAL FIXATION WIRING SPINOUS PROCESS UNDEFINED
cpt 48999 PANCREAS SURGERY PROCEDURE UNLISTED PROCEDURE PANCREAS UNDEFINED
cpt 90287 BOTULINUM ANTITOXIN BOTULINUM ANTITOXIN EQUINE ANY ROUTE UNDEFINED
cpt 99215 OFFICE/OUTPATIENT VISIT EST OFFICE OUTPATIENT VISIT 40 MINUTES UNDEFINED
hcpcs D6074 ABUT RETN CAST METL FPD NOBL METL ABUTMENT RETAINR CAST METAL FPD NOBLE METAL UNDEFINED
hcpcs E0370 AIR PRESSURE ELEVATOR FOR HEEL AIR PRESSURE ELEVATOR FOR HEEL UNDEFINED
hcpcs G0240 BONE MARROW ASP/BIOPSY;SAME INCISN BONE MARROW ASPIRATION/BIOPSY;SAME INCISION UNDEFINED
hcpcs J3390 INJ METHOXAMINE TO 20 MG Injection, methoxamine hcl, up to 20 mg UNDEFINED
hcpcs L3252 FOOT SHOE MOLD PT PLASTAZOTE CSTM FOOT SHOE MOLDED PT MDL PLASTAZOTE CSTM FABR EA UNDEFINED
hcpcs S0206 ADD CODE PRIM PROC DENOTE FACL&EQP ADDITION CODE PRIM PROC DENOTE USE FACILITY&EQP UNDEFINED

Summary Table V2 Programming Specifications
Version 1.0
 - 48 -

IX. APPENDIX E: LOOKUP TABLE PX_ICD9_3DIG_LOOKUP

Includes descriptions for 3-character ICD9 Procedure codes.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Category Char(65) $65. Category Free text Category of code
DCode Char(6) $6. DCode Free text ICD9 Procedure code, with decimal point
Code Char(6) $6. Code Free text ICD9 Procedure code, no decimal point
Srt_descrip Char(35) $35. Srt_descrip Free text Short description for code
Lng_descrip Char(48) $48. Lng_descrip Free text Long description for code

Sample Rows
Category DCode Code Srt_descrip Lng_descrip
PROCEDURES AND INTERVENTIONS , NOT
ELSEWHERE CLASSIFIED (00)

00.0 000 THERAPEUTIC ULTRASOUND THERAPEUTIC ULTRASOUND

PROCEDURES AND INTERVENTIONS , NOT
ELSEWHERE CLASSIFIED (00)

00.1 001 PHARMACEUTICALS PHARMACEUTICALS

OPERATIONS ON THE NOSE, MOUTH, AND
PHARYNX (21-29)

22.2 222 INTRANASAL ANTROTOMY INTRANASAL ANTROTOMY

OPERATIONS ON THE NOSE, MOUTH, AND
PHARYNX (21-29)

22.3 223 EXTERNAL MAXILLARY ANTROTOMY EXTERNAL MAXILLARY ANTROTOMY

MISCELLANEOUS DIAGNOSTIC AND
THERAPEUTIC PROCEDURES (87-99)

95.4 954 NONOPERATIVE PROC RELATED
HEARING

NONOPERATIVE PROCEDURES RELATED
TO HEARING

MISCELLANEOUS DIAGNOSTIC AND
THERAPEUTIC PROCEDURES (87-99)

96.0 960 NONOP INTUBAT GI&RESPIRATORY
TRACTS

NONOPERATIVE INTUBATION
GI&RESPIRATORY TRACTS

Summary Table V2 Programming Specifications
Version 1.0
 - 49 -

X. APPENDIX F: LOOKUP TABLE PX_ICD9_4DIG_LOOKUP

Includes descriptions for 4-character ICD9 procedure codes.

Variable
Type

(Length) Format Label Valid Values Source / Comments
Category Char(65) $65. Category Free text Category of code
DCode Char(6) $6. DCode Free text ICD9 Procedure code, with decimal point
Code Char(6) $6. Code Free text ICD9 Procedure code, no decimal point
Srt_descrip Char(35) $35. Srt_descrip Free text Short description for code
Lng_descrip Char(48) $48. Lng_descrip Free text Long description for code

Sample Rows
Category DCode Code Srt_descrip Lng_descrip

PROCEDURES AND INTERVENTIONS , NOT
ELSEWHERE CLASSIFIED (00)

00.32 0032 COMPUTER ASSISTED SURGERY
W/MR/MRA

COMPUTER ASSISTED SURGERY WITH
MR/MRA

PROCEDURES AND INTERVENTIONS , NOT
ELSEWHERE CLASSIFIED (00)

00.33 0033 COMPUTER ASSTD SURGERY
W/FLUORO

COMPUTER ASSISTED SURGERY WITH
FLUOROSCOPY

OPERATIONS ON THE DIGESTIVE SYSTEM (42-
54)

52.84 5284 AUTOTPLNT CELLS ISLETS
LANGERHANS

AUTOTRANSPLANTATION CELLS ISLETS
LANGERHANS

OPERATIONS ON THE DIGESTIVE SYSTEM (42-
54)

52.85 5285 ALLOTPLNT CELLS ISLETS
LANGERHANS

ALLOTRANSPLANTATION CELLS ISLETS
LANGERHANS

OPERATIONS ON THE MUSCULOSKELETAL
SYSTEM (76-84)

84.80 8480 INSRT/REPLCMT INTRSPINUS PRC
DEVC

INSERTION/REPLCMT INTERSPINOUS
PROCESS DEVICE(S)

OPERATIONS ON THE MUSCULOSKELETAL
SYSTEM (76-84)

84.81 8481 REV INTERSPINOUS PROCESS
DEVICE(S)

REVISION OF INTERSPINOUS PROCESS
DEVICE(S)

Summary Table V2 Programming Specifications
Version 1.0
 - 50 -

XI. APPENDIX G: LOOKUP TABLE NDC_LOOKUP_TABLE

Includes generic names and drug class descriptions drug dispensings by NDC.

Variable
Type

(Length) Format Label Valid Values Source / Comments
NDC Char(11) $11. NDC Digits only National Drug Code
GenericName Char(30) $30. Generic Name Free text Generic name for drug
GenericNameKey Num(3) 6. Generic Name Key 1-8192* Unique numeric value that has a 1:1 relationship to GenericName values
DrugClass Char(70) $70. Drug Class Free text Drug class/category for drug
DrugClassKey Num(3) 6. Drug Class Key 1-8192* Unique numeric value that has a 1:1 relationship to DrugClass values
*This is the maximum value that can be accurately represented with Num(3) under UNIX and Windows systems. If more values are required, this
must be Num(4).

Sample Rows

NDC GenericName GenericNameKey DrugClass DrugClassKey
00002323030 OLANZAPINE/FLUOXETINE

HCL
2130 Antidepressant Combinations 70

00002751601 INSULIN LISPRO 1515 Injectable Antidiabetic Agents 373
50428167114 HYDROCORTISONE 1393 Dermatological - Glucocorticoid 257
15330018801 LEVOTHYROXINE SODIUM 1684 Thyroid Hormones and Combinations 594
62856027630 PERAMPANEL 2299 Anticonvulsant - AMPA-Type Glutamate Receptor

Antagonists
43

99207051122 FLUOCINONIDE 1180 Dermatological - Glucocorticoid 258

Summary Table V2 Programming Specifications
Version 1.0
 - 51 -

	I. Document History
	II. Overview
	III. Utility Processes/Modules
	A. Create PatKeysCovKey table
	B. TableExtract Macro
	C. Create Surrogate Keys for Rx DrugClass and GenericNames
	D. Attach Rx Surrogate Keys to Dispensing Rows

	IV. Summary Tables
	A. Age Groups Table
	B. Enrollment Summary Table
	C. Extraction and Splitting of Diagnosis Table
	D. ICD-9-CM Diagnosis Summary Table (3 digit)
	E. ICD-9-CM Diagnosis Summary Table (4 digit)
	F. ICD-9-CM Diagnosis Summary Table (5 digit)
	G. Extraction and Splitting of Procedure Table
	H. HCPCS Summary Table
	I. ICD-9-CM Procedure Summary Table (3 digit)
	J. ICD-9-CM Procedure Summary Table (4 digit)
	K. Extraction and Key Assignment of Dispensing Table
	L. Drug Category/Class Summary Table
	M. Ingredient/Generic Name Summary Table
	N. Incident ICD-9-CM Diagnosis Summary Table (3 Digit)
	O. Incident Drug Class/Category Summary Table
	P. Incident Ingredient/Generic Name Summary Table
	Q. Export Text and Access Files

	V. Appendix A: Lookup Table Dx_ICD9_3dig_Lookup
	VI. Appendix B: Lookup Table Dx_ICD9_4dig_Lookup
	VII. Appendix C: Lookup Table Dx_ICD9_5dig_Lookup
	VIII. Appendix D: Lookup Table Px_Lookup
	IX. Appendix E: Lookup Table Px_ICD9_3Dig_Lookup
	X. Appendix F: Lookup Table Px_ICD9_4Dig_Lookup
	XI. Appendix G: Lookup Table NDC_Lookup_Table

